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ABSTRACT 
Tangible objects on capacitive multi-touch surfaces are usu
ally only detected while the user is touching them. When the 
user lets go of such a tangible, the system cannot distinguish 
whether the user just released the tangible, or picked it up and 
removed it from the surface. We introduce PERCs, persistent 
capacitive tangibles that ‘know’ whether they are currently 
on a capacitive touch surface or not. This is achieved by 
adding a small field sensor to the tangible to detect the touch 
screen’s own, weak electromagnetic touch detection probing 
signal. Thus, unlike previous designs, PERCs do not get fil
tered out over time by the adaptive signal filters of the touch 
screen. We provide a technical overview of the theory be
hind PERCs and our prototype construction, and we evaluate 
detection rates, timing performance, and positional and angu
lar accuracy for PERCs on a variety of unmodified, commer
cially available multi-touch devices. Through their affordable 
circuitry and high accuracy, PERCs open up the potential for 
a variety of new applications that use tangibles on today’s 
ubiquitous multi-touch devices. 
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INTRODUCTION 
Tangible objects in combination with multi-touch surfaces 
have been shown to be useful in a large variety of applica
tion scenarios [11], from music creation [4], to collaborative 
search [3], to medical teaching simulations [14]. The haptic 
experience and tactile feedback provided by tangibles guides 
user input and allows for eyes-free interaction [15]. In the 
past, most of these tangibles have been designed for visual 
multi-touch systems [15, 4]. However, since such systems 
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Figure 1. PERC tangibles used as Star Wars ships in an interactive 
board game on a capacitive touch screens. 

are often bulky and sensitive to external lighting conditions, 
modern touch screens increasingly use capacitive sensing. 

Capacitive touch screens detect touches by creating an elec
tric field above their surface. When an object with high ca
pacitance, such as a human finger, comes close to the sur
face, this electric field changes. The touch screen measures 
this change and reports a touch. Tangibles on touch screens, 
such as Capstones [1] or TUIC [16], normally use electri
cally conductive material on their bottom and sides, so that 
a user touching them increases their capacitance enough to 
register as a touch. However, this means that for the tangible 
to be detected, the user has to continue touching it. As soon 
as the user releases the tangible, the capacitance drops, and 
the system fails to detect the tangible—even if it remains on 
the surface. This makes it impossible to distinguish whether 
a tangible has been picked up and removed from the touch 
screen, or whether the user has just let go of the tangible, 
leaving it on the touch screen. 

PUCs [13] addressed this issue by introducing tangibles that 
ground themselves through currently inactive sensor elec
trodes of the capacitive touch screen, thereby increasing their 
capacitance beyond the detection threshold. However, most 
touch screens have adaptive filtering mechanisms that remove 
touches that have been stationary for too long. This causes the 
touches by stationary, untouched PUC tangibles to disappear 
after a short while (5–30 seconds), leading again to the prob
lem that we cannot determine from the touch screen output 
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if a tangible was actively removed from the table or merely 
filtered out by the system. Touch hardware and controllers 
also require certain minimum sizes and distances for the pads 
that make up a PUC footprint. Since PUCs use their footprint 
for identification, the number of uniquely identifiable PUCs 
is rather limited. 

In this paper, we propose PERC tangibles, an extension of the 
PUCs concept. An integrated sensor in each PERC detects the 
signal emitted by the capacitive touch screen’s electric prob
ing field. This allows the tangible to determine whether it is 
currently placed on a capacitive touch surface or not, even 
when its touches are being filtered out by the touch system. 
That status is communicated from the PERC tangible to the 
system via Bluetooth; the communication channel also as
signs a unique ID to each tangible independent of its touch 
pattern, solving the identification problem with PUCs. With 
the sensor electronics being contained in the tangible, PERCs 
can be used on a variety of unmodified, commercially avail
able devices including capacitive multi-touch tables, smart-
phones, and tablets. 

In all, this paper makes the following contributions: 

1. We provide a detailed description of the concepts behind 
PERC tangibles, and of our prototype PERCs. 

2. We report the results from a large-scale technical evalua
tion of PERCs on a number of unmodified, commercially 
available capacitive touch screens. Our evaluation included 
measuring the detection rate, detection time, and detection 
accuracy from over 70000 individual tangible placements. 

SAMPLE SCENARIO AND REQUIREMENTS 
Figure 1 shows a sample gaming scenario using tangibles. 
The game is an adaptation of the X-Wing Miniatures1 table
top board game. Two players each control a fleet of space 
ships, with the goal of destroying the opposing player’s fleet. 
Each ship has specific movement patterns, weapons ranges, 
and talents, and is represented by a miniature that acts as a 
tangible. For the system to support this kind of game, for ex
ample by automatically determining and displaying if a ship’s 
weapon can reach an opponent, the tabletop has to be able to 
identify each individual tangible, and continually determine 
its position and orientation on the touch surface with high ac
curacy. When a player moves a ship, it will change position 
rapidly. Most of the time, however, ships will be stationary. 

This scenario already motivates a number of requirements for 
a system using tabletop tangibles: 

1. At any time, the system has to be able to determine which 
tangibles are currently placed on the interactive surface, 
whether they are being touched or not. 

2. Each tangible has to be uniquely identifiable. 

3. The system needs to be able to detect the exact position and 
orientation of each tangible. 

4. Position and orientation updates of fast-moving tangibles 
should be detected without noticeable delays. 

1fantasyflightgames.com 

RELATED WORK 
To detect tangibles on touch screens, vision-based tracking 
is still a popular approach. URP [12] detects a specific dot 
pattern on top of each tangible. SLAP [15] and ReacTable 
[4] use diffuse illumination (DI) to detect reflective markers 
attached to the bottom of each tangible. Most of these sys
tems fulfill all four requirements. However, vision-based in
teractive surfaces suffer from impaired reliability under many 
lighting conditions, and are mostly rather voluminous. 

Because of this, several projects have explored alternative 
tracking technologies: Audiopad [9] attached two radio fre
quency tags to each tangible to determine its position and ori
entation. Bricks [2] uses an existing input device as a tan
gible. Sensetable [8] uses electromagnetic sensing to track 
tangibles. All of these systems fulfill the first two require
ments, but not requirements 3 and 4, since they cannot detect 
the exact position and orientation of tangibles. Gausstones 
[6] track magnetic tangibles using a hall sensor grid below the 
touch display. Since the small magnetic tangibles can only be 
detected over a very short range, this technique only works in 
combination with thin touch screens. 

Tangibles on capacitive screens can usually only be detected 
while the user is touching them. SmartSkin [10] showed how 
tangibles can be tracked on custom-made capacitive touch 
displays, by simulating touch points that mimic a human 
touch. However, these touch points can only be simulated 
while a user is touching the tangible. CapWidgets [5] applied 
this concept to commercially available capacitive touch dis
plays such as the Apple iPad. Capstones [1] extended this 
concept by allowing the user to stack tangibles onto each 
other. To distinguish a large number of tangibles, Yu et al. 
[16] created active tangibles that can be uniquely identified 
by enabling and disabling the touch points with a specific 
time based pattern. All these capacitive systems violate re
quirement 1, since the system cannot tell if a tangible is still 
present on the screen or not when the user stops touching it. 

In contrast to these systems, PUCs tangibles [13] can simu
late touches without a user touching the tangible, due to their 
specific marker pattern. However, due to different filtering 
algorithms in capacitive touch displays, stationary PUCs tan
gibles are filtered out over time. This again violates require
ment 1, since the system cannot determine whether a filtered 
tangible is still on the surface. 

Our goal was to develop a concept for tangibles on capaci
tive touch screens that fulfill all four requirements. Our ap
proach combines the PUCs marker design [13] with an addi
tional sensor inside the tangible that can detect if the tangible 
is close to a capacitive touch screen. 

PERC TANGIBLES 
Our Persistently Trackable Tangibles on Capacitive Multi-
Touch Displays (PERCs) build upon the PUCs marker con
cept [13], which has two weaknesses that have to be ad
dressed: Firstly, without modifications, PERCs would—just 
like PUCs markers—suffer from the aforementioned issue 
that stationary touch points are eventually filtered out by the 
capacitive touch screen [13], prohibiting us from determin
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Figure 2. The six main components of a PERC tangible: (1) marker pat
tern, (2) field sensor, (3) light sensor, (4) micro controller, (5) Bluetooth 
element, and (6) lead plate. 

ing if a stationary tangible has been removed from the touch 
screen or if its touches have just been filtered out. This prob
lem, fortunately, only occurs if the tangible is stationary for at 
least several seconds. As soon as a tangible is moved across 
the surface, all touch points are immediately detected again. 
However, this behavior still breaks requirement 1. Secondly, 
PUCs tangibles are identified by their geometric touch pat
tern, limiting the number of uniquely identifiable tangibles by 
the size of their footprint and the number of different marker 
constellations that can be accommodated by it. This limits 
the fulfillment of requirement 2. 

For our PERC tangibles, we solve these problems by adding 
a sensor to each tangible that detects if it is placed on a capac
itive touch surface or not. During operation, this information 
is constantly communicated via Bluetooth 4.0 (BLE) to the 
system. With this approach, we are able to fulfill both re
quirements: PERCs communicate that they are still on the 
touch surface even when the touches have been already fil
tered out, satisfying requirement 1. Each PERC can also be 
identified through its own unique BLE UUID, satisfying re
quirement 2. 

TECHNICAL IMPLEMENTATION 
A PERC tangible consists of three main components: A 
PUCs marker pattern, the field sensor, and a light sensor 
(Fig. 2). In addition to these main components each PERC 
also includes a microcontroller, a Bluetooth 4.0 chip, a bat
tery, and a lead plate on top of the tangible to increase the 
tangible’s weight for better touch detection. 

Marker Pattern 
The marker pattern consists of three 8x8 mm pads connected 
via conductive copper foil (Figure 2). Each pad creates a 
touch point that is detected by the capacitive touch screen. 
For the pads, we use a soft conductive weave that is usually 
used as EMS shielding2. This has the benefit that the pads do 
2www.we-online.com 

Figure 3. Touch detection signals by (left to right) iPad 4, 3M screen, 
and Microsoft 55” capacitive screen. 

A
B

C
A

B
C

1 2
Figure 4. PERCs tangibles on the transmitter and receiver electrodes of 
the Microsoft 55” capacitive screen. For (1) marker a is not detectable 
due to the alignment of the electrodes. In (2) all markers are detected 
reliably. 

not create any scratches on the touch surface, and that they 
remain in good contact with the surface. 

Field Sensor 
The field sensor is the part of a PERC tangible that actively 
determines if the tangible is placed on a touch surface at any 
given time or not. For this purpose, an antenna at the bot
tom of the tangible picks up the signature of the electric field 
above the surface, which is created by every capacitive touch 
screen. We have measured the fields of several commercially 
available devices (Figure 3), and found that all signals exhibit 
a regular pattern of strong peaks at a fixed frequency, which 
can be easily distinguished from the noise component of the 
signal. In our current implementation, the threshold of the 
field sensor is set to detect the capacitive touch screen if the 
distance between the touch surface and the tangible falls be
low 1 mm. 

Whenever the field sensor detects the presence of a capaci
tive touch surface, the tangible sends a set event via BLE to 
the system. The system correlates this message temporally 
to newly appearing touches in order to link the UUID to the 
tangible’s position. Since the set event and the touches arrive 
at the system within 144 ms in over 99% of the cases, setting 
the time window for grouping UUID and location to 150 ms 
eliminates most false negatives. False positive groupings that 
could result from multiple PERCs being set down on the ta
ble within this time window are resolved using a light sensor, 
as described below. Until the tangible recognizes the absence 
of the electric field and sends a corresponding lift event, the 
system considers it as being on the table even if its touches 
are filtered out. 

While the combination of our marker pattern and the field 
sensor lets the system reliably detect which tangibles are on 
the surface, we found that if a PERC tangible is placed on the 
touch surface at certain angles, only two of the three marker 
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pads are detected. The reason for this is a combination of 
the marker pattern and the arrangement of the transmitter and 
receiver electrodes of the capacitive surface. Whenever a tan
gible is oriented as shown in Figure 4.1, the corner pad A is 
located at the crossing of two electrodes that are also covered 
by the outer pads B and C. In this case, the capacitive touch 
surface will not detect a touch at pad A, which is consistent 
with observations made by Voelker et al. [13]. Because pads 
B and C are still detected reliably, the system is able to de
termine the location and the angle of the tangible, but only 
modulo a 180◦ orientation ambiguity. Similar to the situation 
with multiple tangibles being placed on the capacitive touch 
surface at the same time, these ambiguities can be resolved 
using the PERCs’ light sensor. 

The exact angles at which pad A is not detected depend on the 
geometric configuration of the electrodes in the touch surface. 
On many common capacitive touch screens the electrodes are 
aligned orthogonally to each other. Therefore, for our marker 
setup, angles around full 90◦ rotations are critical. On other 
devices, such as our main test screen, one set of the electrodes 
is rotated by 15◦, so the critical angles for our marker setup 
are shifted by this amount (see Fig. 5). 

Light Sensor 
The light sensor is responsible for resolving the two 
ambiguities—UUID assignment for mutliple PERCs that are 
set on the surface simultaneously and when only two of 
the three touches of a PERC are registered by the touch 
surface—that can occur during normal operation. The sensor 
is mounted underneath the tangible, offset to one side from 
the diagonal line between the pads B and C. 

The off-axis position ensures two different possible locations 
of the light sensor when both the position and the angle of the 
tangible are known but the orientation is unknown. When
ever the system receives a set event accompanied by only two 
touches that have the expected distance between two touch 
points as B and C, the system sends a ‘visual ping’ to one of 
these possible light sensor locations by locally changing the 
brightness of the display momentarily. This approach is sim
ilar to how Touchbugs work [7]. If this brightness change is 
detected by the light sensor, the tangible communicates this 
via BLE to the system. Consequently, if the light sensor does 
not detect the visual ping, it must be located on the other side 
of the diagonal between the pads B and C. Either way, the 
system can recover the orientation of the tangible. 

Note that this process is only ever necessary immediately af
ter setting a tangible down on the capacitive touch surface at 
one of the critical angles, where pad A is not detected. As 
soon as the tangible is moved, all three pads are detected re
liably, and the exact orientation of the tangible can be deter
mined without the overhead of additional communication to 
the tangible. In the cases where this disambiguation proce
dure is necessary, the whole process increases detection du
ration by roughly 100 ms (see Fig. 6). 

Apart from resolving the orientation ambiguity, the light sen
sor also serves to tell apart multiple tangibles if they where 
placed on the capacitive touch surface within the 150 ms time 

window between receiving the set event via BLE and detect
ing the touches of the tangible. In this case, a sequence of 
visual pings is sent—one ping to the location of the light sen
sor of each tangible in question—and the sequence of BLE 
answers resolves the UUID assignment ambiguities. 

Components and power consumption 
Our PERC tangibles are built from cheap, off-the-shelf 
components. For the current implementation, we used an 
MSP430G2553 microcontroller, a BLE112 Bluetooth mod
ule, a TEMD6200FX01 light sensor, and a Renata LIPO bat
tery (3.7 V, 175 mAh). The total cost of all parts including 
the acrylic frame and the marker pads is less than US$25. 

The tangibles operate in BLE-master/slave mode; the limiting 
factor for the maximum number of tangibles is the number of 
touches that can be detected at the same time, rather than the 
Bluetooth connection. We successfully connected all our 27 
prototype tangibles to the PC-based system and 10 tangibles 
to an iPad. 

PERCs have very low energy consumption: one battery 
charge yields approximately 60 hours of continuous use. 
Making the tangibles issue a warning via bluetooth when they 
need to be recharged would be a straightforward extension to 
our current prototype. Similarly, the recharging mechanism 
could easily be changed from cable-based to inductive power 
transfer, allowing the tangibles to recharge in their storage 
tray or box. 

EVALUATION 
We performed a series of automated experiments to techni
cally evaluate the capabilities of the PERCs tangibles and the 
degree to which they fulfill the four requirements identified 
above. For this purpose, a robot (Video Figure) performed a 
large number of test cycles on three different capacitive touch 
screens: a Microsoft 55” capacitive touch screen (MS dis
play), a 27” Perceptive Pixel display (PPI display), and an 
iPad 4 (iPad). Each cycle consists of setting down a PERC 
tangible (40 mm by 40 mm) at a specified location and an
gle, waiting for one second, and then lifting up the tangible 
before changing the angle for the next cycle. This resulted in 
testing 73 distinct angles at nine different positions on each 
touch screen. 

For each cycle, we measured and logged the positions and 
time stamps of all touches reported by the touch screen as 
well as the time stamps and event types for all incoming BLE 
communication. Whenever the tangible was detected, the sys
tem calculated the position and angle, compared both to the 
expected values for the cycle, and logged the positional and 
angular detection errors. 

The reasons for performing the experiment with a robot are 
twofold: First, using a robot allowed us to gather a much 
larger sample size of measurements and granted exact re
peatability of each individual placement cycle. Secondly, 
when setting down the tangible manually, the parasitic ca
pacitance of the experimenter’s hand actually results in much 
more accurate touch locations (even though there is no con
ductive connection to the pads). Therefore, the experimental 

354



N
um

be
r o

f T
ou

ch
es

0

1

2

3

0 45 90 135 180 225 270 315 360
Angle of the tangible

Figure 5. Number of marker points found depending of the orientation 
of the tangible. The Whiskers denote the standard deviation. Results 
were measured on the MS display. 
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deviation. Results were measured on the MS display. 

setup we used allows us to give a very conservative ‘worst 
case’ estimate for the detection accuracy of the system. 

For this evaluation, we ran the 65700 cycles on the MS dis
play (900 per angle) at nine different positions on the screen. 
In addition to that, we performed 2190 cycles on both the iPad 
and the PPI display (30 trials per angle). This adds up to a to
tal amount of over 70000 trials; given an average number of 
64 detection reports from the touch screens over each cycle, 
we recorded about 4.4 million data points. 

Results 
The detection rate of our newly introduced field sensor was 
at 100 % across all trials and all touch screens. The field 
sensor was always able to detect if a tangible was placed on 
the surface and if it was lifted from the surface. The average 
time difference between the set event and the lift event is 1.3 s 
with a standard deviation of 0.038 s. 

As expected, the detection rate of the PUCs marker points 
depends on the angle of the tangible. As shown in figure 5, 
around 75◦ , 165◦, 255◦ and 345◦, sometimes only touch 
points for pad B and C are detected. On the iPad and the 
PPI we found similar results at 0◦, 90◦, 180◦ and 270◦ . As 
explained earlier, these angles reflect the alignment of trans
mitter and receiver electrodes of the capacitive surface. 

The average detection duration reflects the use of the light 
sensor and the additional communication overhead in these 
cases. Figure 6 shows the detection duration for successfully 
detected tangibles, cases where the light sensor had to be used 
are highlighted in red. 

Figure 7. Average measurements of the evaluation. 
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The average detection time if all three markers were detected, 
the detection time if the light sensor was used, the displace
ment and angular errors, and the percentage of trials in which 
only one marker was detected for all three tested touch dis
plays are show in Figure 7. More detailed results are show in 
Figure 8. These results suggest that the displacement and the 
angular error of a tangible depends on the orientation of the 
tangible. 

Discussion 
From the evaluation of the PERC tangibles, the following ob
servations can be made: 

Regarding requirement 1, PERCs can reliably detect (with 
100 % accuracy) if they are located on a capacitive touch sur
face. Through the application of the PUCs marker concept, 
about 98 % of the tangibles are correctly detected on a MS 
display. This detection is independent of user’s touch since 
we use the PUCs technology to create the touch points. Our 
newly introduced field sensor counters the problem of station
ary touch points being filtered out over time. Therefore, our 
system can reliably decide if a tangible was removed from the 
surface or just filtered out. 

PERCs also fulfill requirement 2, since every tangible has its 
own Bluetooth UUID. If two set events occur at very close 
temporal proximity, the light sensor acts as a fallback mech
anism for disambiguation. Therefore, our system is able to 
uniquely identify each tangible at any given point in time. 
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Position and angle of PERCs can be detected with high fi
delity: the mean position error on the MS display is 1.5 mm, 
the mean angular error is -0.78◦ . Therefore, PERCs fulfill 
requirement 3. Both, position and angular accuracy can be 
further improved upon by employing machine learning algo
rithms to the collected results. 

Requirement 4 is fulfilled as well, since all three of a PERC’s 
touch points are reliably detected as soon as the tangible 
is moved over the capacitive surface. At this point, posi
tional and angular information are obtained directly from the 
touches, which are updated with the capacitive touch sur
face’s scan rate. The tracking performance for fast moving 
tangibles can possibly be even further improved on by em
ploying predictive filtering mechanisms based on dynamic 
movement models (e.g., kalman filters). 

SUMMARY AND FUTURE WORK 
In this paper, we presented PERCs, Persistently Trackable 
Tangibles on Capacitive Multi-Touch Displays. PERCs are 
detected even when they are not touched by a user and, un
like previous designs, they do not get filtered out over time 
by the adaptive signal filters of the touch screen. This is 
achieved by adding a field sensor that detects the electric field 
of the touch surface. PERCs can be easily and affordably con
structed from off-the-shelf components, and they work on a 
variety of commercially available touch screen models. 

While we were able to show that PERC tangibles can be 
reliably detected on a number of common capacitive touch 
screens, there is still potential to improve upon their accuracy 
and detection rate. For example, we plan to apply machine 
learning algorithms to minimize the displacement and angular 
error during the tangible detection. A more detailed look into 
how the pattern of detected markers is geometrically skewed 
on different touch surfaces and at different angles could yield 
more precise estimations for the tangibles’ positions. 

Since the different touch screen models exhibit specific char
acteristics in how they pulse their electric field, the field sen
sor could be used to detect on which touch screen model a 
tangible is currently placed. This would allow us to adapt 
thresholds, timeouts and error correction functions specifi
cally tuned for each screen model. 
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