Investigating Note-Taking Strategies for Improving Quality of Education

Group 04

Shahzad Virani, Muhammad Omar, Usman Zia Ullah

Motivation

Focus: The UN's SDG 4 aims to provide inclusive and quality education for all.

Goal: To evaluate the performance of Stylus based note-taking regarding Memory Retention and Perceived Usefulness.

Knowledge Gap: Stylus based note-taking not explored sufficiently in comparison to Longhand (pen and paper) and Laptop.

Research Question and Hypotheses

RQ:

- How does the Note-Taking Strategy impact Memory Retention?
- How does the Note-Taking Strategy impact Perceived Usefulness?

Hypotheses:

- H1: Stylus based note-taking has a higher rate of Memory Retention compared to Longhand.
- H2: Stylus based note-taking has a higher rate of Perceived Usefulness compared to Laptop.

Study Design

Nature: Field Study (RWTH Informatik-Zentrum)

Structure: Between-Groups Design (3 x 1)

IV: Note-Taking Strategies (Stylus, Longhand, Laptop)

DV:

- Memory Retention
 - Evaluated using a Quiz (7-point Likert Scale)
- Perceived Usefulness
 - Questionnaires regarding Satisfaction, Multitasking and Distraction (7-point Likert Scale)

No of Trials: 3 (Devices) \times 4 (Participants) = 12 trials

Experiment

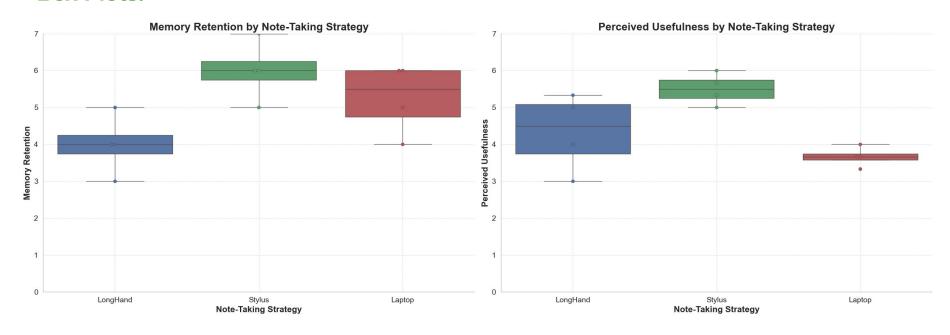
Apparatus:

- Longhand (pen and paper)
- Stylus (with tablet)
- Laptop (using Notion)
- Google Forms (for data collection)

Procedure:

- Informed consent, briefing & manipulation check
- Pseudo-lecture video shown for note taking
- Appear for a quiz after a short break for Memory Retention
- Questionnaires regarding Perceived Usefulness
- Debriefing

Data Analysis (Descriptive)


Mean and S.D:

 Determine Mean and SD of Memory Retention and Perceived Usefulness for different note-taking strategies

Memory Retention			
Condition	Mean	S.D	
Notebook	4.0	0.7	
Stylus	6.0	0.71	
Laptop	5.25	0.82	
Per	rceived usefulne	ess	
Condition	Mean	S.D	
Notebook	4.33	0.91	
Stylus	5.5	0.37	
Laptop	3.66	0.23	

Data Analysis (Descriptive)

Box Plots:

Data Analysis (Descriptive)

Shapiro-Wilk Test:

- To determine whether the data is normally distributed
- Value > 0.05 indicates that data is normally distributed

	Memory Retention			
Condition	p-value	Normal Distribution		
Notebook	0.68	Yes		
Stylus	0.69	Yes		
Laptop	0.27	Yes		

Perceived usefulness			
Condition	p-value	Normal Distribution	
Notebook	0.65	Yes	
Stylus	0.97	Yes	
Laptop	0.68	Yes	

Data Analysis (Inferential)

One Way ANOVA:

- Indicates significant difference in the D.V
- p-Value < 0.05 indicate there exists significant difference

One Way ANOVA				
Dependent variable	F-Statistics	p-value	Significance Difference	
Memory Retention	5.4	0.028	Yes	
Perceived Usefulness	7.5	0.019	Yes	

Data Analysis (Inferential)

Tukey's HSD:

 Pairwise comparison between groups

H1:True

H2:True

	Tu	key's HSD(M	emory Reten	tion) FWER=0	.05	
Group 1	Group 2	Mean diff	P-adj value	Lower	Upper	Reject
Laptop	Longhand	-1.25	0.157	-2.9597	0.4597	False
Laptop	Stylus	0.75	0.469	-0.9597	2.4597	False
Longhand	Stylus	2.0	0.023	0.2903	3.7097	True
Tukey's HSD(Perceived Usefulness) FWER=0.05						
Group 1	Group 2	Mean diff	P-adj value	Lower	Upper	Reject
Laptop	Long Hand	0.157	0.383	-0.667	2.001	False
1 4			0.04	0.499	3.167	True
Laptop	Stylus	1.83	0.01	0.499	3.107	True

Results & Discussion

- H1: Stylus based note-taking has a higher rate of Memory Retention compared to Longhand
 - The data **supports** this hypothesis
- H2: Stylus based note-taking has a higher rate of Perceived Usefulness compared to Laptop
 - The data **supports** this hypothesis
- Hence, it can be argued that Stylus based note-taking is the most versatile and useful strategy, enabling students to do more.

Limitations

Manipulation and Biases: Some study participants had a higher affinity for their chosen note-taking strategy than others.

Limited Educational Level: All participants were RWTH students. No information regarding students from primary or secondary education or vocational training.

Future Work

- Inclusion of students from different educational levels
- Extend the duration of study (time span one semester)
- Recruit a larger number of participant for the study (20 to 30 per condition)
- Include more substantial content for lectures and varied questions for quiz

Conclusion

Motivation: To evaluate the performance of Stylus based note-taking

Hypotheses:

- H1: Stylus based note-taking has a higher rate of Memory Retention compared to Longhand
- H2: Stylus based note-taking has a higher rate of Perceived Usefulness compared to Laptop

Study Design: Between-Groups (3 x 1)

Results:

H1: TrueH2: True

References

- [1] Yang, H. H., Shi, Y., Yang, H., & Pu, Q. (2020). The impacts of digital note-taking on classroom instruction: A literature review. InTechnology in Education. Innovations for Online Teaching and Learning: 5th International Conference, ICTE 2020, Macau, China, August 19-22, 2020, Revised Selected Papers 5(pp. 61-72). Springer Singapore. https://doi.org/10.14742/ajet.6688
- [2] Shell, M. D., Strouth, M., & Reynolds, A. M. (2021). Make a Note of It: Comparison in Longhand, Keyboard, and Stylus Note-Taking Techniques.Learning Assistance Review, 26(2), 1-21.
- [3] Pyörälä, E., Mäenpää, S., Heinonen, L., Folger, D., Masalin, T., & Hervonen, H. (2019). The art of note-taking with mobile devices in medical education. BMC medical education, 19, 1-10. https://doi.org/10.1186/s12909-019-1529-7
- [4] Mueller, P. A., & Oppenheimer, D. M. (2016). Technology and note-taking in the classroom, boardroom, hospital room, and courtroom. Trends in Neuroscience and Education, 5(3), 139-145. https://doi.org/10.1016/j.tine.2016.06.002
- [5] Davis, F. D., Granić, A., & Marangunić, N. (2023). The technology acceptance model: 30 years of TAM.Technology,1(1), 1-150. https://doi.org/10.1007/978-3-030-45274-2