Designing Interactive Systems I
Lecture 4: Knowledge, Feedback, Errors, 7 Principles of Design

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

Winter term 2015/2016

http://hci.rwth-aachen.de/dis
3 Levels of Processing
(originally from Emotional Design)
I. Visceral Level

• Fast, totally subconscious
• Reflex action, impulse
• E.g., vertigo, feeling of warmth and happiness when basking in the sun
• Not exactly ‘emotions’, more like hard-coded responses
2. Behavioral Level

- The level of “classic usability”
- “Learned responses”, triggered by situations matching a pattern
- Mostly subconscious, fast, lower level of emotions
- E.g., sports, walking, etc.
- Behavioral action is associated with an expectation
 - Hope or fear: Am I doing the right set of actions? (feedback)
 - Relief or despair: Did things work out in the way I intended? (conceptual model)
3. Reflective Level

• Conscious thinking on events that have occurred

• Slow, deep thinking

• Highest level of emotions e.g., guilt, pride, blame, praise, etc.

• Retained in memory (⇒ most important)
Design in 3 Levels of Processing

- Visceral design: make products “feel” attractive
- Behavioral design: follow typical cognitive “usability” rules
- Reflective design: create a prestigious brand
- Excellent visceral and reflective design will make users forgive you small usability mistakes
Interplay with the Seven Stages of Action

Goal

Plan → Reflective → Specify → Behavioral → Perform → Visceral → World

Compare → Interpret → Perceive
Knowledge in the World and in the Head

- Experiment:
 - Write down the digit layout of a telephone and a calculator keyboard
Knowledge in the World and in the Head

• Much knowledge is not in the head but in the world

• Despite less-than-perfect knowledge, precise behavior is possible—how?

• Behavior is determined by combination of knowledge in the world and in the head

• High precision of knowledge in the head is unnecessary
 • We only need knowledge to be precise enough to distinguish the right behavior from the others possible
 • Example: What is on the front and the back of the German 1 cent coin?
More Reasons Why This Works

• Constraints are in effect
 • Physical constraints limit the actions possible
 • Example: What can be moved / combined / manipulated how when repairing your toaster?

• Cultural constraints are in effect
 • Social rules are learned once and are then applicable in many situations
 • Example: What to do upon entering a restaurant?
 • But: Cultural differences!
Knowledge in the Head & Constraints

- Traveling poets were able to recite poems with thousands of lines
 - Rhyme works as "linguistic constraint", and story works as semantic constraint
- Constraints limit the amount of knowledge that needs to be learned
- Humans can minimize the amount/precision/depth of information to remember by arranging their environment and copying people's behavior
 - This can even help people cover missing abilities (dyslexia) or mental disabilities
Example: Typing

• Exercise:
 • What kind of knowledge do beginners/intermediate/expert typists use?
 • Beginner: Knowledge in the world (keyboard labeling)
 • Intermediate: Knowledge in the world (peripheral vision, feeling keys) and in the head (knowing location of important keys by heart)
 • Expert: All knowledge in the head, no eye contact to keyboard necessary anymore (cost/benefit tradeoff)
Example: City Map

- Exercise:
 - Try to write down exactly how to get from this building to the main university building

- Result:
 - Nobody has a perfect street/building map in their head; often entire parts are forgotten in route descriptions
 - Nevertheless we can get from A to B safely
 - Why? Signage and constraints (e.g., street numbers) supply external knowledge
Types of Knowledge

• Declarative knowledge ("what")
 • Facts (Bonn is southeast of Aachen)
 • Rules (stop at red traffic lights)
 • Easy to write down and teach (not learn!)

• Procedural knowledge ("how")
 • How to play an instrument
 • Hard to write down, subconscious
 • Hard to teach, best by demo/training

• Design can easily convey declarative knowledge
How Much Can We Remember?

- Random unconnected facts: little
 - “Press Ctrl-Alt-Delete to log on”
 - Not learnable per se, only via associations
 - Example: First 1,000 digits of Pi
 - If your recipe fails, you are lost

- Connected facts: more
 - Using associations
 - Example: motor bike directional indicator

- Explained/understood facts: very much
 - A Conceptual Model emerges in the head
 - Can be reconstructed if needed
 - Very valuable in new situations where recipe fails
The Daily Struggle

• Exercise:
 • How many online accounts with passwords do you have?
 • How many of these can you remember the passwords to?
 • For how many of them do you use the same password?

• Credit cards, bank accounts with bank codes, number plates, phone numbers/addresses/birthdays/age of friends, clothing sizes,…

• As the password requirements become more complex, the system becomes less secure, why?
 • We tend to move these things from the head into the world
Knowledge in the World: Characteristics

- Nothing to remember
- But: only there while you see it
- Especially difficult with things that are not very important to you
- Solution: Reminders
 - Paper agenda vs. PDA
 - Signal vs. message
Comparing Knowledge in the World and in the Head

• In the world:
 • Available as soon as visible
 • No learning needed
 • Low efficiency (interpreting needed)
 • High initial usability
 • Aesthetics difficult with much to display
 • Remember: Natural mappings can save both learning and labeling

• In the head:
 • Less available
 • Less suitable for beginners
 • Harder to learn
 • But efficient
 • Invisible (less labels)
Decision Structures

• To reduce chance of error, use either shallow or narrow decision trees
 • Shallow: No planning required, e.g., ice cream parlor menu
 • Narrow: No deep thinking required, e.g., cook book instructions, start your car, motorway exits

• Wide and deep structures:
 • Games like chess, etc.
 • Designed to occupy the mind

• Subconscious thought is effortless, associative, pattern-matching

• Conscious thought is slow, serial, demanding
Feedback
Feedback

- Feedback communicates to the user the current system state, success or failure of actions, and results of actions

- Good feedback:
 - Immediate
 - Informative and clear
 - The right amount
 - Prioritized
Sound

• Exercise:
 • Listen to everyday objects and their acoustic feedback (or think about it if not readily available in class)
 • Examples: Pen cap, hard drive, bike lock, car door, telephone, software
 • Sound is a unique information channel
 • Omnidirectional: blessing and curse
 • But use to convey meaning if possible!
• More on sound in DIS II!
Visibility and Feedback

• Invisible On/Off switch on the rear

• VCRs without on-screen programming required lengthy programming instructions without much visible feedback

• A good display is great to improve visibility, and therefore often usability

• This becomes more feasible as technology progresses (—Augmented Reality / Ubicomp)
Visibility: A Bonus Feature

rear door handle
Feedforward

• Feedforward is to execution as feedback is to evaluation
• Information that helps you know what you can do
• Uses signifiers, constraints, and mappings
• Visual, but also haptic
 • Example: feeling keys before typing eyes-free on real vs. onscreen keyboard
Human Errors
Errors

• People make errors using everyday objects all the time
 • Especially when distracted, multitasking, interrupted, tired, under stress,…

• Often blame themselves (untypical!)

• Not only “dumb folk” have misconceptions of everyday life, and often those “wrong” models work better for everyday life
 • E.g., thermostats

• Perform root cause analysis
 • Analyze why error occurred
 • Human error is just the end of a causal chain

• Slips vs. Mistakes
Mistakes

- Result of conscious decision/thinking
- Often major events
- Reasons: Wrong goal, wrong plan, leaping to wrong conclusions, false causalities
- Hard to detect
Classes of Mistakes

• Memory-lapse: memory fails during goal-setting, planning, or evaluation
 • E.g., a mechanical failure because the mechanic was distracted while troubleshooting
• Knowledge-based: wrong evaluation of the situation because of incomplete knowledge
 • E.g., reporting the weight of an item in pounds instead of kilograms
• Rule-based: correct evaluation of the situation, but wrong course of action
Rule-based Mistakes

- Often made by skilled people

- Selecting the wrong rule (procedure) to apply in a situation

- Reason 1: Misinterpreting situation, invoking wrong plan, applying wrong rule
 - E.g., blocking night club attendees from an emergency exit assuming they are avoiding payment

- Reason 2: Selecting correct rule, but rule is faulty
 - E.g., raising the temperature of a thermostat for it to heat faster

- Reason 3: Selecting correct rule, but misinterpreting result, leading to further mistakes
 - E.g., a driver unfamiliar with anti-lock brakes lifts his foot from the brake paddle, thinking the vibration he sensed is a malfunction, when it is really positive feedback

- Difficult to avoid and detect

- Help by providing clear information about system state
Slips

• Most everyday errors
• Small things going wrong
• Goal formed, but execution messed up
• Usually easy to discover
• Occur mostly in skilled behavior
• Often caused by lack of attention, busy, tired, stressed, bored, more important things to do,…
• We can only do one conscious thing at once
 • Jef Raskin, The Humane Interface: Walking and eating and solving a maths problem
Classes of Slips

• Action-based: the wrong action is performed
 • E.g., pouring a cup of coffee and milk and placing the cup in the fridge
 • Types: capture slips, description-similarity slips, mode errors

• Memory-lapse: memory fails, and the intended action is not done or its results not evaluated
 • E.g., forgetting to lock the door when leaving the house
Action-based Slips

• Capture slips
 • Two action sequences with similar initial but different later sequence
 • The sequence well practiced “captures” the unfamiliar one
 • Driving to work on a Sunday
 • Pocketing a borrowed pen
Action-based Slips

- Description-Similarity slip
 - Intention not described in enough detail, fitting 2 different action sequences
 - Often occurs if similar objects are physically close to each other (e.g., switches)
 - E.g., throwing t-shirt into toilet instead of laundry basket
 - Putting a lid onto the obviously wrong container
 - Pouring orange juice into your coffee pot
Action-based Slips

- Mode errors
 - Triggering the wrong action because the device is in a different mode than expected
 - Who has seen this in their favorite text editor: “:wq”?
 - Happens whenever devices resort to modes to cope with more functions than controls
 - The most prominent problem in many software user interfaces
Memory-Lapse Slips

• Memory lapses are common causes of errors
• Caused by interruption through other people or devices
• Forgetting to complete action sequence
 • E.g., walking into your bedroom, then wondering what you wanted to do here
• Sometimes because main part of goal is accomplished
 • E.g., ATM card in machine, originals in copier
• Minimize by
 • reducing the number of required steps
 • providing reminders of the steps
 • applying forcing functions
In-Class Exercise: Slips

- In groups of two, think of three examples of slips that happened to you. What type are they?
 - Capture (driving to work)
 - Description-similarity (shirt in toilet)
 - Mode (vi)
 - Memory-lapse (ATM)
Detecting Errors

• Detecting slips is easier than mistakes, but requires visible feedback
 • Example: “Adjust the window!”

• Action-based slips are easier to detect than memory-lapses because the feedback is tangible

• Mistakes are hard to detect because nothing signals a wrong goal

• Problem: Finding the right level at which to correct
 • Are we doing this bottom-up?
 • The wrong car key
 • Confirmation is unlikely to catch errors
 • “Remove file blah.txt?”
 • Soft, reversible actions are better (e.g., trashcan), but people begin to rely on it
The Paradox of Automation

• When automation works, tasks are done as well or even better than by people

• The paradox is that automation can take over dull and simple tasks, but not complex ones

• When automation doesn't work, the results are unpredictable and could be dangerous, e.g., self-driven cars
Designing for Error

• Assume all possible errors will be made
• Minimize the chance of errors occurring
• Minimize their effect if they are made
• Make them easy to detect
• Make them easy to reverse (undo)
• Watch people using your system (and their slips and mistakes)
• Don’t punish, don’t ignore
• Warning signals are ignored, warning features bypassed if inconvenient
Operation Could not be completed.
client-error-not-possible

OK
You should have selected the CUE file and not this one.

I'll do it for you automatically this time, but don't do it again!