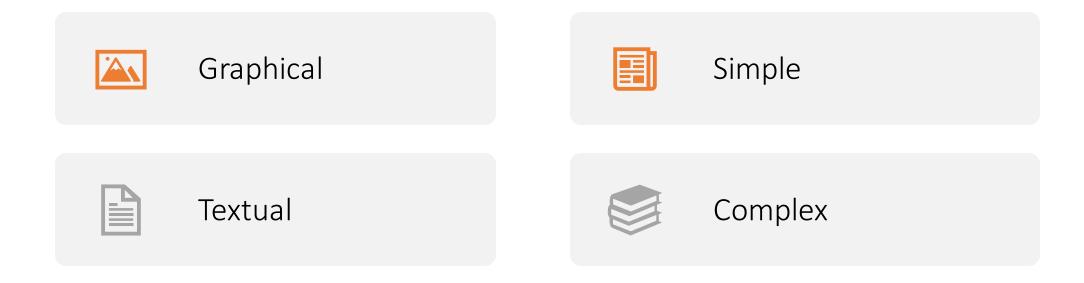
Investigating the Perception of Ecological Sustainability Measures in Online Computing Services

Group 7: Felix Glawe • Marc Schmidt • Aline Sylla

Motivation

- Sustainability in Computing
- Communicating Measures of Sustainability
- Transparency promotes informed decision and can influence change

Measures



using sustainable energy sources

optimizing server cooling systems to consume less power

optimizing worktime and workload distribution to consume less power

Dimensions of Communication

Hypotheses

H1: The sustainability perception of the online computing service differs based on which display form is used.

H2: A graphical display leads to a higher sustainability perception of the online computing service than a textual display.

H3: A bigger scope of information leads to a higher sustainability perception of the online computing service.

The Online Survey

Demographics

- Environmental Consciousness
 - pre-defined Environmentally Friendly Consumer Behavior Scale [1]

- Technology Affinity
 - pre-defined Affinity for Technology Interaction Scale [2]

Presentation Forms

Display Form

Seal

Table

Text

Information Scope

Simple

Complex

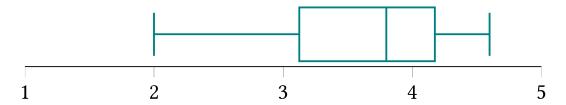
- 6 combinations
 ordered by
 balanced Latin
 Square
- measured as sustainability perception [3]

Examples

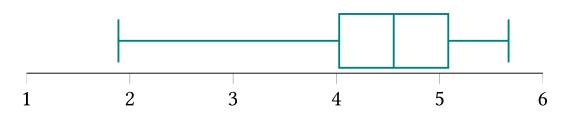
Shop Design A

Your Online Shopping Experience

Simple x Table

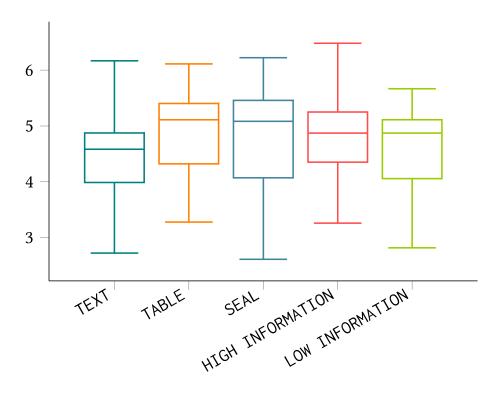

Energy Source	100% renewable sources
Server Cooling	30% energy savings compared to similar data centers
Computation workload distribution	Efficient and smart distribution of computational workload

Complex x Logo



Analysis: Participant Group

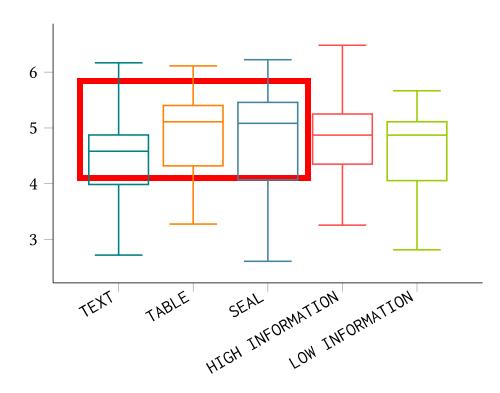
- 18 participants
- young, highly educated
- high environmental consciousness
- high technology affinity


Box Plot Environmental Consciousness

Box Plot Technology Affinity

Analysis: Sustainability Perception

- H1 tested with One-Way
 Repeated-Measures ANOVA
- H2 & H3 tested with Paired t-Test
- → not significant


Box Plot of the sustainability perceptions of the display forms and information scope variants

No significanct differences found:
Accept null hypotheses

Display form and information scope do not influence the sustainability perception of an online computing service

But:

Limitations

Homogenous sample

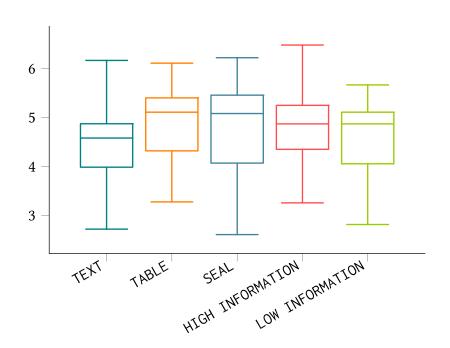
Small sample size

Possibly lack of tangibleness of scenario

Implication

Might lower threshold for companies to display sustainability measures

Future Work


- Repeat research:
 - With greater and more diverse sample
 - Examine influence of user factors
- Use other or more scenarios for online computing services
- Other display forms that were not considered

Conclusion

Energy Source	100% renewable sources
Server Cooling	30% energy savings compared to similar data centers
Computation workload distribution	Efficient and smart distribution of computational workload

- We explored if and how the presentation form of sustainability measures influences the sustainability perception of a computing service.
- No difference was found between the different forms.
- More research is needed to support or rebut our findings.
- Transparency promotes informed decision and can influence change, the question remains on how to improve transparency in communicating sustainability measures in computing services.

References

- [1]: Lynn Sudbury-Riley, Florian Kohlbacher, and Ágnes Dr.Hofmeister. 2012. Environmentally Friendly Consumer Behavior: A Scale Review, Modification, and Validation
- [2]: Thomas Franke, Christiane Attig, and Daniel Wessel. 2019. A personal resource for technology interaction: development and validation of the affinity for technology interaction (ATI) scale. International Journal of Human–Computer Interaction 35, 6 (2019), 456–467.
- [3]: Laura Florez, Daniel Castro, and Javier Irizarry. 2013. Measuring sustainability perceptions of construction materials. Construction innovation (2013).
- [4] Abhijit Banerjee and Barry D Solomon. 2003. Eco-labeling for energy efficiency and sustainability: a metaevaluation of US programs. Energy policy 31, 2 (2003), 109–123.
- [5] Wing S Chow and Yang Chen. 2009. Intended belief and actual behavior in green computing in Hong Kong. Journal of computer information systems 50, 2 (2009), 136–141
- [6] Robert Harmon, Haluk Demirkan, Nora Auseklis, and Marisa Reinoso. 2010. From green computing to sustainable IT: Developing a sustainable service orientation. In 2010 43rd Hawaii International Conference on System Sciences. IEEE, 1–10.
- [7] Carolien T Hoogland, Joop de Boer, and Jan J Boersema. 2007. Food and sustain- ability: do consumers recognize, understand and value on-package information on production standards? Appetite 49, 1 (2007), 47–57.
- [8]K Kokkinos, E Lakioti, P Samaras, V Karayannis, et al. 2019. Evaluation of public perception on key sustainability indicators for drinking water quality by fuzzy logic methodologies. Desalin Water Treat 170 (2019), 378–393.