Current Topics in Media Computing and HCI

Data Science Programming

Krishna Subramanian, M.Sc.
Media Computing Group
RWTH Aachen University

Summer Semester 2020

https://hci.rwth-aachen.de/cthci
Data scientist → Programming tools → Data science
Data Science

• How we extract knowledge from data

• Example applications: Targeted advertising/recommendations in Amazon/Netflix, validate research findings, and train a robot to detect humans

• What is so special about data science?
 • Open-ended, iterative workflow that involves a lot of backtracking
 • Usually involves deliberate bad programming practices like writing non-modular code, not using version control, and code hoarding
Data Science Workflow

Open-ended: Goals were not predefined, but were defined (and modified) during analysis

Iterative and involves backtracking: Previous analysis is revisited during analysis and afterwards when writing the final version of source code

[Subramanian et al., TRACTUS: Understanding and Supporting..., 2020]
Programming Practice in Data Science

• In data science, the focus is the end goal (results, findings) but not the process
 • Contrast this to software engineering, where the process (source code) also needs to be well documented, run fast, be secure, be memory efficient, etc.

[Kery et al., Exploring Exploratory Programming, 2017]
Messy Code

“I know how to write code. And I know that I could write functions to reuse functions and I could try to modularize things better, and sometimes I just don't care because why am I going to put effort in that if I'm not going to use it again?”

Leads to source code that is hard to re-use, navigate, and understand

```r
# read the CSVs - each DV is a separate file
measure = read.csv("Measurements_a_bit_clean.csv", sep = ",;\")

# apply the change to the hours.
measure <- within(measure, Time[(Schema == 1 & IsHours == 1 & Time >= 6)|(Schema == 1 & IsHours == 0 & Time >= 30)|(Schema == 2 & Time >= 10) | (Schema == 3 & IsHours == 1 & (Time != 12&TTime != 9&TTime != 6&TTime != 3))|(Schema == 3 & IsHours == 0 & (Time != 0&TTime != 45&TTime != 30&TTime != 15))]) <- 'difficult')
measure <- within(measure, Time[Time != "difficult"] <- 'easy')

# change the column type of the experimental design (expansive vs. constrictive)
measure$User <- as.factor(measure$User)
measure$Time <- as.factor(measure$Time)
measure$Schema <- as.factor(measure$Schema)
measure$IsHours <- as.factor(measure$IsHours)

[Kery et al., Variolite: Supporting Exploratory ..., 2017]
```
Informal Versioning and Code Hoarding

- Remember that data science involves iteration and backtracking
- This requires data scientists to keep all source code from explorations

```python
print "hc policy distribution entropy: \n" + str
# 2-fold CV Var: \n" + str(CV_variances)

#print "Stdev of (V_M under h^f, avg over states
#print "Stdev of (V_M under h^c, avg over states
#print "Average V_M under h^f: \n" + str(V_M_hf)
#print "Average V_M under h^c: \n" + str(V_M_hc)

fig = plt.figure(figsize=(9, 4))
ax = fig.add_subplot(1, 1, 1)
ax.set_xticks(D_sizes)
plt.plot(D_sizes, [V_star_avgState] * len(D_sizes)
# plt.plot(D_sizes, AvgState_V_hfs)
plt.errorbar(D_sizes, AvgState_V_hfs, yerr=Std_Vs,
# plt.plot(D_sizes, AvgState_V_hcs)
plt.errorbar(D_sizes, AvgState_V_hcs, yerr=Std_Vs,
plt.xlim(0, max(D_sizes))
plt.xlabel('|D|')
plt.ylabel('mean(V)')
plt.grid()
plt.show()

fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1, 1, 1)
ax.set_xticks(D_sizes)
```

[Kery et al., Variolite: Supporting Exploratory ..., 2017]
Programming Tools

- Scripting languages are very common: R, Python, and MATLAB

- IDEs for these languages offer three interfaces to program in
 - Scripts
 - Computational notebooks
 - Consoles

[Subramanian et al., Casual Notebooks and ..., 2020]
Scripts

• Traditional way to store source code

• Supports complete/partial execution of source code (via selection)

• Output is shown in a separate window or the console window
Computational Notebooks

- Cell-based programming
- Cells can be executed in a non-sequential order
- Output is shown immediately next to the cell that was executed
- Cells can also include Markdown commands (to describe the analysis process)
Scripts vs. Notebooks

<table>
<thead>
<tr>
<th>Data Science Task</th>
<th>Notebooks</th>
<th>Scripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refactor code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execute from command line/on GPU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Subramanian et al., Casual Notebooks and …, 2020]
Interactive Consoles

• Used mostly for secondary tasks like testing API, loading libraries, etc.

• However: Novice data workers who do not use notebooks tend to use consoles even for their primary data science work

[Subramanian et al., Casual Notebooks and …, 2020]
Data Scientists

• “… people who understand how to fish out answers to important business questions from today’s tsunami of unstructured information.” [Davenport 2012]

• Data scientists are
 • impactful,
 • help make key decisions

• Several data scientists are not professionals, we call them “data workers”
 • do not have formal training in data science
 • may not have good programming practices

[Boukhelifa et al., How Data Workers..., 2017]
Future of Data Science Research

• Notebooks: Collaboration, better support for use in production, history navigation, etc.

• Understanding data science workflows across several fields like machine learning, significance testing, etc.

• Data science in AR, VR, and tabletops
Data is everywhere, and data science is a valuable skill to have in the current day and age.

Improving data scientists’ workflows and tools can be vastly beneficial!