

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2013
Ardi Tjandra

v

Contents

Abstract xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Objectives . 3

1.2 Overview and Contributions 3

2 The Lives Of Developers 7

2.1 A Typical Work Session 7

2.2 The Various Predicaments 11

3 Related Work 15

3.1 Software Comprehension Tools 17

3.1.1 SHriMP Views 17

3.1.2 Relo . 19

vi Contents

3.1.3 Code Bubbles 21

3.1.4 Code Canvas 23

3.1.5 Code Thumbnails 24

3.1.6 HyperSource 27

3.1.7 Software Cartography 29

3.2 Information Foraging and Code Reuse Tools 30

3.2.1 Blueprint 30

3.2.2 Codelet 32

3.2.3 The Adaptive Ideas Design Tool . . . 34

3.2.4 Jigsaw 36

3.2.5 SnipMatch 37

3.3 Novel Ways for Programming 39

3.3.1 Looking Glass 40

3.3.2 Scratch 41

3.3.3 Gaucho 43

3.4 Summary . 44

4 The Research Base 47

4.1 Design Principles 49

4.2 Secondary Properties 52

4.3 Summary . 54

5 The Design 57

Contents vii

5.1 Incorporating Design Patterns 58

5.2 The Pattern Language 66

5.3 Code Mixer 73

5.4 Code Mixer: Retouched 84

6 Evaluation 91

6.1 Our Initial Hypotheses 91

6.2 The Prototype 92

6.3 User Studies 96

6.4 The Results of The Studies 99

6.4.1 General Reaction to Code Mixer . . . 100

6.4.2 Interface Details and Visual Identity . 100

6.4.3 Information Clarity and Interaction
Style 103

6.4.4 Additional Comments 104

6.5 Final Design Adjustments 106

7 Summary and future work 113

7.1 Summary and Contributions 113

7.2 Future Work 116

A Detailed Views of the Prototype 119

A.1 Code Comprehension 119

A.2 Information Foraging 123

viii Contents

A.3 Building a Composition 125

B The Results of User Studies 127

B.1 Background 127

B.2 Shapes & Forms 128

B.3 Information Clarity 129

B.4 Interaction Style 130

B.5 General Idea 131

Bibliography 133

Index 139

ix

List of Figures

1.1 A sample sketch by developers 2

1.2 A typical composition 4

2.1 A typical work progression 10

2.2 The problems during the maintenance period 14

3.1 A sample interface of a conventional IDE . . 16

3.2 SHriMP View 18

3.3 Relo . 20

3.4 Code Bubbles 22

3.5 Code Canvas 24

3.6 Code Thumbnails Scrollbar 25

3.7 Code Thumbnails Desktop 26

3.8 HyperSource 28

3.9 Software Cartography 29

3.10 Blueprint . 31

3.11 Codelet . 33

x List of Figures

3.12 The Adaptive Ideas design tool 35

3.13 Jigsaw . 37

3.14 SnipMatch . 38

3.15 Looking Glass 40

3.16 Scratch . 42

3.17 Gaucho . 44

4.1 Design principles and properties 55

5.1 The essence of the first design phase 60

5.2 The interface of the first design 62

5.3 The information network 63

5.4 The essence of the second design phase . . . 67

5.5 The interface of the second design 68

5.6 The interface of the third design 76

5.7 How Code Mixer looks in the IDE 78

5.8 Code Mixer’s save window 80

5.9 Code Mixer application window 85

5.10 Code Mixer’s hidden panels 86

6.1 The foundation of the simulated environment 94

6.2 The application window in the simulated en-
vironment . 95

6.3 The description panel in the simulated envi-
ronment . 95

List of Figures xi

6.4 The second phase of the user study 98

6.5 The final interface of Code Mixer 108

6.6 Enhanced view of compositions 109

6.7 The composition library 110

A.1 The first two compositions in the first task . . 120

A.2 The second two compositions in the first task 121

A.3 The last composition in the first task 122

A.4 The first composition in the second task . . . 123

A.5 The last two compositions in the second task 124

A.6 The simulated environment for the third task 125

B.1 Questionnaire frequency distribution - Back-
ground . 127

B.2 Questionnaire frequency distribution -
Shapes & Forms 128

B.3 Questionnaire frequency distribution - Infor-
mation Clarity 129

B.4 Questionnaire frequency distribution - Inter-
action Style . 130

B.5 Questionnaire frequency distribution - Gen-
eral Idea . 131

xiii

List of Tables

6.1 General Reactions on Code Mixer 100

6.2 Reactions on Code Mixer’s Interface 101

6.3 Reactions on Code Mixer’s Information Clar-
ity and Interaction Style 104

B.1 Questionnaire result - Background 127

B.2 Questionnaire result - Shapes & Forms 128

B.3 Questionnaire result - Information Clarity . . 129

B.4 Questionnaire result - Interaction Style 130

B.5 Questionnaire result - General Idea 131

xv

Abstract

A software maintenance task can typically be divided into two phases: code com-
prehension and information foraging. During the former, developers try to grasp the
rationale behind source code, while in the latter developers performs code mod-
ification, which is often accomplished by integrating others’ code examples that
are found on the Web. Many problems arises during this period, and accordingly,
plenty of tools have been proposed to solve them. However, most of these tools
only deal with one of the aforementioned phases, forcing developers to utilize a
lot of tools to fix different kinds of problems. To this end, in this thesis work we
present the design for Code Mixer, a tool that should help developers throughout
the entirety of the maintenance period. At the center of Code Mixer are compositions,
which is a concept that we utilize to represent both the problems that developers
face and the pieces of information that they share among one another. Further-
more, Code Mixer is based on three design principles (visual emphasis, portability
and task orientation), further ensuring its effectiveness as a help tool. To formu-
late the design, we underwent a progressive design period that spans four phases.
Code Mixer stared off as a web-based environment that differentiates between two
user roles, composers and consumers. However, it ended up being a system that
combines a desktop interface and a central repository, with unified user experience
for all users, making it possible to grow into a thriving community where users can
share ideas in the form of compositions. To evaluate our design we conducted a set
of qualitative users studies, where users gave unanimously positive reactions re-
garding Code Mixer’s ability to provide assistance for developers during the main-
tenance period. Ultimately, what separate Code Mixer from the other help tools
is the way it bridges the gap between code comprehension and information for-
aging. It addresses information foraging by supplying a standardized format for
task description in the form of design patterns-like structure, on top of providing
lightweight creation, distribution and reuse of compositions. Meanwhile, it helps
code comprehension by providing a task-oriented outlook of source code, as well
as allowing for an efficient navigation through code that focuses on the current
task.

xvii

Acknowledgements

Working on this thesis has been a rewarding, often illuminating experience, and it
would not be possible without the help of the people around me. On that account,
I would like to extend my gratitude to:

Leonhard Lichtschlag, whose patient guidance and insightful advice really helped
mold this thesis work into what it is.

Moritz Wittenhagen, for his valuable pointers and keen eyes.

Prof. Dr. Jan Borchers, my thesis advisor, for helping to establish the foundation of
this research.

Prof. Dr. Horst Licher, for his time and support as an examiner of this thesis work.

The assortment of sharp and colorful folks at the Media Computing Group, for
various assistance, insights and inspirations.

The participants to my user studies, for their time, efforts, and valuable inputs.

And finally, my family, for their continued love and support.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

In order for a software to stay functional for as long as Software
maintenance is an
important part of a
software life cycle

possible, it needs to have the ability to adapt to an assort-
ment of unpredictable conditions such as errors and bugs,
as well as the changing needs of its users. Therefore, soft-
ware maintenance is a crucial period of a software life cycle,
and can last as long as the life duration of the software it-
self.

Maintaining a software typically involves code modification, Code modification
often requires
developers to first
understand the code
that they are about to
change, which is not
always easy to
accomplish.

which can range from altering only a few lines of code to
multiple code blocks spanning multiple code files. Partic-
ularly when dealing with cases such as the latter, devel-
opers are required to have a good grasp of the code that
they are about to change, as careless modification may in-
troduce bugs that could potentially affect the whole system.
As a code project grows in size and intricacy, the process of
understanding code would become harder and harder to
accomplish. For this purpose, a wide array of tools, often
called Software Visualization Tools, have been proposed, of-
fering a varied set of features to help developers familiarize
themselves with source code.

However, understanding source code is only half the battle. The Internet can be
used to solve
technical limitations,
but it poses a new
set of problems.

The expansive, ever-growing nature of programming lan-
guages frequently presents developers with technical de-
tails that they are not familiar with. The Internet is a valu-
able resource for this sort of problems, since it hosts numer-

2 1 Introduction

Figure 1.1: A sample sketch by developers on a whiteboard.
Most resulting sketches contain graph-like structures. Fig-
ure taken from Cherubini et al. [2007].

ous amounts of tutorials and code examples that develop-
ers can use for a lot of purposes, from learning new tech-
niques to borrowing existing solutions to save time. It does
have its own set of complications, however, as it is typically
difficult to locate the most relevant information within the
Internet’s seemingly infinite space. Furthermore, reusing
code blocks, particulary those created by others, can also
raise a lot of new problems that require as much effort to
fix as to build said block from scratch. Accordingly, many
different tools and algorithms are readily available to help
ease up code modification tasks.

Curiously, a finding by Roehm et al. [2012] suggests thatDevelopers are not
inclined to make use
of the available help

tools.

despite the availability of these help tools, developers often
default to the more conventional method of using manual
sketches, particularly when trying to understand code. It
seems that developers may be overwhelmed by the sheer
number of available tools, each with its own specific tech-
niques and purposes, that they ultimately decide to forgo
investigating these tools in the first place. The fact that
some of these tools also demand too much effort to get used
to does not help matter, as it would discourage developers
from actively taking advantage of their various features.

1.1 Objectives 3

1.1 Objectives

This thesis work aims at formulating a design for a tool that The main objective is
to propose a design
for a tool that offers a
comprehensive help
for developers.

offers a more comprehensive assistance for developers dur-
ing software maintenance. The tool should ideally be able
to cover all phases of a maintenance task, from understand-
ing source code to the actual modification of the code, in-
cluding looking for, retrieving and integrating relevant in-
formation gathered from the Internet. An all-encompassing
tool would diminish the need to deal with a big number of
tools, and therefore developers would be encouraged to ac-
tually use it.

To further increase the usability of such tool, the proposed We take advatange
of the various
schemes that
developers are
familiar with.

design should exhibit a degree of simplicity that would al-
low it to accommodate developers with varying skill levels.
One possible approach is by taking advantage of the vari-
ous schemes that software developers are already familiar
with. For instance, the proposed design should capitalize
on developers’ inclination to use sketches, which means
that it should allow the users to freely construct images
based on their own whims.

Finally, since code modification inevitably requires devel- We would like to offer
a more efficient
method to navigate a
code project as an
alternative to the
textual search.

opers to locate different code segments based on the tasks,
another feature that we would also like to cover is to pro-
vide a different, more seamless method of navigating a
code project. The current most popular method employed
by developers, the textual search, is not too efficient, as it
demands too much cognitive load on the developers’ part
just to comb through the search results in order to identify
the one result that is actually relevant. Our proposed de-
sign should enable developers to quickly identify and ac-
cess the relevant parts of a code project without ever losing
grasp of the tasks at hand.

1.2 Overview and Contributions

In chapter 2, we illustrate the typical progression of ac-
tivity that a developer may follow while facing a mainte-

4 1 Introduction

Figure 1.2: How a typical composition looks like in Code
Mixer. The graph elements are the thumbnail images of
the actual contents, and the graph structure is based on the
user’s whims.

nance task, which is then followed by a set of problemsBased on existing
research, we identify
the important areas

that our work should
focus on.

that may prevent developers from finishing the task effec-
tively. Meanwhile, chapter 3 lists the various tools and al-
gorithms that have been proposed to help solve these prob-
lems. From these two chapters we identify the areas that we
should focus on to make our eventual design as effective—
and as attractive to developers—as possible.

Chapter 4 sees us proposing a novel approach to solvingWe introduce the
idea of compositions

that represent
developers’ various

problems.

developers’ problems by introducing the idea of composi-
tions that represent the various problems that developers
may face, regardless of their types. A composition can also
represent the pieces of information that are shared among
developers, making the process of exchanging solutions
that much easier. We then formulate a set of design prin-
ciples for a tool that supports such novel scheme.

1.2 Overview and Contributions 5

The main contribution of this thesis work comes in chap-
ter 5, where we elaborate on our incremental design phases Code Mixer is a tool

that offers help
throughout the
entirety of the
maintenance period.

that resulted in Code Mixer, a tool that provides assistance
for developers throughout the entirety of the maintenance
period. Code Mixer contains various compositions that of-
fer a task-oriented outlook into a code project, allowing de-
velopers to focus only on the most relevant parts of source
code at a time. It also puts emphasis on the visual identities
of the compositions by allowing users to build their own so-
lution graphs and utilizing content-based thumbnail images
as the graph elements. Moreover, Code Mixer also offers a
seamless method to navigate a code project, while simulta-
neously support lightweight distribution and reuse of com-
positions.

We investigate the effectiveness of our design in chapter 6 User study
participants reacted
positively to the idea
of Code Mixer.

by conducting qualitative user studies. We build a simu-
lated environment and present it to a group of users to get
their overall sentiments of our design. Users’ reactions are
unanimously positive on the general idea of Code Mixer, al-
though some design details receive a more mixed reaction.
Ultimately, based on the result of the user studies, some fi-
nal design adjustments, as well as some new features, are
incorporated into our final design of Code Mixer.

7

Chapter 2

The Lives Of Developers

2.1 A Typical Work Session

If you enter a room full of developers—furrowed brows, Software
maintenance
typically occupies a
big portion of a
software lifecycle.

staring intently at the monitors with fingers furiously hit-
ting the keyboards—it is a safe bet that the majority of these
hard-working fellows are currently knee-deep in software
maintenance. Another safe bet: these developers wish that
the software they are tending to has a long, illustrious life,
bringing plenty of benefits to its users. In order to ensure
this, a big chunk of time must be devoted to maintaining
said software, fixing bugs and adapting it to new contexts
of use, a lengthy period that typically lasts for as long as
the software is still used [Ko et al., 2006].

Indeed, multiple studies, such as those by LaToza et al. Developers spend
the biggest share of
their time on bug
fixing.

[2006] and Singer et al. [1997], have shown that on aver-
age, developers spend around half of their time on bug fix-
ing, an activity that is so closely related to software main-
tenance, they are often interchangeable. The rest of their
working time, developers are either making enhancement
to the system (e.g., adding new features) or making code
more maintainable. However, it needs to be emphasized
that this distribution of work time will depend greatly on
the roles of developers, as well as how far along a soft-
ware’s lifecycle has elapsed. [LaToza et al., 2006].

8 2 The Lives Of Developers

Going deeper still into the work habit of developers, one
could see that the two most prominent activities that they
do are looking at code and performing a search in the code
[Singer et al., 1997, Ko et al., 2006, Murphy et al., 2006].The two most

prominent activities
that developers do
are searching and

looking at code.

In fact, Ko et al. [2006] found in their observations that
in most cases, developers would begin a maintenance task
with a textual search. Afterwards, they would begin navi-
gating the relationships among the items they have found,
which is often done by following a recurring, structured ap-
proach depending on work context. This owes to the fact
the most maintenance tasks require making some changes
to code (this includes adding new code lines), and devel-
opers simply wish to understand the code prior to making
said changes [Roehm et al., 2012], an endeavor we would
dub as code comprehension.

CODE COMPREHENSION:
A developer’s endeavor to gain insight into the ratio-
nale and/or intention behind a piece of code or software
system. This involves trying to make sense of implicit
knowledge such as why a certain piece of code is written
or structured the way it is, what it tries to accomplish,
why it exists in the first place, and so forth.

Definition:
Code

Comprehension

During a code comprehension phase, developers normallyCode comprehension
often starts with

exploring the code
itself, and when this

fails, developers turn
to their colleagues.

rely on the code itself [LaToza et al., 2006], but reading
source codes alone sometimes is not enough to provide
them with enough information to proceed with their tasks.
Singer et al. [1997] distributed a questionnaire in their
study, and most developers claimed that they mostly con-
sult the various code documentations during this troubled
time. Curiously, various studies have observed otherwise:
developers turn to their colleagues for help, barely putting
any effort in finding the official documentations, let alone
reading them [LaToza et al., 2006, Roehm et al., 2012]. This
implies that the importance of design documents is more
salient in theory than in practice. Moreover, LaToza et al.Developers often try

to conjure mental
models of code.

[2006] posited that developers also often try to conjure a
mental model of code. A developer’s mental model often
contains the implicit knowledge behind a piece of code,
and is typically created based on—and therefore limited
to—the task at hand. Consequently, these mental models

2.1 A Typical Work Session 9

are largely isolated in nature, as opposed to being smaller
parts of a bigger, whole picture. Developers use these men-
tal models as a way to help themselves make sense of code,
so different developers may come up with different mental
models for the same piece of code.

Once the developers feel they have gained enough insight Developers often
employ the
opportunistic
programming
approach, which also
includes information
foraging.

into the code rationale, they will begin the actual modifi-
cation of the code. More and more developers employ the
opportunistic programming approach for this purpose, which
is a programming practice that emphasizes speed and ease
of development over code robustness and maintainability
[Brandt et al., 2009]. This approach involves developers
who are mostly concerned with finding and understand-
ing the correct solution to a certain problem as quickly as
possible, and they often do it by tailoring and mashing-
up existing systems. Furthermore, as the Web gained more
and more prevalence, developers resort to performing in-
formation foraging on the Web to find existing solutions that
they can integrate into their own work. These web forag-
ing activities may include anything from finding libraries
and code examples to consulting online documentation,
forums, and question-and-answer sites [Hartmann et al.,
2011]. Ultimately, information foraging is popular because
they serve multiple purposes: (1) as supports for learning-
by-doing of new concepts, (2) as clarifications of existing
knowledge, and (3) as reminders of typically low-level, syn-
tactic information.

INFORMATION FORAGING:
Activities associated with assessing, seeking, and han-
dling information sources. Such search will be adap-
tive to the extent that it makes optimal use of knowl-
edge about expected info value and expected costs of ac-
cessing and extracting the relevant info [Pirolli and Card,
1995].

Definition:
Information foraging

Another popular programming practice that is often uti- Developers also
often employ
copy-and-paste
programming
practice.

lized during an information foraging period is the copy-and-
paste programming practice. It is mostly used when devel-
opers wish to integrate some information that they have
gathered oppotunistically: they simply copy and paste dif-

10 2 The Lives Of Developers

Figure 2.1: A typical work progression followed by developers during a mainte-
nance task.

ferent chunks of information into their own work. How-
ever, according to Kim et al. [2004], developers also use this
programming practice for other uses, for instance to relo-
cate, regroup or reorganize code (to make it more akin to
the developer’s mental model of said code), to reorder code
fragments, or to refactor code manually. Kim et al. [2004]
further proposed that the most prominent use of copy-and-
paste is to reuse an existing code snippet as a structural
template for another code snippet. This, of course, is closely
related to the reminder function of information foraging.

Finally, developers will perform some debugging to verifyDevelopers often
delay testing code

copied from the web.
the correctness of the changes that they have made. It has
to be noted that developers often delay testing code copied
from the web, making it harder to track errors [Brandt et al.,
2009]. Furthermore, Roehm et al. [2012] discovered that de-
velopers rely heavily on compiler message and searching
capabilities to deal with said errors. In addition, Brandt
et al. noted that developers also go back to the web to clar-
ify the appropriate output that a code should have.

Thus far we have tried to illustrate the progression that
a developer may follow in a typical maintenance activity:
they go from trying to understand a code, followed by im-
plementing some changes with the help of opportunistic
programming and copy-and-paste practices, to finally test-
ing and debugging the changes that they have made. For

2.2 The Various Predicaments 11

the sake of brevity, these activities can roughly be divided
into two groups: code comprehension and information forag-
ing, with the former covering the first phase in the progres-
sion and the latter covering the rest. In the next section,
we will discuss the multitude of problems that developers
encounter along the way.

2.2 The Various Predicaments

In this section, we will take a more detailed look into some
of the many stumbling blocks that prevent developers from
having a smooth, productive work session. To make mat-
ters simpler, we follow the same narrative structure as from
the previous section.

We have established in the previous section that developers One of the biggest
problem is
understanding the
rationale behind
code.

typically begin a maintenance task with a code comprehen-
sion phase, which involves trying to grasp the intention of
the working code. The very process of code comprehension
itself is actually one of the major problems that developers
would have to overcome. As a matter of fact, LaToza et al.
[2006] learned that 82% of the participants in their study
agreed that it takes a lot of effort to understand “why the
code is implemented the way it is.” One can assume that it
is only natural for a developer to experience some bumps
while trying to acquire the reasonings behind a code im-
plemented by another developer, but LaToza et al. [2006]
further uncovered the disconcerting fact that some devel-
opers don’t even remember the intention of the code that
they themselves wrote!

It does seem rather curious that with the wealth of soft- Developers typically
neglect code
comprehension tools,
relying on textual
search instead.

ware comprehension tools available out there, understand-
ing code remains one of the major hurdles to developers.
Indeed, these tools (which includes software visualizations,
concept location, or software metric tools) bear their own
set of problems: according to a recent study by Roehm
et al. [2012], developers simply choose not to use them.
Instead, they opt for the humble textual search, which ex-
plains how it dominates the working time of developers
during the code comprehension phase. While it is true that

12 2 The Lives Of Developers

most of these tools have undergone multiple user studies
which prove their worth, as Singer et al. [1997] posited,
a user study environment has one glaring contrast to the
real world: in the real world, users are free not to use these
tools. And not use it they do.

Another problem during the code comprehension phaseA developer’s work is
often hindered by
interruptions from

others.

progresses outwardly. Namely, the developers with the
comprehension problems become the roots of another
problem. We have mentioned that when failing to under-
stand code on their own, developers would seek the guid-
ance of their peers. By doing this, they inadvertently cause
interruptions on said peers’ work progression. As a matter
of fact, LaToza et al. [2006] revealed that most developers
feel that they are being interrupted too much. They find
these interruptions bothersome, since when developers are
interrupted, they switch tasks and often lose focus on their
own task states before the interruption. Recovering from
interruptions is a substantial problem and they even risk
creating bugs if they remember incorrectly. However, Ko
et al. [2006] further observed that developers are usually
very careful to manage important tasks before acknowledg-
ing interruptions.

And yet, despite the strenuous, often costly measures takenDevelopers often
avoid real program

comprehension, only
focusing on the task

at hand.

to gather the logic behind a code, developers have been
shown not to retain this invaluable information. The rea-
sons are twofold. Firstly, developers tend to avoid real pro-
gram comprehension, and are only concerned with the task
at hand [Singer et al., 1997, Roehm et al., 2012]. Hence, the
isolated nature of the mental models that they build around
a code logic, and the inclination to lose them. Singer et al.
dubbed this condition“Just In Time Comprehension” and
noted that once they move on to another task, developers
often forget the details that they have acquired and will
have to re-explore parts of the system when they next en-
counter them.

The second reason behind low level of knowledge retentionDevelopers rarely
record the

knowledge that they
have acquired.

is the fact that developers simply choose not to record the
information that they have collected. LaToza et al. [2006]
suggested that some developers simply find it too much
of a hassle to check in and out a code just to add some

2.2 The Various Predicaments 13

comments, and indeed, some feel these often abstract in-
formation are just not authoritative enough to warrant an
official record. On the other hand, Roehm et al. [2012] re-
marked that some developers do utilize temporal notes on
comprehension support, but these are used personally and
not archived or reused. These valuable information will in-
evitably dissipate from memory, and other developers hav-
ing the same problem will have to repeat the same ardurous
process that should not have happened in the first place.

We will now proceed to the stage where developers are It can be hard to
locate relevant
information on the
Web.

confident enough in their understanding of the code and
are performing opportunistic programming to support task
completion. In the very first step of this approach, the web
foraging, already they stumble into some problems. This is
due to the nature of the Web that serves as an enormous
repository of information.While it offers convenience in the
form of a wide breadth of choices, it can also hinder the pro-
cess of locating the most relevant examples [Brandt et al.,
2009]. Of course, the fact there is a very low probability of
two people settling on the same terms to describe a condi-
tion will complicate the selection process even more [Fur-
nas et al., 1987]. Furthermore, the sheer accessibility of the
Web also contributes to the low information retention level
of developers, since as Brandt et al. pointed out, devel-
opers have the tendency to treat it as an external memory
aid. Consequently, developers often waste time roaming
the web to find the solution to the same problem over and
over again.

Once developers have decided on some information that Integrating
information gathered
from the web can be
challenging.

they want to reuse, incorporating them into the working
code is not always a straightforward task. A lot of refactor-
ing may be required to update the code, particularly when
the context of the original information is different from the
developers’ [Wightman et al., 2012]. The heavy-handed
use of copy and paste practice does not help matter either,
as this can lead to developers making unnecessary dupli-
cations of code snippets, increasing the possibily of bugs
spreading around the system [Kim et al., 2004]. Finally, it Code cloning may

spread bugs around
the system

is worth reiterating that the tendency to delay testing from
a copied code from the Web can further exacerbate devel-
opers’ ability to manage errors [Brandt et al., 2009]. Some

14 2 The Lives Of Developers

Figure 2.2: The set of problems that developers typically face during software
maintenance.

developers even assume that a code example would sim-
ply work and neglect to adapt portions of said example to
fit their working code [Brandt et al., 2010]. Either way, the
bugs introduced while borrowing a piece of code are often
hard to find, and if developers happen to make multiple
clones of this buggy code, they will need a lot of efforts to
mitigate the damage.

Figure 2.2 depicts the set of problems that each mainte-
nance period would entail. With the plethora of troubles
lurking in every corner, ready to thrawt developers’ every
step from understanding to remembering to debugging, it
is a wonder that developers can get any work done at all.
Naturally, this is not an exclusive concern of ours, as many
have tried to produce a variety of lifelines for developers
to use in times of need. These tools will be analyzed in the
next chapters.

15

Chapter 3

Related Work

Numerous amount of efforts have been put forth into mak-
ing developers’ lives easier, and we will discuss some of
them in this chapter. Following the progression of activi-
ties that have been established in the previous chapter, we
will start by focusing on the various researches that revolve
around code comprehension, followed by those more fo-
cused in information foraging, and finally capping off with
some tools that offer somewhat unconventional program-
ming approaches.

In order to better understand how the tools presented in Most modern IDEs
uses the “bento box”
approach in their
interfaces.

this chapter make a difference for developers, we would
first establish the typical programming environment that
most developers work in: the Integrated Development En-
vironment (IDE). As its name suggests, an IDE combines
many aspects of programming (e.g., editing, debugging,
analyzing, and so forth) into one single interface. While
each IDE has its own unique qualities that differentiate it
from the others, most of them follow roughly the same
user interface approach: the “bento box” [DeLine and
Rowan, 2010]. These IDEs partition its interface into mul-
tiple “boxes,” with each box corresponds to one particular
functions, such as the code editor, the project navigator, the
output display, and so on.

Most modern IDEs rely heavily on symbol cross-
referencing and hyperlinks [DeLine and Rowan, 2010].

16 3 Related Work

Figure 3.1: A sample interface of a conventional IDE. This Eclipse user interface
is divided into multiple rectangular areas, each with a different purpose. Figure
taken from Eclipse download pagea.

ahttp://download.eclipse.org/

Consequently, when it comes to searching for a certain ob-The heavy reliance
on symbol names

may cause troubles
for developers.

ject, users typically start from the object’s name, and then
navigate through the search result using the “find next” fea-
ture that lets them jump across a code project to find the
next instance of the submitted name until they find what
they are looking for. Similarly, another popular feature,
code completion, is often based on textual inputs as well. For
instance, for method completion, the feature would only
consider the receiver’s declared type that has been typed
in by the user, often resulting in an overwhelming num-
ber of suggestions for completions [Bruch et al., 2010]. On
a related note, conventional search for code examples is
typically rendered using techniques that were developed

http://download.eclipse.org/e4/sdk/drops/R-4.0-201007271520/eclipse-news.html

3.1 Software Comprehension Tools 17

for standard textual documents [Bruch et al., 2010], which
often fail to effectively capture source code’s rich implicit
knowledge and inherent structure. Ultimately, these are the
various shortcomings that some of the tools presented in
this chapter would directly address, while the rest are more
concerned with providing a method that could enhance the
more conventional programming practices.

3.1 Software Comprehension Tools

This area of research is geared towards improving code
readability and accessibility. Despite the findings by
Roehm et al. [2012] that developers often neglect to utilize
this sort of tools (more details in 2.2 “The Various Predica-
ments”), they nevertheless have a lot of sound ideas that
are highly relevant to the topic of this master thesis.

3.1.1 SHriMP Views

The SHriMP (Simple Hierarchical Multi-Perspective) vi- The SHriMP
technique is
concerned with
presenting a large
amount of
information.

sualizazion technique was designed to address the gen-
eral challenge of presenting a large amount of information
[Storey and Muller, 1995]. The researchers were particu-
larly invested in finding the most effective way to filter and
visualize information, so as to make it as easy to under-
stand as possible. In the field of software engineering, this
goal is closely related to the process of understanding code,
particularly during reverse engineering.

SHriMP builds visualizations using a combination of nested Nested graphs
provides concurrent
views of multiple
levels of
abstractions.

graphs and fisheye view. Nested graphs, which uses the
“graphs within graphs” approach, are responsible for de-
tailing the structure and organization of a software sys-
tem. On top of the more common depiction of software
artifacts and their relationships, nested graphs can also il-
lustrate composites and subsystems within a software, and
thus they provide concurrent views of multiple levels of ab-
straction [Storey and Muller, 1995].

18 3 Related Work

Figure 3.2: Visualization of a Java Project in SHriMP.
Shown here is the root of the project in the form of a graph.
To get a more detailed outlook, users can zoom in until the
desired level is reached. Figure taken from Storey et al.
[2002].

Meanwhile, fisheye view prevents the resulting visualiza-Fisheye view lets
user focus on one
specific part while

maintaining the
whole context.

tion from being too overwhelming. It works by letting
users zooming in on a certain node while simultanously
shrinking—but not hiding—the rest of the diagram. This
way, a user can focus on the most relevant part while never
losing track of how it is located in the context of the overall
structure. Furthermore, users can zoom in all the way to
the code level, and thus are given a seamless transition be-
tween implementation details and the more high-level out-
looks of the system [Storey and Muller, 1995]. We would
eventually incorporate this navigation style into our de-
sign, the details of which will be revealed in the later part
of this paper.

While SHriMP views offer some advantages in its ability
to offer a quick glance at the structural aspects of a soft-
ware along with an intuitive approach to navigating, it can

3.1 Software Comprehension Tools 19

also become a hindrance. For instance, in the case where SHriMP views should
be combined with
more conventional
views

a developer is only interested in one small part of a very
large system, keeping all the other unneccesary elements
on the screen may prove to be more harmful than useful
[Storey and Muller, 1995]. Consequently, a SHriMP view
may work best when combined with the other more con-
ventional views.

3.1.2 Relo

Sinha et al. [2006] introduced Relo as a direct answer to Relo deals with the
various abstractions
that come with
modern
programming
paradigms.

the developers’ problem of building their own mental mod-
els of existing, unfamiliar code. It is particularly aimed at
addressing the complexity that comes with the various ab-
stractions introduced by modern programming paradigms
such as object-oriented programming and design patterns.
These abstractions and their interactions with one another
force a developer to explicitly keep track of their context
while exploring and trying to understand the rationale be-
hind code. For instance, when investigating a method of a
class, a developer has to check for inheritance and whether
said method overrides a method of a parent class or not.

Relo works by letting developers select small, relevant Relo lets user
interactively explore
relevant parts of a
system

parts of large code bases. It provides an interactive explo-
ration tool that lets users select, add and remove code parts
from the working space, allowing them build and trim a
diagram of relevant information as they go. Based on the
assumption that developers often prefer to focus on small
parts that they need rather than look at the whole picture
[Singer et al., 1997, Roehm et al., 2012], a Relo work space
always starts with a single code element such as a pack-
age or a method, from which a developer can interactively
build a bigger, more complex structure as needed.

The tool then automatically lays out a graphical representa- Relo generates
graphical
representation of the
selected code
fragments

tion of selected code fragments, following a layout rules
that position elements based on their relationships. For in-
stance, a vertical layout represents inheritance hierarchies,
a left-to-right positioning represents call stacks, while a
container layout denotes package and class containment.

20 3 Related Work

Figure 3.3: A sample Relo view that shows how a code edi-
tor is embedded in the diagram. Users can modify code di-
rectly from this embedded editor. Figure taken from Sinha
et al. [2006].

3.1 Software Comprehension Tools 21

Another interesting feature is the ability to zoom in to view
and directly edit code from inside a diagram, using embed-
ded text editors, as depicted in Figure 3.3.

Relo has been evaluated against a sizeable code base con- Relo may be more
beneficial for large
code bases.

sisting of around 150,000 lines of code, and the results have
been quite positive. Participants in the study generally
agreed that Relo has a low learning curve and can espe-
cially help them in navigating large code bases. However,
when developers are working with a small amount of code
artifacts (three or less), they felt that working with Relo
was a bit cumbersome, since Relo’s mouse-based naviga-
tion style does not offer as many shortcuts as keyboard-
based navigations [Sinha et al., 2006].

3.1.3 Code Bubbles

Code Bubbles [Bragdon et al., 2010] is an approach to code Code Bubbles tries
to eliminate isolated
views of code
fragments

viewing that is based on small, editable fragments of codes
called “bubbles.” This tool originated from the realiza-
tion of how much time is spent by developers navigating
the file-based environments of most IDEs, particularly by
opening and repositioning windows or jumping back and
forth across multiple tabs. The researchers believe that this
isolation of relevant fragments of code may overload devel-
opers’ working memory and hinder them in their quests to
understand code intentions. Therefore, they set to provide
a concurrent viewing of code fragments that would enable
developers to form a working set that can be used to inspect
the relationships of several code chunks. They believe that
such tool will let developers navigate unfamiliar code with-
out “getting lost,” since a simple glance would be enough
to refresh their context.

Code Bubbles is based on the metaphor of, naturally, a bub- A bubble contains a
code fragment and is
fully editable.

ble. A bubble is a fully editable and interactive view of
a code fragments whose scope may extend from a small
group of variables to full functions. In contrast to typical
desktop windows, a bubble boasts minimal border decora-
tion, avoids content clipping through the use of automatic
reflow, and prevents overlapping other bubbles by push-

22 3 Related Work

Figure 3.4: A typical Code Bubble surface contains “bubbles” that contain parts of
code. When users open the definition of a certain object, it is contained in another
bubble, with an arrow indicating their connection. Bubbles with the same color
belong to the same group. Figure taken from the Code Bubbles Home Pagea.

ahttp://cs.brown.edu/ spr/codebubbles/

ing each other out of the way. A set of bubbles co-exist in
a virtual, pannable space, where together they serve as a
working set of relevant information for developers [Brag-
don et al., 2010].

Code Bubbles has undergone both quantitative and qualita-Code Bubbles can
improve the accuracy

and speed of code
comprehension

tasks.

tive evaluations with promising results. When compared to
regular Eclipse controls during code comprehension tasks,
participants with Code Bubbles outperformed those in the
control group, both in terms of task completion and the
time required to complete said tasks. Moreover, the re-
sults suggest that the performance improvement may not
be solely attributed to the reduction in navigation time,
which indicates that there is further cognitive benefits in
a concurrent viewing approach. These results are further
supported by the qualitative study, where the majority of
developers reach positively to the tool, believing that Code

http://cs.brown.edu/~spr/codebubbles/

3.1 Software Comprehension Tools 23

Bubbles can help them offload memory and “querying”
code to answer specific questions, among other things.

3.1.4 Code Canvas

As with Code Bubbles, Code Canvas [DeLine and Rowan, Code Canvas is an
alternative to the
popular “bento box”
approach of most
popular IDEs.

2010] was introduced as a result of dissatisfaction towards
the visual representations of most popular IDEs. Said
representations typically revolve around the “bento box”
metaphor, where the screen is partitioned into special ar-
eas, each with its own specific purpose, such as code edi-
tors, class viewers, output message viewers, and so forth.
While most developers have grown accustomed to follow-
ing this approach, it does not erase the many problems it
could cause. The frequent use of hyperlinks to jump around
the project, for instance, could cause developers to “get lost
in the code.” Additionally, it may hinder the process of syn-
thesizing relevant information scattered across a project to
answer a specific question about a code.

Code Canvas then takes advantages of the advanced tech- Code Canvas uses a
single, infinitely
zoomable surface.

nical capabilities of most modern monitors to replace the
segmentations of a bento box with a single, infitinely
zoomable surface called a canvas. A canvas houses all of a
project’s documents, including source code, user interface
designs, images, and so on. Each elements in the canvas is
editable, so users simply zoom in into a desirable area to
perform editing and zoom back out to get an overview of
the project [DeLine and Rowan, 2010].

Users are also allowed to modify the size and position of Code Canvas
exploits users’ own
spatial memory.

many of the elements in the canvas. This way, Code Can-
vas exploits users’ own spatial memory to help them orient
themselves in a project. This particular feature would actu-
ally make up one of our design properties that are going to
be presented in the next chapter. Additionally, the canvas
also serves as a visualization surfaces which displays mul-
tiple layers of project information including search result,
test coverage, and execution traces [DeLine and Rowan,
2010].

24 3 Related Work

Figure 3.5: A filtered view of Code Canvas, showing only the elements that are
relevant to the current call stacks. Figure taken from DeLine and Rowan [2010].

The team of Code Bubbles and Code Canvas collaborated toDebugger Canvas
was developed to

test the Code
Bubbles and Code

Canvas paradigms.

create an extension of Visual Studio that combines the two
paradigms, called Debugger Canvas [DeLine et al., 2012].
User feedbacks have been quite positive, and the consen-
sus was that Debugger Canvas is particularly beneficial for
large projects such as those that involve long or complex
code paths, or dynamically linked code, factories, or other
indirect forms of control flow. However, the study also
noted that the canvas idea is best deployed as a comple-
ment to the existing user experience, as opposed to a stand-
alone substitute.

3.1.5 Code Thumbnails

DeLine et al. [2006] came up with Code Thumbnail as anCode Thumbnails
were developed to
reduce the visual

uniformity of code.

alternative to the more conventional method of code nav-
igating that relies heavily on texts, particularly symbol
names. For instance, selecting a method requires know-
ing the name of the method, the name of the containing

3.1 Software Comprehension Tools 25

Figure 3.6: A Code Thumbnail Scrollbar. Selecting a part
of the scrollbar would make the main editor focus on the
selected area. Figure taken from DeLine et al. [2006].

class and the class’s containing namespace. This plethora
of names could easily overwhelm developers, especially in
large projects. Another problem that it tries to address is the
visual uniformity of source code, which is a direct consen-
quence of the practice of “writing” code. Visual uniformity
may lead to the cases in which developers waste their time
by wandering back to a certain part of code over and over
again, not realizing that it is the same part that they have
already browsed through.

Code Thumbnail consists of two user interface features in CT Scrollbar
enhaces the vertical
scrollbar in a single
file.

Microsoft Visual Studio: the Code Thumbnail Srollbar (CT
Scrollbar) and the Code Thumbnail Desktop (CT Desktop).
The CT Scrollbar is aimed at enhancing the typical vertical
scrollbar for navigating within a single file. The idea is to
embed a thumbnail image of the whole document to the
scrollbar. The main purpose of this feature is for developers
to use the shapes of the texts as visual landmarks without
actually reading them [DeLine et al., 2006]. This is why the
font size inside the CT Scrollbar is kept below the threshold

26 3 Related Work

Figure 3.7: A Code Thumbnail Desktop. The grey background denotes a closed
file. User can open a file directly by double clicking a thumbnail. Figure taken from
DeLine et al. [2006].

of readability. On top of the regular scrolling, users can
also click on a certain area in the CT Scrollbar to jump into
its corresponding code in the main editor.

In the mean time, CT Desktop is to be used to navigateCT Desktop offers
navigation among

multiple files.
among multiple files. It displays the thumbnail image
of every source files in the project, neatly arranged in a
desktop-like surface. Each thumbnail is also equipped with
a title bar that serves both as an identifier and an anchor for
dragging. Just like in a desktop, users can freely rearrange
the items as they see fit. Furthermore, Code Thumbnail is
integrated with the standard search tools, so search results
would be highlighted in both versions of the tool [DeLine
et al., 2006].

3.1 Software Comprehension Tools 27

Initial evaluations on Code Thumbnails yielded positive Code Thumbnails
can improve
searching taks.

results. Quantitative analysis proved that it can increase
speed of both method and file searching tasks. Further-
more, there is also a consensus among participants regard-
ing its ease of use, learnability and preference over exising
user interface. Accordingly, we found the method of utiliz-
ing content as a visual cue to be quite promising, and we
are going to play around with it in the later stage of our
design phase.

3.1.6 HyperSource

Despite the considerable amount of time spent on the Web HyperSource bridges
source code and
browsing history.

to find useful information, developers rarely record the
sources of the knowledge they sample. Once a code snippet
gathered from the Web is deployed in the existing code, the
connection to its source is lost. Consequently, the design
decisions behind the borrowed snippet are obscured, often
leaving those trying to grasp said decisions at a lost. Hart-
mann et al. [2011] proposed HyperSource as a bridge be-
tween a snippet and the browsing history traversed to get
to said snippet. The advantages of said bridge is twofold:
(1) it can help developers re-establish context on their own
code and shorten the time wasted on re-retrieving previ-
ously used resources; (2) it brings code newcomers up to
speed on design decisions and therefore enable them to be-
come productive faster.

Hypersource enhances conventional IDEs by creating as- User interact with
browsing history by
clicking “line
highlights.”

sociations between source code edits and browsing history
[Hartmann et al., 2011]. A line of code is associated with
a set of web pages visited just before a change is made on
it. This association is denoted by a “line hightlight,” which
when clicked will reveal a panel that details the browsing
history associated with the current line (See Figure 3.8). The
browsing history contains information such as the links to
the Web pages, the amount of time spent on each page,
and thumbnail images of the pages. Users can then interact
with these links directly from the panel, instead of having
to open a separate Web browser.

28 3 Related Work

Figure 3.8: In Hypersource, line highlights denote the associations between code
lines and browsing history. Figure taken from Hartmann et al. [2011].

Additionally, HyperSource performs heuristic filtering on
the set of links to weed out irrelevant links [Hartmann et al.,HyperSource

provides heuristic
and manual filtering.

2011]. A page is considered relevant if it contains a copied
text to the source code, is explicitly bookmarked by devel-
opers in the browser, or is the final page visited before edit-
ing. On top of this automatic filtering, Hypersource also
allows users to perform manual filtering by allowing them
to define a blacklist of domain names, as well as to clear all
or individual items from the list.

Informal evaluations revealed that HyperSource did helpMore extensive study
still required to

gauge real benefits.
users understand unfamiliar code. Moreover, a separate
study that required users to finish programming tasks us-
ing HyperSource resulted in relatively low number of line
highlights, and therefore these highlights may also be used
to indicate “interesting” sections of code. This observation
supports the finding which states that during code compre-
hension tasks, users rarely focus on the whole code project,
but instead opt to only pay attention on smaller, isolated
code sections that are related to their tasks [Singer et al.,
1997, Roehm et al., 2012].

3.1 Software Comprehension Tools 29

Figure 3.9: A set of software maps of an evolving system. Notice the relative sta-
bility of the vocabulary. Figure taken from Kuhn et al. [2008].

3.1.7 Software Cartography

Software Cartography by Kuhn et al. [2008] offered a differ-
ent visualization approach than what have been presented Software

Cartography is
tailored to provide a
consistent layout to
display software
systems.

thus far. It separates itself from the process of reading code,
and instead is more concerned with presenting a high-level
view of a software system. Software cartography tries to
remedy the tendency of most visualization tools to present
structures in arbitrary layouts. Thus, the main goal of this
project is to come up with a consistent layout for software
systems, not unlike those typically found in thematic atlas
that present different phenomena such as population den-
sity to industry sectors using the same consistent layout.

The biggest hurdle to this approach is the fact that software Software
Cartography uses
vocabulary to
substitute for
physical locations.

systems do not possess tangible physical locations [Kuhn
et al., 2008]. As a work-around, Software Cartography em-
ploys vocabulary, due to the assumption that vocabularies
can effectively mask the technical details of code by iden-
tifying the key domain concepts of said code. Moreover,
when a software expands and changes its structure, the un-
derlying vocabulary tends to remain the same. The result-
ing visualizations, called software maps, can provide both
a consistent layout for different kinds of thematic maps,
as well as serve as comparisons for different stages of an
evolving system, as can be seen in Figure 3.9.

To achieve this capability, Software Cartography employs
the popular information retrieval technique, Latent Seman-

30 3 Related Work

tic Indexing (LSI), to acquire lexical similarity, which illus-Software
Cartography uses

Latent Semantic
Indexing and

Multidimensional
Scaling.

trates how closely related the vocabularies among multiple
software artifacts. The more similar the vocabularies be-
tween two software artifacts, the closer they are conceptu-
ally and topically. Additionally, Multidimensional Scaling
is utilized to map the resulting vector spaces gleaned from
LSI into the target visualization space.

LATENT SEMANTIC INDEXING (LSI):
An indexing and retrieval method that aims to identify
patterns in the relationships between the terms and con-
cepts contained in an unstructured collection of text. It
was initially designed for information retrieval in search
engines.

Definition:
Latent Semantic

Indexing (LSI)

MULTIDIMENSIONAL SCALING (MDS):
A technique to map objects from m-dimensional space to
two dimensions that tries to minimize a stress function
while iteratively placing elements into a low-level space.
MDS yields the best approximation of a vector space’s
orientation, i.e., preserves the relation between elements
as best as possible.

Definition:
Multidimensional

Scaling (MDS)

3.2 Information Foraging and Code Reuse
Tools

The tools in this section were designed to assist develop-
ers search for and locate relevant information for their code
manipulation tasks. As we have mentioned in the previ-
ous chapter, information foraging is often followed by code
snippet reuse (through copy & paste). Accordingly, some
of the tools listed here support both endeavors.

3.2.1 Blueprint

It has become increasingly clear that developers are in-
corporating more examples from the Web into their code

3.2 Information Foraging and Code Reuse Tools 31

Figure 3.10: User performs search right from the IDE. Blueprint then augments
search results with context. Figure taken from Brandt et al. [2010].

[Brandt et al., 2009]. However, most popular develop- Web search tools are
typically separated
from code editing
tools.

ment environments provide little support for this example-
centric approach to programming. As far as the IDE is con-
cerned, everything is either written by developers them-
selves or imported modules. As a result, the connection
between borrowed code and its source is often lost, making
it difficult to reaccess the original source to verify design
decisions. Furthermore, if the original reused code is later
updated (e.g., to fix bugs), the developers have no way of
knowing [Brandt et al., 2010].

Blueprint was developed as a way to integrate Web search Blueprint lets user
perform search from
inside the IDE.

into the development environment (in this case, Adobe Flex
Builder)[Brandt et al., 2010]. As opposed to opening a new
browser window, user can access the search feature from in-
side the IDE by using a hotkey. The most interesting part of
Blueprint, however, is the way it favors an example-centric
view of the search results. It augments the more conven-
tional search results by providing context in the form of tex-

32 3 Related Work

tual descriptions, example code, and, if available, a running
example. Once user decides to reuse and paste a code snip-Blueprint

automatically adds
the source address

in the comment.

pet into their own work, Blueprint automatically creates a
comment in the code containing the web address and access
time of said code, so the connection to the original source
is maintained. This feature implies that Blueprint supports
the reminding and clarification purposes of information for-
aging (See Chapter 2 “The Lives Of Developers”).

User studies suggested that Blueprint can indeed improveBlueprint’s search
result view is not as

effective as it can be.
the efficiency of code example reuse. Participants with ex-
posure to Blueprint started pasting code examples much
faster than the other group, which ultimately would result
in a faster overall time in finishing the tasks [Brandt et al.,
2010]. However, the researchers themselves feel that the
tool still does not display searh results in an efficient man-
ner. For example, search terms need to be highlighted in
the search result to make them easier to identify. Further-
more, users can only view one example at a time, rendering
comparisons between multiple examples a little tricky.

3.2.2 Codelet

Codelet, by Oney and Brandt [2012], is another tool thatMost code examples
lose their original

contexts after
integration.

specialized in improving developers’ interactions with
code examples gleaned from external sources. Regardless
of their sources (e.g., online forums, tutorial, etc.), code ex-
amples typically contain contextual information describing
how the code works. Once they enter the user’s code, how-
ever, they lose this rich, instructive information, and be-
come indistinguishable from existing code. This may pose
a problem, since a developer’s interaction with a code snip-
pet begins precisely at this point. In most cases, a code
snippet would require some configurations before it can fit
with the rest of the code, and a developer is therefore forced
to consult with the original source in a separate window.
Once the task is done, the snippet will be fully detached
from its original context, gradually dissipating from devel-
oper’s memory [Singer et al., 1997, Oney and Brandt, 2012].

To remedy this situation, Codelet was designed as a region

3.2 Information Foraging and Code Reuse Tools 33

Figure 3.11: A sample Codelet view containing textual
descriptions and multiple parameters. Figure taken from
Oney and Brandt [2012].

in the user’s code that contains a block of example code and A Codelet contains a
block of example
code and an
interactive helper.

an associated interactive helper. The helper is a widget that
helps user understand a code snippet by providing con-
textual texts and structured parameterizations (See Figure
3.11). In other words, developers can modify a code snippet
without actually writing any code. Indeed, the helper can
also inspect user’s entire code base and tailor the code snip-
pet based on features in the rest of the code. Furthermore,
since a Codelet remains accessible even after configuration
and integration is done, its context is never lost [Oney and
Brandt, 2012].

In order for Codelet to be truly useful, however, there Codelet API is
available to build
Codelets from
scratch.

should be a wide pool of code snippets to choose from.
For this purpose, Codelets API was developed. This API
is intended for those who specialize in authoring code li-
braries and documentations, so that the resulting Codelets
can be as effective as possible, but all Codelets users can
also build code examples if they wish to do so. The API
is kept as simple as possible, so creating a Codelet would

34 3 Related Work

only require approximately the same amount of effort as
creating its Web page version [Oney and Brandt, 2012].

Codelet has been shown to reduce both the amount of timeCodelet can speed
code reuse tasks, but

is limited to one
contiguous block of

code.

spent and number of page refreshes during code example
reuse tasks. During user studies, Codelet also increased
participants’ confidence in rewriting their code with no
documentation by a moderate margin (4.63 vs 3.80 on a
nine-point Likert Scale), and slightly improved their ability
to understand the code that they had written (7.88 vs 7.80)
[Oney and Brandt, 2012]. It was also noted, however, that
the latest version of Codelet could only support code ex-
amples that consist of one contiguous block of lines, which
is somewhat restrictive, since a lot of examples on the Web
consist of multiple code snippets that may have to be in-
serted in different positions in a code file, or indeed, in
many source code files.

3.2.3 The Adaptive Ideas Design Tool

This research by Lee et al. [2010] focused on the importanceExamples can
provide inspirations
during design work.

of examples for inspiration during web design activities.
This owes to the notion that examples show how form and
content interact, and thus can raise awareness of potential
options of the design space. Adapting existing examples to
fit a new context can also help people creatively—and more
effficently—handle new situations. However, the way web
designers interact with examples currently is mostly infor-
mal and ad hoc. Consequently, they mave have problems
finding the best examples that could help boost their vari-
ous design tasks.

Lee et al. then set out to explore the possibiliy of a moreAdaptive Ideas let
users reuse and
modify elements

from multiple pages.

structured browsing of examples, and they ultimately came
up with the Adaptive Ideas design tool. It is an extension to
the Firefox browser’s build-in graphical HTML editor, and
it is equipped with an interface for parametrically brows-
ing a corpus of example pages. As depicted in Figure 3.12,
it consists of three panels: (1) the main, editable area that
houses the user’s own work; (2) an example gallery that is
adaptively-generated in order to have a set of similar items;

3.2 Information Foraging and Code Reuse Tools 35

Figure 3.12: The three panels of Adaptive Ideas: the main working area (top), a
gallery of samples (bottom right) and a preview for the selected sample. Figure
taken from Lee et al. [2010].

(3) a preview pane of the selected example, from which
users can borrow design elements (e.g., background color,
font, etc.) from. With this tool, users can then reuse and
modify elements from multiple pages to create a Web page
of their own.

A set of studies were then run to test this approach to de- Users prefer to
design with the help
of examples.

signing, and the results suggested that users did prefer to
design with the aid of examples. Furthermore, they also
found that users also favored an adaptively selected exam-
ples rather than random ones, and they often utilized mul-
tiple examples when building a new design. Even though
this research had a slightly narrower focus to ours, these
findings nevertheless influence some of our design deci-

36 3 Related Work

sions, and the idea of using a “gallery” is one that we will
explore in some of our design phases, which will be elabo-
rated in a later chapter.

3.2.4 Jigsaw

Jigsaw, by Cottrell et al. [2008], is a tool that applies itself toJigsaw puts
emphasis on

small-scale reuse of
code examples.

small-scale reuse of code examples. One can easily discern
that the most ideal way for integrating code examples is to
have all components be flexible and adaptable right from
the design phase, but for small-scale uses, the cost in engi-
neering such components often can not be justified. There-
fore, one of the biggest hurdles in such small-scale integra-
tion process is the contrasting contexts between the original
system and the target system. This can range from the more
straightforward difference like variable names to the more
abstract, high-level context that accompany code, which is
often difficult to unveil.

Jigsaw’s approach to the integration problems is by findingJigsaw tries to find
similarity between

terms.
similarity between the terms (e.g., expressions, statements,
declarations) in the original and target systems, with re-
gards to their respective structures and how they are used
within their context. Terms with a high similarity value
are considered correspondence candidates. A conflict will be
raised when a term is corresponded with more than one
other terms in the other system, and details of this con-
flict are presented to the users for them to resolve. These
correspondences are ultimately used to determine how the
terms in the original system should be integrated into the
target system (e.g., which terms should be copied, which
should be transformed). The tool itself is implemented asJigsaw lets users

focus on high-level
differences between

original and target
systems.

an Eclipse plug-in, using the “copy & paste” metaphor, in
which the original code is the “copy” seed and the target
system is the “paste” seed. Conceptually, Jigsaw allows the
developers to focus on the high-level differences between
the two systems, while automatically integrating the rest
[Cottrell et al., 2008].

User studies suggested that Jigsaw does have potential
in helping developers integrating code examples. When

3.2 Information Foraging and Code Reuse Tools 37

Figure 3.13: A sample Jigsaw view asking users to resolve a conflict. Figure taken
from Cottrell et al. [2008].

given a certain code example (i.e. the “copy” seed) to in- Jigsaw can be
difficult to use in real
programming
environment.

corporate into another code block that has previously been
tinkered with (i.e. the “paste” seed), participants were able
to reproduce the original paste seed without knowing the
result beforehand. However, the studies may have been
tailored to favor Jigsaw’s strengths. As noted by Holmes
et al. [2009], focusing on only structural similarities can of-
ten make it cumbersome to configure the original example
before the actual integration can take place.

3.2.5 SnipMatch

SnipMatch was introduced to address the various com- SnipMatch focuses
on two roles taking
part in code
integration: user and
provider.

plications that arise during integration of code examples
[Wightman et al., 2012]. These problems range from hav-
ing to combine multiple code snippets, renaming variables,
manually locating dependencies, to dealing with the bugs
introduced by the code snippets. SnipMatch tries to rectify
these problems by targeting two different roles related to

38 3 Related Work

Figure 3.14: (1) SnipMatch can be accessed directly from
the IDE. (2) SnipMatch can tailor search result with user’s
code context. Shown here is how SnipMatch adds a local
variable in the search result. Figure taken from Wightman
et al. [2012].

code snippets: users and providers.

Code snippet users can access SnipMatch by using a key-SnipMatch uses
user’s code context

to filter and tailor
search results.

board shortcut directly from the code editing area in their
Eclipse IDE, which will bring forth the SnipMatch search
box. After users enter the desired search terms, SnipMatch
then exploits users’ own code context to filter and rank the
search results. The code features that are involved in this
filtering process are: variable types and names, the cursor
position within the abstract syntax tree, program logic, and

3.3 Novel Ways for Programming 39

code dependencies. Results that closely match these fea-
tures indicate they would require minimal modifications
for reuse, and are therefore ranked higher.

For the snippet providers’s benefits, SnipMatch provides Snippet providers
use integration
markups to define
where search pattern
parameters should
go.

an interface for adding and editing code snippets. This in-
terface allow users to modify search patterns, and it includes
features to facilitate the addition of integration markups to
the snippet code. Search patterns are the textual descrip-
tion of a snippet, which can contain placeholders for snip-
pet parameters. These parameters will be replaced by snip-
pet user’s code context, rendering integration more seam-
less. Meanwhile, the integration markups can be used to
define in which parts of the code snippet the search pat-
tern parameters will appear. They can also be used to im-
port dependencies as required and define preconditions for
a snippet to appear in the search results [Wightman et al.,
2012].

SnipMatch has tested positively, with developers found it SnipMatch can
reduce time required
to search for and
reuse code snippets.

particularly useful to reduce context switching and as a
memory aid. During evaluation, it reduced the time re-
quired to settle on and inserting a snippet, and its use of
search pattern increased the accuracy of the search results,
particularly when compared to the more typical “whole-
document” approach to searching. Outside of laboratory-
based studies, SnipMatch was also offered publicly and has
been used by developers “in the wild,” indicating growing
interests in tools for integrating code snippets.

3.3 Novel Ways for Programming

This section is dedicated to the tools that offer novel ap-
proaches to programming. Indeed, the first two tools were
designed for people with no programming knowledge, and
thus aim at making coding endeavors as accessible as possi-
ble. Still, all three tools also provide support for code com-
prehension, and the first two do encourage code reuse.

40 3 Related Work

Figure 3.15: A sample Looking Glass interface. (1) Time slider for navigating
through time. (2) Scene Viewer shows how a scene looks at the selected time. (3)
Current Action Pane details what actions characters did at the selected time. (4)
Code view selects the executing lines of code. Figure taken from Gross et al. [2010].

3.3.1 Looking Glass

Looking Glass is a tool that is targeted at middle school chil-Looking Glass puts
focus on story telling

instead of code
implementation.

dren, to raise their interest in programming [Gross et al.,
2010]. Instead of focusing on the technical parts of coding,
Looking Glass puts more emphasis on story telling, in that
children are encouraged to programatically build the sto-
ries they have in mind. Moreover, users can also borrow
and reuse others’ code without requiring to understand
how they work. The intention behind this approach is that
by experiencing first-hand what programming can do, chil-
dren would be willing to spend more time on it, and would
eventually learn the technical aspects of coding out of their
own desire.

Looking Glass works by having children construct scenar-
ios that will result in 3D animated stories. Users build the

3.3 Novel Ways for Programming 41

scenarios by draging graphical tiles representing program- Users drags
programming
components to build
ActionScripts.

ming constructs into the program editor, configuring pa-
rameters as needed. Looking Glass is also equipped with a
time slider and a preview pane that shows how the scene
looks at the selected time, so there is always a heavy focus
on the output, as opposed to the code itself. These scenar-
ios are ultimately abstracted as ActionScripts, each of which
is aimed at a specific role. Users who want to reuse an Ac-
tionScript only needs to select a character for the role as-
sociated with the ActionScript. If they only want to reuse Code reuse is a

matter of selecting a
character to an
ActionScript.

parts of it, they simple observe the output and identify the
beginning and ending points of the functionality that they
want to reuse [Gross et al., 2010].

During evaluation, all but one students sucessfully cap- Using story may be
beneficial for code
comprehension and
reuse.

tured and reused code. Moreover, the majority of the result-
ing ActionScripts consisted of more than five lines of code
(some even exceeded 70 lines), indicating non-trivial func-
tionalities [Gross et al., 2010]. This result suggests that for
code comprehension and reuse, putting the spotlight on the
high-level “story” of code, as opposed to its technical im-
plementation details, may be a more natural approach. In-
cidentally, this idea would actually play an important role
during our design process.

3.3.2 Scratch

The intention behind Scratch [Resnick et al., 2009] was to Scratch’s principles:
more tinkerable,
more meaningful,
more social.

develop a programming approach that would appeal to
people who had never imagined themselves as program-
mers. To achieve this goal, it has to have a low learning
curve, and offers a fun programming experience. Thus,
Scratch follows three core principles: make it more tinker-
able, more meaningful, and more social than other pro-
gramming environments.

Scratch was inpired by kids playing with lego bricks. Kids A scratch program is
made of snapping
together
“programming
blocks.”

intuitively snap lego bricks together to build something—
an approach that Scratch takes advantage of. Scratch gram-
mar contains a collection of colorful, graphical “program-
ming blocks” that users can use to build programs. The

42 3 Related Work

Figure 3.16: A sample Scratch interface. The code blocks are designed in a way so
that they can only snap together when they make syntatical sense. Figure taken
from Resnick et al. [2009].

shapes of the blocks are tailored so that they can only fit
when they make syntatical sense. For instance, control
structures such as conditional if or loop are C-shaped to sug-
gest that more blocks should be put “inside” them. Similar
to Looking Glass, users of Scratch also

One of the most interesting aspects of Scratch is its vibrantUser can reuse
other’s project in
Scratch’s online

community.

online community, where users can search for and reuse
the projects that others have submitted. When someone
“remixes” a project, the site automatically adds a link back
to the original project, so the original author gets credit.
Perhaps it is due to the uses of colorful blocks, but the dom-
inant demography of this site are children of ages between
8 to 16, although there are a good number of adult partici-
pants as well [Resnick et al., 2009].

Tools like Scratch indicates that there are benefits that can
be reaped by going away from the monotone, textual-
based programming. After all, if this technique works for

3.3 Novel Ways for Programming 43

kids with no programming experience whatsoever, then it Non-textual
programming may
improve code
understanding.

should also pose little problem to professional developers.
Finally, we are also intrigued by the idea of having a stable
online community where users can freely reuse other mem-
bers’ work, a feature that we would actually incorporate in
our design later.

3.3.3 Gaucho

An overwhelming majority of popular IDEs treat programs Gaucho aims at
steering
programming back to
modeling.

as files or texts, and they offer a bunch of tools (e.g., various
debugging methods, advanced text editing) to help devel-
opers process the code they are working on. This textual
approach to programming encourages developers to write
programs, despite that when talking about creating soft-
ware, most would use terms like construct or build. Oliv-
ero et al. [2011] argued that these textual representations of
software might hinder program comprehension, since de-
velopers still have to decode the texts to get meaningful in-
formation of how the program actually works. Therefore,
they set out to develop Gaucho, an IDE that would steer
programming back to modeling, and away from writing.

Compared to the textual-based, view-focused approach of Gaucho is a direct
manipulation
environment, so
users interact directly
with objects.

conventional IDEs, Gaucho is object-focused Olivero et al.
[2010]. It comes with a user interface that borrows gener-
ously from the desktop metaphor: one surface area (called
the pampas), on top of which a group of objects (called the
shapes) are freely positioned. The shapes are visual rep-
resentations of various programming components such as
packages, classes, methods and developers. Furthermore,
Gaucho is a dynamic environment that allows users to
move shapes around the pampas, and each shape can be ex-
panded, edited, or deleted as needed. Olivero et al. [2011]
posited that Gaucho can ease program comprehension be-
cause programmers deal directly with graphical elements
depicting software artifacts at high-level views, relieving
the cognitive load of having to manually decode written
code into said views. Moreover, the relative freedom of the
layout makes it easier for developers to make comparisons
and understand relationships between components.

44 3 Related Work

Figure 3.17: Gaucho User Interface, consisting of a pampas and a bunch of shapes
representing various programming components. Figure taken from Olivero et al.
[2010].

Initial evaluation on Gaucho indicated that it managed toGaucho improves
correctness of

comprehension
tasks, but is slower.

improve the correctness of program comprehension tasks,
as compared to conventional IDEs. Each participant was
given 14 comprehension tasks that were graded automati-
cally, and of the possible maximum score of 14, users with
Gaucho scored an average of 10.4, as opposed to 8.5 of
the control group [Olivero et al., 2011]. However, on av-
erage participants also took more time to finish the tasks.
Usability issues were identified as a primary factor for
slowness, particularly the lack of automatic layout or non-
overlapping, causing developers spending time to move
objects around. Ultimately, tools like Gaucho indicate that a
more graphical approach can indeed be beneficial to assist
code comprehension.

3.4 Summary

Most of the tools listed in this chapter have a rather specific
focus, which means that developers would have to utilize

3.4 Summary 45

a big number of tools to accomodate various types of tasks. Developers have to
use different types of
tools to address
different types of
tasks.

For instance, if they are interested in examining the call se-
quences among code segments, they may turn to Code Bub-
bles or Relo, but when they want to acquire a high-level
approximation of the overall software structure, Software
Cartography offers a more appropriate technique. Since it
has already been established that developers have the ten-
dency to neglect these help tools [Roehm et al., 2012], pro-
viding them a wide array of choices would ultimately not
offer any benefits. Consequently, our aim is to come up
with a design for a tool that can address developers’ vari-
ous problems in a more comprehensive manner.

However, these set of tools do propose some interesting Some interesting
techniques and ideas
from this chapter are
going to be
incorporated into our
own design.

ideas and techniques that may benefit our eventual design.
Code Canvas, for example, with its zoomable working area,
offers a less restrictive method of navigating a code project,
while Code Thumbnail provides an elegant, almost sim-
plistic fix against visual uniformity. Tools like Blueprint and
Codelet also highlights the importance of contextual in-
formation that accompanies code examples, which allows
users to quickly decide on the most relevant information.
And finally, novel systems like Looking Glass and Scratch
bring along a fresh perspective towards programming that
pulls the focus away from technical details, which is some-
thing that we would explore more during our design pro-
cess. The next chapter will ease us into the design period
by first establishing the scope of our research as well as the
characteristics that our eventual design would have to ex-
hibit.

47

Chapter 4

The Research Base

Based on the way they are categorized, it is clear that most This thesis work tries
to bridge the gap
between software
comprehension and
information foraging.

of the tools presented in the previous chapter only provide
developers with some assistance in either code comprehen-
sion or information foraging. Indeed, the only two tools that
support both stages are Scratch [Resnick et al., 2009] and
Looking Glass [Gross et al., 2010], both of which are in-
tended for programming newbies and are therefore quite
disconnected from conventional coding activities. Thus, it
can be inferred that there is an existing gap between the
two groups of programming activities. The main goal of
this thesis work is bridging this very gap, which is done by
proposing a novel design for a tool that is able to address
developers’ problems more comprehensively.

We approach this conundrum through a somewhat con- Instead of focusing
on the developers in
need, we are more
interested in the
creation of
information that is
going to be
consumed by said
developers.

tradictory route. It is true that the ultimate goal of this
research is to help the developers who are having prob-
lems comprehending code or gathering relevant informa-
tion. However, at this initial stage they are not given the
main focus. Instead, the spotlight is tilted in the direction
of the developers who compose and ultimately share the
information that is consumed by the former group of de-
velopers. Naturally, these two groups of developers are
not mutually exclusive, as most software developers would
find themselves alternating between the two groups at one
time or another. For the sake of convention, from here on
out we would dub the former group as consumers, and the

48 4 The Research Base

latter as composers. Furthermore, we would refer to the
pieces of information offered by composers and used by
consumers as compositions.

CONSUMERS:
Developers who search for—and subsequently reuse—
some pieces of information.

Definition:
Consumers

COMPOSERS:
Developers who create and publish pieces of information
that are used by consumers.

Definition:
Composers

COMPOSITIONS:
Pieces of information offered by composers and used by
consumers.

Definition:
Compositions

Our reasoning for going this route is the notion that solvingA composition can
serve as the solution

to a code
comprehension or

information foraging
problem.

developers’ problems, be it in the realm of code comprehen-
sion or code reuse, would essentially require the exact same
procedure: the creation of a solution, or in our case, a com-
position. We have mentioned in one of the previous chap-
ters (specifically chapter 2 “The Lives Of Developers”) that
when trying to understand code, developers often build a
mental model of the code to help them grasp the implicit
knowledge that is inherently contained by the code [LaToza
et al., 2006]. This statement can be rephrased by stating that
a mental model is a solution that is specifically composed to
solve the problem of comprehending code. Similarly, when
developers perform information foraging, the pieces of in-
formation that they ultimately choose to sample (e.g. tuto-
rials, code snippets) must have been composed by someone
else. We can then say that in our design scheme, a composi-
tion is a direct answer to a developer’s problem, regardless
of its type. This would indicate that the root of a composi-
tion is a problem or a task.

Incidentally, our approach also falls in line with the find-
ing that at any given time, most developers are typically
occupied with a certain task, prompting them to focus only
on the parts of a code project that is relevant to said task,
instead of trying to understand the entirety of the project

4.1 Design Principles 49

[Singer et al., 1997, Roehm et al., 2012]. It is a safe bet that Our goal is to
propose an efficient
method for creating a
composition,
regardless of the
type of
programmming
activities involved.

a task that is dominating a developer’s attention would
contain some problems that need solving, and this brings
us back to our approach that revolves around problem-
oriented compositions. Hence, it is our belief that putting
the focus on the creation, and subsequently the distribu-
tion, of compositions is a proper way to kick off our re-
search. Our design goal is to propose an efficient method
for creating and sharing a composition, regardless of the
type of programming activities involved.

Before elaborating on our actual design process, we will
first establish a set of design principles that would serve
as our foundation throughout the rest of this thesis work.
These are then followed by a set of secondary properties
that further mold the shape of our design.

4.1 Design Principles

In order to better orient ourselves during the tumultuous Three design
principles are
introduced to help
guide our eventual
design.

design period, a set of design principles are established.
These principles outline a set of features and characteris-
tics that the proposed tool design should exhibit to become
the panacea for developers’ woes. Ultimately, a tool that
can assist developers in both code comprehension and in-
formation foraging should:

• Emphasize the visual aspect of coding

• Support lightweight creation and reuse of composi-
tions

• Provide compositions with their task-related context

The following three sections will further elaborate on these
criteria.

50 4 The Research Base

Visual Emphasis

Taking a quick scan at the available tools aiming to helpVisual
representations can

help reduce code
uniformity.

code comprehension, the importance of this principle be-
comes apparent. An overwhelming majority of these tools
come up with visual representations of software systems
in all sorts of shapes and forms. For instance, from the
tools presented in this paper alone, software systems have
been portrayed as cartographic images, “bubbles” contain-
ing small code segments, thumbnail images of code files,
and so forth. It can be deduced that this is a natural re-
spond against the epidemic of code uniformity highlighted
by DeLine et al. [2006], which is an inevitable repercussion
from relying too heavily on textual representations during
the “writing” of code.

Moreover, as pointed out by Olivero et al. [2011], devel-Visual
representations can

provide better
outlooks of abstract

concepts than textual
ones.

opers often decode written code back into its higher-level,
more abstract concept in order to gain a better grasp of said
code. Although this abstract information can be described
using text, users are typically required to read through the
whole descriptive passages before comprehension can oc-
cur. A better alternative would be to provide a “snap shot”
of a concept, which can also mirror the mental model that
developers instinctively construct while inspecting code,
and this can be better captured using graphical entities such
as graphs or diagrams. Accordingly, based on these two
reasons, we believe that a composition should favor graph-
ical over textual representations of knowledge.

Portability

One of the major motivations behind this principle is theOur design should
exhibit clear and

straightforward
features that are

easy to use.

notion proposed by Roehm et al. [2012] that in the occasions
that developers make use of software comprehension tools,
they rarely do so in the most optimal manner, lacking the
knowledge about even the standard features of these tools.
Consequently, we strive to model our design into one that
exhibits clear, straightforward features that are easily un-
derstandable and accessible. Since a big part of our design
scheme involves the creation of compositions, an ease of

4.1 Design Principles 51

creation is therefore crucial, and the inclusion of this prin-
ciple becomes a necessity.

Bruch et al. [2010] also provides some inspiration with their Simple creation and
reuse of
compositions are
both important
elements of our
design.

research on IDE 2.0, which he intended to be an improve-
ment over IDE 1.0, not unlike how Web 2.0 is considered
a more advanced version of Web 1.0. Just like its Web
counterpart, IDE 2.0 encourages users to interact and share
knowledge with one another. The driving force behind IDE
2.0 is to take advantage of a collective knowledge base, and
one of its main principles is to encourage developers to
build their services on top of existing services by provid-
ing easy-to-use APIs. Users are then encouraged to avoid
reinventing the wheel and simply reuse existing informa-
tion (in this case, existing APIs), an aspiration which is very
similar to our intention of having consumers reuse compo-
sitions. This convinces us that on top of a lightweight cre-
ation method, a simple method for reusing compositions
plays a similarly significant role in our design.

Task Oriented

Code context is an essential aspect of code comprehension, Code context is an
important aspect of
both code
comprehension and
information foraging.

since it provides the high-level concept that dictates the
way code is written. Simply put, developers cannot pos-
sibly acquire total understanding of code without looking
into its context. Additionally, code context is also a neces-
sity during information foraging. Starke et al. [2009] dis-
covered in their study that when performing searches, de-
velopers typically only explore a small number of matches.
Indeed, the most commonly observed behavior was for de-
velopers to investigate exactly one result, or none at all.
Based on this finding, it is then clear that our design should
equip a composition with a clear context, and to further in-
clude this context in the search results. The importance of
context has also been realized by tools such as Snipmatch
[Wightman et al., 2012], Codelet [Oney and Brandt, 2012],
and Blueprint [Brandt et al., 2010].

However, we would like to push this concept even further.
Taking an inspiration from the tool Looking Glass [Gross

52 4 The Research Base

et al., 2010], a composition in our design scheme puts moreOur design puts
more emphasis on a

composition’s
task-related context

than its code-level
details.

emphasis on its high-level, task-related context as opposed
to the microscopic, code-level details. The motivation for
this approach again originates from the finding that we
have cited multiple times now: developers routinely ap-
proach code based on their tasks, meaning they are only in-
terested in the parts of code relevant to their current tasks.
[Singer et al., 1997, Roehm et al., 2012]. Our hypothesis is
that since every task is inevitably driven by a high-level
purpose, it is a more natural approach to revolve the pro-
cess of creation, distribution, and reusing of a composition
around its high-level, task-centered information.

4.2 Secondary Properties

The three principles described in the previous section make
up the principal traits that our design should possess. Here
we list some additional attributes that would further guar-
antee the effectiveness of our proposed design.

Accessibility

A tool with incredible features would not amount to muchAccessibility can be
achieved by taking

advantage of the
concepts that users
are already familiar

with.

if its users have no idea how to access said features. Some
tools demand a lot of time and cognitive investment on the
users’ parts just to learn all the basic features, which may
eventually discourage a large portion of users from using
them. In other words, ease-of-use is key, and one way to
achieve it is by taking advantage of the various paradigms
that users are already familiar with [Girgensohn and Ship-
man, 1992]. This includes, for instance, providing basic
shapes such as arrows and boxes to build a composition,
since they already have a prominent presence in the vari-
ous sketches produced by developers during software de-
velopment [Cherubini et al., 2007]. This property ensures
that our design would help developers solve their problems
with as little distraction—and effort—as possible.

4.2 Secondary Properties 53

Modifiability

This property serves as a support system to one of the main Developers often
alter an existing
piece of information
before they integrate
it into their own work,
making it an
important factor in
our design.

design principles that calls for lightweight reuse of compo-
sitions. It turns out that when developers reuse a certain
piece of information (e.g. in the form of code snippets), it
is a highly common occurence that they alter the informa-
tion instead of reusing it right away, especially when there
is a divergence in context between the original source and
their own code [Cottrell et al., 2008, Wightman et al., 2012].
Similar cases may occur in our proposed scheme when de-
velopers locate a composition that closely, but not exactly,
addresses their problems. Developers may prefer to alter
said composition rather than to keep looking for the one
that matches their exact needs, and hence, it is crucial to
allow developers to perform modification on existing com-
positions.

Collaboration-Friendly

According to Cherubini et al. [2007], developers regularly Developers often
work together to
build a diagram,
particularly during a
design phase, so our
design needs to
support this
tendency.

make use of diagrams in their code comprehension pursuit,
a tendency that is already supported by our first design
principle. However, diagrams are also often employed to
design, for instance to create a new subsystem or to manip-
ulate existing structures. The design process often involves
collaborative brainstorming efforts from multiple persons,
in which they go back and forth on ideas that gradually
build up the design. For this reason, our proposed design
should support collaborations during the creation and ma-
nipulation of compositions.

Spatial Freedom

This property stems from the observation that developers Developers are more
interested in the
diagrams that are not
automatically-
generated.

tend to regard diagrams that are automatically-generated
by tools as less “interesting” than the ones that are created
manually through collaborative efforts [Cherubini et al.,
2007]. Indeed, this inclination may be one of the reasons

54 4 The Research Base

that developers often forgo software visualization tools
during code comprehension tasks, an observation raised by
Roehm et al. [2012]. At any rate, these findings suggest a
tool that avoids automatic placements of objects and in its
place, encourages spatial freedom while constructing the
content of a composition.

Recordability

Many studies have noted that developers rarely make anOur design should let
users have multiple

versions of a
composition.

official document of the knowledge they acquire during
code comprehension [LaToza et al., 2006, Roehm et al.,
2012], which diminishes the durability of said knowledge.
Instead, developers utilize personal notes or sketches to
help them externalize abstract ideas, but these are transient
in nature due to the cost of transforming these physical ob-
jects into electronic versions. Since our proposed design al-
ready revolves around computer-generated compositions,
making an official record of a composition is a natural fea-
ture. To improve productivity, this feature should also be
extended to allow for multiple recordings of a single com-
position. This may be beneficial for when developers prefer
to have multiple versions of a composition, so they have
the ability to track the evolution of a composition until it
reaches the final version.

4.3 Summary

Figure 4.1 illustrates how our proposed design principlesOur proposed
principles and

properties address
the problems that
developers face.

and properties deal with all the problems that have been es-
tablished in chapter 2. We directly address the major prob-
lem of “understanding code” by providing a visual outlook
of the code and highlighting the task-related information,
which would help facilitate developers’ mental model cre-
ations of said code. Letting them collaborate in freely con-
structing said mental model would further ease them into
understanding unfamiliar code. Also, since the problem
of “interruptions” typically is a by-product of the former
problem, it is also inadvertendly addressed by most of the

4.3 Summary 55

Fi
gu

re
4.

1:
H

ow
ou

r
de

si
gn

pr
in

ci
pl

es
an

d
pr

op
er

ti
es

ad
dr

es
s

ea
ch

of
de

ve
lo

pe
rs

’p
ro

bl
em

s
du

ri
ng

a
m

ai
nt

en
an

ce
ta

sk
.

56 4 The Research Base

same principles and properties, save for the one that en-
courages developers to work together with (i.e. interrupt)
one another.

In the meantime, by enforcing portability and accessibilityFurther details on
how our tool would

help developers.
in the design, we ensure that developers would not ig-
nore our tools when they stumble into problems. Similarly,
the property of recordability would help them retain valu-
able implicit knowledge that they have gathered during a
code comprehension period. Furthermore, task-oriented in-
formation, on top of improving code comprehension, can
also help developers in selecting the most relevant infor-
mation, since it would help reduce ambiguity among tech-
nically similar compositions. Proper understanding of the
context of a composition would further help developers in
easily integrating its content into their own work and sub-
sequently minimize unexpected bugs.

Ultimately, this section has highlighted the potency of ourIf our design can
fulfill these principles
and properties, then

we can achieve of
design goal.

selected design principles and properties. This implies that
if our design can fulfill these principles and properties,
then it would be able to help get rid of the various stum-
bling blocks that developers might encounter during main-
tenance tasks. In the next chapter, keeping these principles
and properties in mind, we would start the actual process
of designing a system that would assist developers in their
code comprehension and information foraging pursuits.

57

Chapter 5

The Design

The previous chapter saw us laying out the groundwork The application,
dubbed Code Mixer,
should allow users to
easily mix others’
code with their own.

for our research, from the general purpose and approach
of our work, to some more detailed principles and proper-
ties that are essential for the eventual success of our design.
Based on this foundation, the main part of thesis work has
been reached: the actual design of an application that can
help developers overcome various problems during soft-
ware development, particularly during maintenance tasks.
We shall call this application Code Mixer, with the idea that
our design should eventually allow users to easily adjust
and integrate (i.e. mix) others’ code with their own.

This chapter consists of four sub-chapters, each corre- The design period
consists of four
phases which grow
incrementally.

sponds to one iteration of a design phase. Each phase is
structured similarly: it opens with some general informa-
tion and the thought process behind it, which then segues
into a detailed description of the interface, followed by
some illustrations on how each user role (composers and
consumers) would interact with said interface, and finally
it caps off with some assessments that also set the ground
for the next design phase. These phases build incremen-
tally over time and the final version of Code Mixer would
ultimately combine various elements from the previous de-
sign phases.

58 5 The Design

5.1 Incorporating Design Patterns

The launch of our design is centered around the third de-This design phase is
mainly concerned

with the third design
principle and the

information foraging
activities.

sign principle, namely task orientation (see Section 4.1 in
p. 49), and the information foraging activities; we would
eventually address code comprehension in the later design
phases. Our first inspiration arises from the observation
that most information foraging help tools do not supply
code examples with sufficient contextual information, and
this may potentially hinder developers’ decision-making
process and long-term knowledge retainment. Indeed,
even when a code chunk is equipped with context, as pre-
sented by Codelets [Oney and Brandt, 2012] and Blueprint
[Brandt et al., 2010], this information is largely stand-alone,
isolated from anything outside the scope of the code chunk
itself. Consequently, most existing tools only supports inte-
grating a single code chunk at a time, and lack the support
for solutions that span multiple code chunks.

While it is certainly beneficial to understand what a codeOur approach is to
let developers focus
on the tasks instead

of code details,
which seems to work

for programming
newbies.

chunk does, we also think that understanding why it ex-
ists in the first place, particularly in relation to the task(s)
that it pertains, is equally important. From the list of tools
in Chapter 3 (“Related Work”), only two seem to share
this idea: Looking Glass [Gross et al., 2010] and Scratch
[Resnick et al., 2009]. As noted previously, both tools are
targeted at those who have no programming experience
whatsoever, and instead of tutoring the users on the nitty-
gritty of programming protocols, they let the users focus on
the end results of the code (i.e. the tasks). Both tools have
proven to be quite effective, and Scratch especially boasts
a thriving online community in which more than 3 million
projects have been shared by its members. As a side note,
an argument can also be made that The Adaptive Ideas [Lee
et al., 2010] also puts the end result front and center, but this
tool’s scope is limited to web design, whose main elements
of HTML and CSS call for less structural complexity than
what is typically required by a lot of software solutions. Ul-
timately our hypothesis is simple: if the task-focused pro-
gramming approach works for beginners, it should work
for experienced programmers as well.

5.1 Incorporating Design Patterns 59

The very first concern arising from our selected approach It is crucial to come
up with a
standardized
convention to
structure
task-centered
information.

is to come up with a standardized structure or format to
ground task-centered information. We argue that the main
reason code-centered approach is popular among informa-
tion foraging help tools is because it offers a straightfor-
ward method to reuse information, which can be achieved
by as simple as copying a code chunk into the desired lo-
cation in the users’ own code. A task-oriented approach
like ours, however, is a tad more problematic, mainly due
to the fact that task descriptions are largely free-form: there
are no definite rules as to how to define them. Tasks can be
defined in the forms of graphs, bulleted lists, narratives,
a mixture of multiple formats, or indeed, they can even
be written in different languages. We believe that a cer-
tain structural convention that can properly delineate tasks
descriptions is crucial in order to facilitate the process of
searching, selecting, and most important of all, reusing a
composition.

A similar research by Lung et al. [2002] has once explored In order for
knowledge transfer to
suceed, the problem
space should be
clearly modeled,
which can be
achieved by using
design patterns.

the idea of knowledge transfer by way of analogy. Analog-
ical reasoning, which is a technique that deals with finding
similarities between multiple entities, is often employed
during the mapping of a solution from a well-known prob-
lem to a new one. This is a paradigm that closely resem-
bles our design scheme, in that when a consumer borrows
a composition, knowledge transfer then occurs between
the composer of said composition and the consumer. This
research also agrees with our hypothesis that in order to
achieve effective knowledge transfers across multiple ap-
plications or domains, the problem space (i.e. the tasks)
should be explicitly and clearly modeled, as opposed to
putting all the focus on the solution space (i.e. the code
chunks) [Lung et al., 2002]. Ultimately, the most interest-
ing part of this research is the proposition that representa-
tion holds a major role in identifying analogous problems
and solutions, and that design patterns would do a fine job
playing this role.

Design patterns themselves are aimed at capturing recur-
ring problems and their solutions [Borchers, 2000], and
though initially devised as an architectural technique, they
have since been adopted by other fields, including software

60 5 The Design

Figure 5.1: Our first design phase centers around the composition, which borrows
the format of design patterns.

engineering. For instance, Baggetun et al. [2004] once in-Design patterns aims
at capturing recurring

problems and their
solutions, and their
benefits in software

engineering have
been shown by
several studies.

vestigated the possibility of using design patterns to as-
sist knowledge transfer in collaborative learning. Collab-
orative learning may benefit from a uniform method for
communicating ideas because the creators and owners of e-
learning knowledge typically originate from multiple back-
grounds, such as computer science, psychology, social sci-
ence, and so forth. Ultimately, it was concluded that pat-
terns can indeed mediate knowledge and transfer knowl-
edge even among participants with different levels of ex-
pertise [Baggetun et al., 2004]. Furthermore, De Rore et al.
[2009] also conducted an experiment in which they asked a
group of developers to finish a few UML modeling tasks.
One group of participants was exposed to a set of Software
Design Patterns during the study while the other group
was not. It turned out that exposure to patterns did yield
a significant improvement to the resulting models. More-
over, it was observed that after participants took some time
to learn and apply the patterns, they eventually managed
to correct and improve their models.

The findings from the aforementioned studies have con-Code Mixer would
only borrow the
design pattern

formats instead of
trying to emulate its

true essence.

vinced us to incorporate design patterns in our design
scheme, specifically to structure task-related information
and facilitate the distribution of compositions. Neverthe-
less, our main focus does not lie in emulating the true
essence of the technique as intended by its creator Alexan-

5.1 Incorporating Design Patterns 61

der Christopher, which is to achieve what he dubbed “the
quality without a name,” which is an ideal quality to an
environment that one should strive for [Alexander, 1979].
Instead, we are only borrowing the design patterns format
to be used as a foundation to a composition. It can then be
said that a composition has a narrower scope than a typi-
cal design pattern, since a composition’s main purpose is
merely to provide a standard structure for task-related in-
formation, so that it can be easily shared among software
developers.

Moreover, it should also be noted that compositions in Code Mixer differs
from Software
Design Patterns in
that it tries to be as
accessible to
everyone as
possible, even
beginners.

Code Mixer are also different from Software Design Patterns
as conceived by the Gang of Four. Software Design Pat-
terns are typically quite intricate and often require a certain
level of knowledge and expertise before they can be prop-
erly applied. Code Mixer, on the other hand, is intended to
be accessible to developers with all skill levels. Incidentally,
this is more in line with the way Alexander devised his pat-
terns to be understandable to even non-architects, with the
purpose of letting the inhabitants (users) themselves collec-
tively build the environment they live in [Alexander et al.,
1977, Borchers, 2000].

The Form

This initial design phase establishes two major character- In this phase, Code
Mixer is a web-based
environment and a
composition is akin
to a single design
pattern.

istics of Code Mixer. Firstly, it acts as a web-based environ-
ment that hosts and facilitates the creation of compositions.
Secondly, a composition is comparable to a single design
pattern, and hence boasts the following structure:

• Title: serves as an identity of a composition.

• Context: provides conditions that should to be ful-
filled before a certain composition is executed.

• Problem: describes the complications (i.e. the real life
tasks) that a composition is trying to address.

• Solution: describes the measures that have to be taken
to fix the problems illustrated in the previous section.

62 5 The Design

Figure 5.2: An empty form for building a composition (left) and a sample compo-
sition with its filled out content.

• Reference: outlines the components (e.g. other com-
positions, libraries) that can be used to complete the
current composition.

As we have mentioned previously, the design patterns for-Each component
from the list has its
own fields, save for

solution, which
typically consists of
multiple field pairs.

mat is merely used to provide a structure to the typically
form-less task description. A composition is essentially a
task description that is broken down into smaller pieces,
with each piece corresponding to one component from the
list above. Each component of a composition, aside from
the solution, has its own “field” that simply contains some
information describing its role in the composition. Mean-
while, the solution component itself typically consists of
multiple field pairs, with each pair represents one “step” of
the solution. The first of the field pair contains the general
description of the step and the second one is for the actual
content. The latter is comparable to the typical code chunks
that consumers can copy and further modify as needed, but
it may also contain non-code instructions such as config-
uration information, hardware settings and so on. How-
ever, a step may also contain non-code information, such as

5.1 Incorporating Design Patterns 63

Figure 5.3: A sample information network that revolves around the domain of
graph processing.

configuration information or even hardware related opera-
tions. It bears mentioning that some components, namely
the problem and the solution, may also contain visual objects
such as tables and graphics on top of texts, and that all
components, save for reference, are mandatory. Similar to
a conventional design pattern, the purpose of these visual
objects is to provide a quick overview on the information
contained by a certain component.

Another pattern-like characteristic of a composition is how Compositions can be
connected with one
another to form a
graph that roughly
represents a certain
domain.

it can be connected to other compositions to form an in-
formation network, which is basically a network of compo-
sitions that deals with various problems within a roughly
similar domain. For instance, tasks that deal with mathe-
matical calculations would belong in the same graph, while
tasks that are related to graphical operations may belong to
another graph. Users can create these connections manu-
ally, but Code Mixer can also automatically create the con-
nections by inspecting the context and reference compo-
nents of the compositions. If a composition is included in
the context of another composition, the former composition

64 5 The Design

is placed at a higher level in the graph. Meanwhile, an in-
clusion in the reference indicates a lower level placement in
the graph. The resulting structure of these connections is a
graph that may provide a visual representation of a certain
task domain. We believe this feature can help users find the
most relevant information to their problems, since the ba-
sis of this networks is essentially a group of high-level, real
world tasks.

The Composer Workflow

To build a new composition, a composer simply needs toThe composer
workflow is not

drastically different
from building a

conventional tutorial.

visit the Code Mixer web environment and proceeds to fill
out the form following the design patterns structure. The
content can be typed in manually or copied from another
source, to accommodate such cases in which the solution
contains code chunks from the composer’s own work. Fur-
thermore, composers can also insert graphical objects by
uploading them from their own file system or linking to
existing objects on the web. Ultimately, this is not drasti-
cally different from building a conventional tutorial on the
Web, the only exception being that a composition requires
a more standardized format.

CONVENTIONAL TUTORIAL:
A piece of writing that aims to illuminate on a certain
topic and typically contains a step-by-step guide to per-
form a task. For our purposes, this term specifically
refers to such articles published on the Web that talk
about programming-related topics, and typically contain
code snippets.

Definition:
Conventional Tutorial

The Consumer Workflow

Similarly, there is little change in the way a consumerConsumer would
reuse a composition

the same way they
would follow a

tutorial on the web.

would recycle a piece of information from a web source.
Referring back to the web tutorial analogy that has been
employed in the composer section, a consumer is given full
freedom in deciding the steps of a certain composition that

5.1 Incorporating Design Patterns 65

should be copied (i.e. not all steps have to be executed),
depending on their need. It is also entirely depends on
the consumer as to where in the working code a certain
code chunk should be copied. The only slight adjustment
occurs once a code chunk is pasted into the consumer’s
code, where a comment would be inserted on top of the
reused chunk, stating the source of the information (i.e. the
web address of a certain composition), a technique adopted
from Blueprint [Brandt et al., 2010]. This way, it is relatively
easier to trace back a composition to its original source to
verify a code chunk’s intentions.

Self Assessment

The resulting design of the current phase merely serves as One of the biggest
drawbacks of the
current version is that
it is too demanding,
especially for
composers.

a kickoff to the whole idea of Code Mixer, and therefore
it may seem rather unrefined, crude even. One of the ma-
jor drawbacks of the current version is probably how it re-
quires a lot of effort from—and put a lot of trust on—the
composers. We are basically asking the composers to write
a complete, proper pattern every time a composition is
built. Wightman et al. [2012] has noted that when a person
has decided to invest some time in building a reusable piece
of information, he or she would not mind the extra effort it
requires to make it as meticulous as possible, and for this
type of user, Code Mixer should work just fine. But for the
rest of the users who are looking for a lightweight method
to share information, this complexity would eventually dis-
courage them from using the system, which means that we
have violated one of our design principles regarding porta-
bility (see Section 4.1 in p. 49).

Another glaring problem is the fact that, as we have indi- The current scheme
barely improve the
typical information
foraging activities.

cated earlier, the current scheme does little to enhance the
typical information foraging activities. Users will still need
to go back and forth from their work environment to the
web browser, an approach that may dampen their work
momentum.

Nevertheless, the current version does propose a more
standardized format for task descriptions and the ability to

66 5 The Design

create a visual network of high-level information. We be-Providing users with
task-oriented

information would
help them select and

integrate relevant
information.

lieve that with these features, Code Mixer can help users to
decide on a relevant piece of information, since the some-
what restrictive format of design patterns would allow lit-
tle room for ambiguity. Not to mention that once they gain
a better understanding of the task-oriented properties of a
certain composition, drawing an analogy to their own prob-
lems would become a much simpler task and ultimately,
integrating and tailoring the code chunks contained by a
composition would also become a less taxing endeavour.

5.2 The Pattern Language

One of the bigger problems carried out from the previousCode Mixer is no
longer a fully

web-based
environment, but

instead consists of a
desktop application

and a web-based
repository.

design is the lack of improvement of users experience re-
garding their interaction with a Web-based content. Conse-
quently, one of our immediate concerns in the current de-
sign phase is to devise a more seamless interaction method,
one that would severely reduce the need to return to the
web browser over and over again. Our first big decision,
accordingly, is to discard the idea of a fully web-based en-
vironment and in its place, we propose a desktop-based ap-
plication for Code Mixer that should be accessible from in-
side the IDE. Nevertheless, the Web itself is such an inte-
gral and convenient platform, so its role is not completely
eliminated. On top of the desktop application, we employ
the Web to serve as central repository that would host the
compositions, an idea inspired by Scratch [Resnick et al.,
2009], and to a lesser degree, The Adaptive Ideas design
tool [Lee et al., 2010]. The idea is that users would interact
with the desktop application from inside the IDE, and the
desktop application would interact with the repository in
the background, acting as the bridge between the users and
the compositions. The central repository would further act
as a collective knowledge base and also as a “gallery” of
compositions that users can browse through, not unlike the
currently popular concept of App Store.

Another crucial tweak in our design involves an adjust-
ment of the scope of a composition (i.e. a composition rep-
resents a single design pattern), which is heavily inspired

5.2 The Pattern Language 67

Figure 5.4: A composition now consists of multiple patterns, each representing a
single step in the composition’s solution.

by Alexander’s proposed method of using design patterns. A composition now
represents a single
pattern language,
instead of a single
pattern.

In his book “A Pattern Language,” he gave an illustration
on the activity flow that he would take to build a front
porch by utilizing the various design patterns included in
the book. The fundamental idea is that one should ad-
dress a certain task by creating their own version of a pat-
tern language, which essentially is a combination of multi-
ple patterns. He also suggested that the proper order to
execute a group of patterns is to go from the “bigger” pat-
terns that provide the general structure to the “smaller”
ones that supply the details to such structure [Alexander
et al., 1977]. To adjust our design to this scheme, we shift
the composition scope from a single pattern to a single pat-
tern language. In other words, a composition now consists
of multiple patterns, which roughly correspond to the mul-
tiple “steps” contained by a solution in the previous design.
The idea is that with such detailed information contained
by a single composition, there should be even less ambigu-
ity about the tasks that it covers.

A direct consequence of this conceptual tweak is the in-
evitable scope change of the information networks that we
introduced in the previous design phase. Where before a

68 5 The Design

Figure 5.5: The composer application window consists of three main parts: the
palette (top), the repository (bottom left), and the property panel. A selected pat-
tern’s information is displayed in an editable form in the property panel.

single network would depict the connections among com-
positions, it currently represents a hierarchy of patterns,An information

network now stands
for a hierarchy of

patterns, instead of
compositions.

which are slightly narrower in focus than a single compo-
sition. The reason for this change is so that we can stick
to Alexander’s “bigger to smaller” method of patterns trac-
ing, a technique that will become clearer when we touch on
the application form in the next section.

The Form

The Code Mixer desktop application consists of two sep-The consumer part
of the application can

be accessed from
inside the IDE, while

the composer part
has its own

application window.

arate parts, one for the composers and one for the con-
sumers. This separation is driven by the belief that each
role has a different focus, and separating them would give
us the possibility to tailor each part to specifically address
the needs of each role. The consumer part of the applica-
tion can be accessed directly from inside the IDE, under the

5.2 The Pattern Language 69

assumption that most consumers are typically in the mid-
dle of finishing some programming task when they feel the
need to conduct some information foraging. In contrast,
when users have decided to build a new composition, they
would be more inclined to invest some time for this activity
[Wightman et al., 2012], and therefore the composer part of
the application will be contained in a separate application
window outside of the IDE.

The composer application window consists of three main The composition part
of the application
consists of a gallery,
a palette, and a
property panel.

parts, which can be seen in Figure 5.5. The biggest area
is the gallery, which displays existing patterns and compo-
sitions that users can browse through. At the top of the
window is the palette, in which users can place multiple
different patterns to build a whole composition. The un-
derlying idea is that a composition is akin to a step-by-step
instruction that consumers should be able to follow easily.
A pattern in the palette can either be directly taken from
the repository, a modified version of an existing pattern, or
freshly created by the users. Moreover, the palette has the
ability to enforce the proper sequencing of patterns by ex-
amining their context. When users place a pattern in the
palette, the system would inspect the context of said pat-
tern. If the pattern lists other patterns in its context, this
means that there exists “bigger” patterns that should be ex-
ecuted first. The system would then ask the users whether
they wish to place the bigger patterns in the preceding po-
sitions in the palette.

Meanwhile, the third and last part of the composer window The property panel is
where the creation of
a new pattern takes
place.

is the property panel that displays the detailed information
about a pattern that is currently selected by the user (either
from the gallery or the palette). Its content is similar to the
composition form for composers that we proposed in our
previous design. Finally, this panel is also responsible for
letting the users create new patterns or modify the prop-
erties of an existing pattern and save the modified version
into a new pattern.

The consumer part of the system can be accessed from in-
side the IDE by pressing a certain keyboard shortcut, which
would evoke a pop-up window. Inside this window users
can search for the right compositions, and once they find

70 5 The Design

one, they can download it right away. A composition thatThe consumer
application window is
a pop-up that can be
evoked by pressing a

certain keyboard
shortcut.

is downloaded will be saved into a local file on the user’s
machine. To prevent inconsistency, the system will create a
new directory for Code Mixer under the currently active
code project, if one does not already exist, and save the
composition file into this directory. When the composition
file is opened, the content will be display in the same pop-
up window, which presents the users with one pattern at a
time, instead of all at once. The idea behind this is that users
should focus on one step of the composition at a time, in-
stead of distracting themselves with things that should not
yet be executed (i.e. the “smaller” patterns). Users then
simply need to follow the instructions in each pattern, and
they can also copy the content from the solution fields of the
patterns. Once copied into their own code, a comment is
inserted on top of the code chunks that denote the title and
the location of the composition in the local machine. On top
of the consumer application window, a downloaded com-
position can also be opened using the composer application
window, whether just to review its content or to modify its
content and save it into a new composition.

The Composer Workflow

After opening the composer application window, users canA composer builds a
new compositions by

placing various
patterns into the

palette, and they are
also allowed to

create new patterns
as well as modify

existing ones.

start building a new composition right away by placing
patterns in the prefered order inside the palette. When
given a suggestion by the system about automatic position-
ing of “bigger” patterns, users can opt to skip it. To reuse
existing patterns, users simply search for the appropriate
ones in the gallery and drag them into the palette. Users
can create a new pattern by filling out an empty form in the
property panel, and users can also modify an existing pat-
tern by selecting one from the gallery (or the palette) and
making adjustments to its properties as desired. Once all
necessary patterns have been put in the appropriate order
in the palette, users can save and upload the composition
into the repository. However, they first need to give the
composition a proper title and, if desired, a short descrip-
tion of the composition itself.

5.2 The Pattern Language 71

Moreover, users are also allowed to modify existing com- A composer can also
modify existing
compositions, both
the ones in the
repository or the
ones in their local
machine.

positions, which is done in a similar fashion to modify-
ing existing patterns. Users start by either searching for
an existing composition in the gallery, or simply opening
a previously downloaded composition from their local file
systems. Users then modify the content of the selected or
opened composition by playing around with the patterns in
the pallette, either by adding or removing some patterns,
or by changing the sequence of the patterns. Of course,
they are also given the ability to simply alter the properties
of existing patterns already contained in the composition.
Once finished, the new composition can be uploaded to the
repository under a new title.

The Consumer Workflow

Users activate the consumer application window right from Consumer
application window is
a pop-up where
users can search for
compositions, as well
as downloading
them.

inside the IDE by pressing a certain keyboard shortcut. A
pop-up window equipped with a search box will appear,
and users can start searching for some relevant informa-
tion right away, without ever having to leave their working
environment. The search results, which contain a group of
compositions, will be displayed in the sampe pop-up win-
dow, and when users click on one result, the window will
display a detailed information of the selected item. Once
users have decided on one item, they simply need to down-
load the composition and this file will then be saved into
the local file system.

A downloaded composition is then opened in the same A downloaded
composition file is
opened in the same
pop-up window, or in
the composer
application window

pop-up window, and users only need to follow the se-
quence of patterns contained by the composition. While
following the sequence, users can choose between skipping
a certain pattern or integrating the content of said pattern
into their own work. To verify the intention of a code block,
users can take advantage of the code comments above the
block in order to locate the associated composition in the
local file system. This composition can then be reopened in
the consumer pop-up window to browse through again, or
it can be accessed through the composer application win-
dow to modify its content.

72 5 The Design

Self Assessment

In our attempt to emulate Alexander’s method of utilizingThe current design
has increased the

burden for
composers, and

therefore may have a
hard time taking off.

design patterns, we have also inadvertently increased the
burden for composers. Whereas in the previous version
they are only required to fill in pattern-related information
for one composition, now they have to supply similar infor-
mation for each patterns contained by a single composition.
We try to counter this by providing a central repository and
allowing them to sample existing patterns from the repos-
itory, but this strategy relies heavily on the existing collec-
tion of patterns, and the willingness of the community to
keep maintaining—and evolving—these patterns. In other
words, there is a concern that the current design scheme
may have a difficult time taking off, since the initial period
of its life would require a lot of efforts on the users’ parts.
Nevertheless, we feel that the idea of a central repository
is a sound one, as it will provide a stable environment for
users to look for compositions and share their creations.

Even though the current design has somewhat improvedThe current design
has not improved the

user experience of
composers, and the

linear format may be
too limited.

the interaction flow between consumers and compositions,
it does little to do the same for composers. Composers are
still required to leave their current work environment just
to build a new composition, making it rather cumbersome
when users simply wish to share some parts of their own
work. Since our design scheme revolves around a thriv-
ing community, an adjustment to the system is required
to allow for a more lightweight creation of compositions,
so as to encourage more users to take on the role of com-
posers. The current format for building a composition may
also prove problematic, since a linearly sequenced patterns
may be too restrictive a structure for some tasks. For in-
stance, a single task may boast a few alternative solutions,
and with the current design, composers are required to cre-
ate a separate composition for each option.

Finally, just like with the previous design, we have yetThe current design
has yet to properly

address the problem
of code

comprehension.

to properly address the problems of code comprehension.
Opening the compositions in a pop-up window to read the
intention behind a code block may help a little, but code
comments may not be powerful enough tools to signify the

5.3 Code Mixer 73

existence of compositions, since they can easily get buried
beneath all the other comments in the code. As a conse-
quece, users need to remember the title of a composition
before they can begin to search for its multiple instances
among the plethora of comments inside the code. This
problem is something that we will try to overcome in the
next design phase.

5.3 Code Mixer

At this stage, we have arrived at the realization that our The first major
change is to get rid
of standardized
forms and give users
freedom in molding
the shape of a
composition.

initial impulse to stick as close as possible to Alexander’s
way of patterns may have stifled our creativity during the
previous design phases, and indeed, may have caused us
to violate some of our own design principles. For one, us-
ing a linear progression while building a composition may
not be accommodating enough for software engineering, a
field often saturated with multiple conditional cases. Fur-
thermore, the standardized form that is utilized to structure
compositions does little to remedy the problem of visual
homogeneity that is already prevalent due to the tendency
to “write” code. Indeed, the two previous designs would
eventually yield a group of compositions that are visually
indistinguishable from one another. As a response to this
problem, the first major alteration in our design is to get rid
of the standardized form and in its place, we let users mold
the shapes of the compositions based on their own whims.
This would reduce the generic visual quality of composi-
tions (and thus improve their visual identities), while si-
multaneously taking advantage of developers’ inclination
to consider more free-form graphics as more “interesting”
[Cherubini et al., 2007].

Another defining characteristic of our previous designs is To achieve a more
balanced community,
we set out to unify
the user experiences
of the two roles.

the segregation between the two user roles. Heretofore
there has been very little overlap between the two roles
beyond the fact that they both interact with compositions,
and indeed, we even went so far as to present a distinc-
tive application window for each of them. Our reasoning
at the time was that each user role should be able to fo-
cus on their respective tasks with as little distractions as

74 5 The Design

possible. However, the resulting design may ultimately en-
courage users to only identify with one particular role, as
opposed to actively taking on both roles. Add in the fact
that the composer role is indubitaly more demanding, and
it would result in a community that is dominated by con-
sumers. Needless to say, this is not a desirable state for our
design scheme, which requires an active community that
would constantly maintain and evolve the existing collec-
tion of compositions. With this in mind, in the current de-
sign phase we set out to minimize the discrepancy of labor
between the two roles, as well as to unify their respective
user experiences. To achieve this, all users, regardless of
roles, would interact with the same part of the desktop ap-
plication.

Perhaps the most striking tweak introduced by the currentThe current design
also addresses code

comprehension
problems by using a
combination of icons

and associations
between

compositions and
users code.

design phase is the inclusion of features that deals with
code comprehension. It bears repeating that developers
typically choose to gain comprehension on smaller, isolated
parts of a system that are most relevant to their current task,
instead of trying to understand the whole system [Singer
et al., 1997, Roehm et al., 2012]. Therefore, Code Mixer
would facilitate code comprehension in a more personal-
ized way. Each developer would have their own set of aids
for comprehension, depending on the associations between
compositions and their own code that they themselves cre-
ate. Each composition is assigned a unique icon, and when-
ever users specify an association between a segment of the
composition with a section of their own code, the compo-
sition’s icon will be inserted into the IDE. The idea of mul-
tiple icons strewn across the IDE is not unlike a bunch of
colorful sticky notes that are attached to the pages of a thick
report in order to provide a quick access to all the important
or interesting parts of the report. Similarly, an icon that has
been inserted into a certain code segment in the IDE can
provide an instant access to the composition it belongs to.
The composition itself would ideally present the users with
enough information regarding the real world tasks that it
addresses. Or, to put it concisely, Code Mixer helps code
comprehension by offering a task-oriented view of code.

Finally, we have made the decision to revert the scope of a
composition back to a single pattern. This approach would

5.3 Code Mixer 75

put less burden on the creation of compositions, and thus, The composition
scope is reverted
back to a single
design pattern.

would better support our aspiration of encouraging more
users to assume the composer role. In the next section, we
provide further details on how we retailor the user interface
of Code Mixer to make it more effective.

The Form

The current version of Code Mixer consists of one desk- There is only one
desktop application
window, which
contains a tabbed
menu to host the
composition.

top application window, within which all interactions with
compositions will take place, regardless of user roles. The
application window, as can be seen in Figure 5.6, consists
of four main tabs which would host the various pattern-
centered components: context, problem, solution and ref-
erence. A minor change has been made regarding the con-
tents of these components: each may now contain both tex-
tual and graphical information. To complement the four
tabs, the application window would also host the title and
the automatically assigned icon that we have briefly cov-
ered in the previous section, and both of these elements
serve as a form of identification for the composition. It A composition icon is

decided on a work
space basis.

should be noted that a composition’s icon is decided on a
work space basis, meaning the icons do not exist in the cen-
tral repository. Code Mixer keeps track of all the compo-
sitions that a code project contains, and when user down-
loads a composition or creates a new one, this composition
will be assigned an icon that has not been used by other
compositions in the project.

The most interesting part of the new design is the solution The solution tab
serves as a blank
canvas where users
can build their own
solution graphs.

tab, which serves as a blank canvas in which users can build
their solutions. A solution is made out of multiple elements
that are connected together to form a graph-like structure,
which we would call the solution graph. Most people, partic-
ularly software developers, should already be familiar with
building and interpreting graphs, which means that build-
ing a solution in the new design would require very little
learning effort, if any. And despite their relative simplicity,
graphs are flexible enough to represent a number of differ-
ent scenarios, even non-linear instances such as conditional
cases and loops. Indeed, Cherubini et al. [2007] pointed out

76 5 The Design

Figure 5.6: The two different tabs of the Code Mixer application window. The
solution canvas hosts a solution graph whose elements are the thumbnail images
of their own contents.

that the paper sketches that developers produce during a
brainstorming session are typically dominated by graph-
like forms. Moreover, as long as users are given full spatial
freedom while building their graphs, the respective person-
alized touches of the users would lend each of the resulting
graphs a certain level of distinction, which would add to a
graph’s visual identity.

Given the prominent role that the solution graph plays inOne major decision
was to determine the
form of the elements
of the solution graph.

the current design, one of the major decisions taken dur-
ing this design phase is to determine the visual form that
the graph elements should take. We considered borrowing
from the Unified Modeling Language (UML), as Code Mixer,
after all, is marketed towards software developers. But
then we quickly discovered that despite all the different
types of available UML diagrams, it was almost impossi-
ble to select one particular type that is suitable to our de-
sign scheme, since most of these graphs have a very spe-
cific purpose (e.g. Use Case Diagrams model functionali-
ties, Class Diagrams model data structures, and so forth).
Code Mixer requires something that is generic enough be-

5.3 Code Mixer 77

cause it is supposed to work seamlessly with a wide array
of problem domains, so UML diagrams are not the best fit.

Ultimately, we draw our inspiration from one of the tools A graph element
would be a thumbnail
image of its own
content.

listed in this paper, Code Thumbnail [DeLine et al., 2006],
specifically the way this tool creates thumbnail image rep-
resentations for code files. Our idea is that a graph ele-
ment should be the thumbnail image of its own content,
regardless of whether it contains code chunks of conven-
tional texts. The resulting thumbnail images would further
strengthen the visual identity of a composition, which al-
ready benefits from having a distinctive graph structure. In
order to prevent the thumbnail images from overflowing
the screen and throwing the balance of the solution graph,
a maximum width restriction is enforced on them by us-
ing the text-wrapping technique adopted from Code Bub-
ble [Bragdon et al., 2010]. It should be reiterated that these
thumbnail images are merely supposed to add to the visual
identity of a composition and are therefore not meant to be
read by the users.

A property panel in the solution tab is then provided (see A graph element’s
content would always
mirror the content of
the code segment
that it has an
association with.

Figure 5.6) so users can properly read and modify the con-
tent of a certain graph element. Each graph element has its
own pair of fields, one to supply a general description and
the other for the actual content. One last interesting fea-
ture of these graph elements is its capability to mirror the
content of a certain code segment, provided that an associ-
ation has been specified by the users. Namely, whenever a
code segment in the IDE is modified by the users, the graph
element that it has been associated with in the composition
window will also transform itself, changing the appearance
of its thumbnail image in the process. This should provide
a certain degree of consistency and fortify the sense of con-
nection between compositions and users’ own code.

Aside from the application window, there are also addi- A composition icon
provides instant
access to a
composition from the
IDE.

tional elements that are integrated into the code editor. We
already described how a composition icon would be in-
serted into the IDE whenever an association is made be-
tween a code segment and a composition. The icon is
added on the very first line of the code segment, and when
users move the mouse cursors on top of the icon, the rel-

78 5 The Design

Figure 5.7: When the mouse cursor hovers over the composition icon in the IDE,
the relevant code segment is highlighted. Clicking on the icon would present the
users with the application window containing the relevant composition.

evant code segment will be highlighted using a light gray
box (see Figure 5.7). Furthermore, if users click on the icon,
they will be presented with the relevant composition in the
application window, and the graph element that has been
associated with the selected code segment will also be high-
lighted.

Users can also quickly navigate into the other code seg-Navigating a code
using a composition
window allows users
to focus only on the
code segments that
are relevant to their

current task.

ments in the IDE that have been associated with a compo-
sition by simply clicking on another element of the solution
graph. The mouse click operation will then highlight the
selected graph element, as well as make the code editor fo-
cus on the relevant code segment (even if it is located in
a different code file), provided that an associated has been
previously specified. This way, users can focus only on the
code segments in the IDE that are relevant to their current
task (which is contained by a composition), without having
to be distracted by other code segments. Also, for new-
comers looking to gain insight to a code project, the var-
ious icons will indicate the important or interesting parts
of the code that they should focus on first. These smaller,
segmented outlooks to a project would prevent the new

5.3 Code Mixer 79

users from becoming overwhelmed by unfamiliar pieces of
code whose connections to one another are not always ob-
vious. Finally, navigating source code by using the com-
position window would reprieve the users from having to
constantly perform multiple textual searches on function
or package names and the likes. We believe that this is a
much more efficient method to traverse code than combing
through a long list of search results.

The Composer Workflow

To create a new composition, users calls up the Code Mixer Users no longer have
to input all
pattern-centered
information of a
composition.

application window by pressing a certain keyboard short-
cut from anywhere in the code editor. A pop-up window
materializes, bearing a blank composition, which users
then fill out with as much information as needed. To ensure
a lighter method of creating a composition, Code Mixer no
longer requires users to supply all pattern-centered prop-
erties; only the title and the solution tab are mandatory.
The are a couple of reasons behind this decision. Firstly,
it was noted by Brandt et al. [2009] that when following a
tutorial, users often jump directly into the various code ex-
ample embedded in the tutorial and pay little attention to
anything else. This finding indicates that a comprehensive
set of pattern-centered information may not always be re-
quired for a composition to be truly effective.

Furthermore, we would like to accommodate the cases in Users are given
absolute freedom to
decide how detailed
their compositions
are and how widely
they are distributed.

which users wish to create only the barest version of a com-
position. For instance, several users may collaborate on
building a composition while having a discussion about a
certain task. All the high-level, task-related information are
exchanged orally, so they simply use Code Mixer to help
them build a solution graph, and at end of the brainstorm-
ing session, each of them is given a copy of this composi-
tion for their own personal use. Perhaps one of the users
will find the time to complete the composition and upload
it to the central repository, or perhaps not. Code Mixer
now gives the users absolute freedom as to how detailed
their compositions are—and how widely they should be
distributed.

80 5 The Design

Figure 5.8: When users save or upload a composition, they
are prompted to fill in the composition title, and are given
the choice to change the composition icon.

When it comes to building a solution graph, there are sev-Users can build a
graph by dragging

existing code
segments or adding
a blank element into
the solution canvas.

eral possible methods that users can use. The most com-
mon way is by combining multiple segments of existing
code together, either for personal code comprehension pur-
pose or for sharing some information with others. To do
this, users simply highlight a certain code segment in the
IDE that would make up an element of the solution graph,
and drag it into the composition window. A thumbnail im-
age of the selected segment would appear in the solution
canvas, and a temporary composition icon is automatically
inserted into the IDE at the first line of the selected segment
(users can choose to retain this icon, or change it at any
time). If a graph element requires an additional descrip-
tive text, users can add it in the property panel (see Figure
5.6). Another way to add a graph element is by manually
adding a blank element into the canvas. A blank element
can contain anything from a brand new code chunk to non-
code instructions (e.g., configuration parameters), or even
conditional cases. It should also be noted that, to facilitate
multiple alternatives for a certain solution, users are also al-
lowed to build multiple separate graphs in a single canvas.

To finish a composition, users simply need to add one orA composition can
either be uploaded

into the repository or
shared using

portable devices.

more elements into the canvas, and connect them to one
another as necessary. They are also encouraged—but not
required—to fill out the information in the property panel
of the solution tab, as well as the pattern-centered infor-
mation in the other tabs. Once a desired composition is
achieved, users can upload the composition to the reposi-
tory after supplying a proper title, or they can simply save

5.3 Code Mixer 81

it for personal use. A composition can also be shared using
portable devices such as USB sticks or emails, and it can be
opened in any other machines where Code Mixer has been
previously installed.

The Consumer Workflow

Consumers of Code Mixer by definition are looking for Consumers search
for compositions in
the repository,
download the
relevant ones, and
specify associations
to their own code.

compositions that they can reuse to tend to their own tasks.
They search for the most relevant compositions by brows-
ing the central repository, which can be done through the
application window or from the web browser. Once an ap-
propriate composition is located, users then download said
composition into their local machines. A downloaded com-
position is then opened using the Code Mixer application
window, in which its content is filtered through multiple
tabs. A newly downloaded composition naturally does not
yet own any association to the users’ own code, and to max-
imize flexibility, users can specify the associations at any
time they see fit. Once the associations are properly speci-
fied, users are granted the ability to efficiently navigate the
important code segments, simply by traversing the solution
graphs contained by the compositions that they have added
to their code projects. They no longer have to memorize
code file names, namespaces, packages and other similar
information that could potentially overwhelm their cogni-
tive load that should have been utilized to finish a real task.

There are two possible methods to create an association be- The first method to
specify a
composition is by
dragging a graph
element into the
code editor.

tween a composition and users’ existing work. The first
method is by dragging an element from the solution graph
into the code editor. This is akin to the typical “copy &
paste” activity that most developers should already be fa-
miliar with. The content of the graph element will then be
copied into a section in the code editor where the mouse
cursor is currently located. An automatic composition icon
will be added into the first line of the copied code seg-
ment, and when the mouse cursor hovers over this icon,
the whole code segment will be highlighted using a light
gray box. Moreover, when the code segment is modified,
the change will be reflected in the content of the associated

82 5 The Design

graph element, as well as its corresponding thumbnail im-
age.

The second method to create an association works in a veryThe second method
to specify a

composition is by
dragging a segment
from the code editor
into a certain graph

element in the
solution canvas.

similar fashion, but is also fundamentally different: it goes
in the exact opposite direction. This method is intended for
the cases in which an association is made between a compo-
sition and something that already exist in users’ own work
(i.e. they have previously finished some steps required by a
composition). To specify the association, users simply high-
light a certain segment of their own code and drag it into a
certain element of the solution graph. Just like in the pre-
vious method, a composition icon will be inserted in code
editor at the first line of the selected area. However, in this
case Code Mixer will also adjust the content of the selected
graph element to mirror users’ existing work. Notice that
this method is very similar to the composer workflow, the
only difference being that users do not add a new element
into the solution canvas, but instead modify an existing
one. It should be noted that not all graph elements have
to be associated with user’s own work. This flexibility is
particularly important since, as we have stated before, not
all elements would contain code chunks.

Finally, a consumer can now switch role into a composerSince everything is
done in the same

application window,
users can switch

between roles
instantly.

almost instantly, and vice versa. When users open a down-
loaded composition and specify some associations, they
take on the role of a consumer. However, once they start
to modify the existing content of a composition, either by
adding new elements into the solution graph or by modify-
ing the pattern-centered information of a composition, they
are already assuming the role of a composer. Throughout
the work session users can keep switching back and forth
between the two roles easily, since everything is done in the
same application window. Moreover, when a newly mod-
ified composition is uploaded back into the repository, it
will then be saved as a new composition, keeping the orig-
inal version in the repository. Ultimately, the unified user
experience has successfully erased the separation between
the two user roles, and this would in turn encourage more
users to play a more active role within the Code Mixer en-
vironment.

5.3 Code Mixer 83

Self Assessment

Our current design scheme has managed to unify the user We have managed to
offer seamless
transitions between
user roles and
reduce the
discrepancy of
workload between
the two.

experiences of both user roles, to the point that they are al-
most interchangeable. When a “composer” creates a brand
new graph element and proceeds to drag said element into
the code editor, she is actually performing a consumer-
related task. Similarly, when a “consumer” modifies the
content of a previously downloaded composition and up-
loads it back into the repository, he is actually taking on
the role of composer. Furthermore, we also reduce the
discrepany of workload between the two roles by taking
away the requirement of building only complete, pattern-
approved compositions. We believe that these characteris-
tics would eventually help us to achieve Alexander’s vision
of “letting patterns evolve” and ensure that we achieve a
thriving user community that has been our goal from the
start.

Our current design can also help users with their code com- We provide
task-oriented view of
code by using the
composition icons
and the solution
graphs.

prehension endeavors, with the caveat that proper associa-
tions have been specified between users’ code and the com-
positions. By taking advantage of the composition icons
scattered across a project, user can instantly gain insight of
the intention of a certain code segment. Morever, by using
the solution graphs, users can jump across a code project
without ever losing grasp of the composition that they are
focusing on. And since each composition revolves around
a single task, we therefore provide the users with a task-
oriented view of their code.

However, we have also noticed some portions of the de- The current user
interface is still not as
efficient as it could
be.

sign that could benefit from a little more polish. Perhaps
the most glaring oversight is how restrictive the current in-
terface turns out to be, particularly for the solution canvas,
which essentially is the most important part of a composi-
tion. On top of having to share the window space with in-
terface elements such as tabs and buttons, a solution canvas
also has to fight for space with the property panel, leaving a
very limited area for users to build and actually see their so-
lution graphs. Since we have established that components
such as context and references are no longer required in or-

84 5 The Design

der to submit a composition, they no longer need to occupy
the same level of space as the solution canvas. In the final
section of the design phase, we will perform some further
tweaks to the user interfaces to make Code Mixer as effi-
cient and user-friendly as possible.

5.4 Code Mixer: Retouched

The last iteration of our design phases is primarily aimed
at fine-tuning the user interface of Code Mixer. Our major
inspiration is the work of Tufte and Graves-Morris [1983],
which encourages designs that have been trimmed of as
much “fats” as possible in order to provide the most effi-
cient use of space for the actual content. However, in the
end the application would retain most of the essence of the
previous design.

The Form

We have established that the solution graph is the mostThe whole
application window
now serves as the

solution canvas.

important aspect of a composition, since most developers
would rather focus on the various code chunks rather than
any other type of information [Brandt et al., 2009]. Accord-
ingly, our very first focus is to provide as much room as
possible for the solution canvas, and to achieve this, we
simply wipe away almost everything else from the appli-
cation window. As can be seen from Figure 5.9, the whole
Code Mixer application window now essentially serves as
the solution canvas. The only other visible elements are the
composition title and icon, which are both placed at the top
of the window. Meanwhile, a set of menu are hidden at
the bottom of the window, and will be displyed when the
mouse cursor hovers over the bottom area of the applica-
tion window. The interface should now give users ample
room to build and play around with the structure of their
solution graphs.

Even though they are no longer mandatory components,
a composition’s pattern-centered properties should remain

5.4 Code Mixer: Retouched 85

Figure 5.9: The whole application window serves as the
solution canvas.

in play, since they offer a detailed view into the actual task The pattern-centered
information are now
included in the
application menu.

that is addressed by the composition. And since they have
been removed from the default interface, our next focus is
then to find a proper way to display these components. Ul-
timately it was decided that they should be hosted by a new
application menu, which, when activated, would push for-
ward a panel containing several editable fields, each corre-
sponds to a single pattern element. This approach is actu-
ally quite prevalent and has been utilized by a lot of pop-
ular appications (e.g., Microsoft Words boasts a wide ar-
ray of configurable elements that are attached in the menu),
so users should be relatively unfazed by this change. The
structure of the information itself remains unchanged, and
each field should still be able to handle both texts and
graphical objects.

Another component that has lost its place in the new inter- Each graph element
has its own
description panel
which is hidden by
default.

face is the property panel of the solution canvas. This panel
is a supporting act to the solution graph, and therefore it
should not be grouped in the menu with the other pattern-
centered information. As an alternative, each graph ele-

86 5 The Design

Figure 5.10: When the mouse cursor hovers over a graph element, the description
panel appears (left). When the mouse cursor hovers over the bottom of the ap-
plication window, a set of menu appears. The left menu group deals with graph
elements, while the right menu group is for downloading and uploading a compo-
sition.

ments now boasts its own invisible panel, which will be
displayed when mouse cursor hovers on top of the element.
User can additionally modify the content of this panel by
either using a certain keyboard shortcut of by selecting the
approapriate menu that can be accessed through mouse
right click. One last change to this panel is the fact that
it no longer hosts a readable version of a graph element,
and is supposed to only contain a description of the graph
element to help users understand its intentions.

Naturally, the next thing that we have to focus on is to pro-Users can now zoom
in and out of the

canvas, as well as
pan around it.

vide the users with the ability of reading the content of the
solution graph properly. The eventual technique we em-
ploy is inspired by Code Canvas [DeLine and Rowan, 2010]
and Shrimp Views [Storey and Muller, 1995], which is to al-
low users to zoom in and out of the canvas as they please.
When a composition is first opened, by default the entirety
of the solution graph is displayed, fitted to the current size
of the application window. To get a closer look at the con-
tent of an element, users zoom in as far in as needed, or,

5.4 Code Mixer: Retouched 87

if an association has been specified, they can also click the
element and see its content in the code editor. To add more
convenience, users are now also allowed to pan around the
solution canvas to inspect the other elements. And when
they want to view an overall structure of a graph, they can
simply zoom as far back out as desired. It should be noted
that the graph elements’ hidden panels are not affected by
the level of zoom in the canvas, they remain readable at all
times.

The User Workflow

No drastic change has been implemented in the way users The interaction styles
mostly remain the
same, with some
minor adjustments.

interact with the system, the details of which can be seen
in the previous design phase (see Section 5.3 in p. 73). The
fundamentals are still the same, although the adjustments
in the user interface ultimately modify some of the interac-
tion details as well. For one, when users drag a code seg-
ment from the code editor to the solution canvas, which
will add a new element to the graph, the property panel of
said element will also be displayed, so users can directly fill
in the description of said element, if they wish to do so. Of
course, they can always add or modify this information at
any other time, by using the correct menu (which has been
described the previous section). Additionally, when users
would like to supply the pattern-centered information of
a composition, they have to evoke the appropriate panel
from the application menu, and then they can proceed to
input as much information as necessary. Similarly, when
users are taking a more passive role with the compositions,
all interactions remain the same except that they have to
hover the mouse cursor on top of a graph element to see
the element’s description and evoke the appropriate menu
to see the pattern-centered information.

Self Assessment

As this is the final design phase, we are bringing back all
the design principles that have been established in Chapter

88 5 The Design

4, in order to determine how effectively our design fulfills
each point.

Visual Emphasis. Our design does put more importance onThe solution graph is
the most important

element in our
design.

the visual representation of a composition than its textual
information. Indeed, the whole application window serves
as a canvas for the user-generated solution graphs, while
text-based information (pattern-centered information and
graph element descriptions) is relegated to the background.
There are also various measures to prevent visual unifor-
mity, namely the composition icons, the user-based struc-
tures of the solution graphs, and the content-based thumb-
nails of the graph elements.

Portability. Our design lets user build compositions withoutUsers can create a
composition just by

drag-and-drop, and it
can be shared

through a single
click.

having to leave their code editor, and solution graphs can
be constructed merely by dragging and dropping already-
existing code segments into the canvas. Moreover, only the
solution graph and the composition title are required, giv-
ing the users the freedom to make a composition as metic-
ulous as they desire it to be. Meanwhile, users can upload
their newly created or modified compositions into the cen-
tral repository with a single click, and they are also allowed
to distribute the compositions using portable devices and
even emails. The central repository itself serves as a sta-
ble environment that spares the users from having to comb
through the vastness of the Web.

Task Oriented. Our design enforces this principle by makingUsers can access
the task-related

information of a code
segment using a

single click.

sure that a composition revolves around a single task. As a
matter of fact, the root of a composition is a real world task
whose solution users describe in the form of a graph. Users
can gain insight into the purpose of a certain code segment
just by clicking the composition icon that has been attached
onto the code editor, and they are instantly presented with
the relevant composition, which again, revolves around a
single task. In other words, users are only a click away
from gaining insight of the task that is addressed by a cer-
tain code segment. The only caveat is that the effectiveness
of this approach heavily relies on how meticulous users are
when building the compositions and specifiying the associ-
ations.

5.4 Code Mixer: Retouched 89

Accessibility. All elements of our design are decidedly in- Elements such as
graphs,
drag-and-drop and
zoom-and-pan
interaction styles are
all already quite
prevalent in the real
world.

tented to be as conventional as possible in order to reduce
the learning effort. It is a safe assumption that most users
(who are mostly software developers) should already be fa-
miliar with interpreting a graph, as well as the drag-and-
drop and zoom-and-pan interaction styles. Relegating the
pattern-centered information into the application menu is
also an approach that has been utilized by many popular
applications, so users should already be relatively familiar
with it.

Modifiability. This property is closely related to our attempt Users can easily
modify a composition
that is created by
others, since
everything is done in
the same window.

at blurring the line between the two user roles. Indeed,
users can easily modify a composition that is created by
others, either by altering the solution graph or the pattern-
centered information, since everything is done in one ap-
plication window. The newly modified composition can ei-
ther be uploaded back into the repository, distributed us-
ing portable devices, or saved into the local file system for
users’ own personal use.

Collaboration-Friendly. Users can brainstorm together and Users can
collaborate on
creating a
composition, but it
has to be done in a
single machine.

collaborate in creating a composition, not unlike how they
would work together using mediums such as the white-
board. However, our current design only facilitates the cre-
ation of a composition at a single machine at a time. Users
from remote locations can also work on a composition to-
gether, but they are required to send the composition back
and forth between each other and modify it separately.

Spatial Freedom. The fundamental idea of the solution can- Users are given full
flexibility in
determining the
structure of their
solution graphs.

vas is that users are given full flexibility in determining
the structure of their solution graphs. They can place any
graph elements at any points on the canvas, and they are
also allowed to connect as many elements as desired to a
graph, or even to create multiple graphs to represent alter-
native solutions.

Recordability. Everytime a user save a composition or up- The repository keeps
track of every
composition that has
been uploaded.

load it to the repository, it automatically creates a record of
said composition. When a composition is modified by other
users, they are not going to be overridden, but instead the
modified composition will be saved into a new one.

90 5 The Design

Ultimately, it has been shown that our design has in fact
managed to fulfill all of our design principles, although
some principles are fulfilled more effectively than the oth-
ers. It does not prove, however, that our design already of-
fers an effective method to help developers solve their var-
ious code comprehension and information foraging prob-
lems. To get a better idea of this, we conducted some user
studies whose details will be presented in the next chapter.

91

Chapter 6

Evaluation

In order to acquire a better idea of where we should carry
our design in the future, we present the latest version of
Code Mixer to a group of users. Since our main concern
does not lie in implementing the actual system, we built
an HTML-based simulated environment for the users to try
out the system, and we conducted a set of qualitative user
studies with subjects who fall within our target market: de-
velopers. The results of the study were quite encouraging,
and some of the user inputs were ultimately incorporated
into the final design of Code Mixer.

6.1 Our Initial Hypotheses

To kick off this evaluation phase, we establish a set of as- A set of hypotheses,
based on our design
decisions, is
established.

sumptions that we have made during the design period.
We do this so we can verify the effectiveness of our design,
and to easily see which areas would require further adjust-
ments based on the reactions of the users. The following is
a list of items that we would like to examine:

1. Users can distinguish one composition from the oth-
ers using a combination of its icons, its titles, and its
visual identity

92 6 Evaluation

2. The structure of the solution graph and its content-
based graph elements provide strong enough visual
identity to a composition

3. Giving users full flexibility when building the solu-
tion graph will result in wide variety of graph struc-
tures

4. The actual content of compositions can be easily un-
derstandable, and can be used to determine the most
relevant item from a list of search results

5. Users would have no problem navigating an unfamil-
iar code base by traversing the solution graphs.

6.2 The Prototype

The prototype that we built is not a fully functional ren-The prototype is a
simulated

environment built
using HTML, CSS

and JavaScript.

dering of our design, but rather a simulated environment
that exhibits most of the features and interaction styles that
have been established during the design period. The sim-
ulation itself should not require too much effort to build,
since there is a possibility that a radical twist to the over-
all design might be required as a result of the studies. Ul-
timately, we reached a decision to build an HTML-based
prototype, since it is among the simplest and most flexible
platforms there is. This is then further supported by CSS
(Cascading Style Sheets) to enhance the visual quality of the
prototype and JavaScript to lend some dynamic capabili-
ties.

Before actually building the prototype, a set of workingA web version of
Minesweeper is used

to provide the
content to the

simulated
environment.

code is needed to provide the “content” of the simulated
environment. This code should not be too long so as not
to overwhelm the users, but should also exhibit a certain
level of complexity so we can verify the effectiveness of our
design in assisting code comprehension. After considering
several candidates, a web version of the game Minesweeper
is eventually selected as the main subject of the prototype.
The reason for choosing Minesweeper is because it is a stan-
dard game that most people are familiar with, so the study

6.2 The Prototype 93

participants would be able to really focus on understand-
ing how the code is structured without having to wonder
about the expected behavior of executing the code.

Furthermore, we choose a web version of the game due Seven different
compositions are
built out of the code,
so we can see how
effective they are in
helping users
understand the code.

to the relative popularity (and simplicity) of HTML and
JavaScript that are used to build this version of the game.
It is preferable that study participants are familiar with the
programming language presented during the study, other-
wise they would not be able to solve the tasks that are going
to be included. We borrowed the Minesweeper code from
http://www.chezpoor.com1 , and the code consists of three
different files and boasts around 1,000 lines of code, which
is an appropriate size that suits our purpose. Based on this
code, we built seven different compositions (see Appendix
A), involving an array of differing functionalities (e.g. se-
lecting a certain menu item, clicking a certain button, and
so forth). These compositions will be presented to the users
during the study to evaluate how effective they are in help-
ing users understand unfamiliar code.

To simulate a code editor, three different HTML files are The foundation of the
simulated
environment are
HTML pages with
screen shots of code
files.

built, each corresponds to one file of the Minesweeper code.
Each HTML file essentially consists of a group of screen
shots of the code that are taken from a separate code editor.
These screen shots are then stacked together on an empty
HTML page until it looks exactly like a typical code edi-
tor, except that the users cannot do anything to its content
(since they really are images). The resulting three HTML
files are then opened simultaneously in a web browser us-
ing multiple browser tabs, in order to mimic the tabbed
views of a typical code editor. This would then serve as
the foundation to our simulated environment (see Figure
6.1).

The final step in building the prototype is to integrate the CSS and Javascript
are used to integrate
some compositions
and interactivity into
the simulated
environment.

pre-made compositions—and some interactivity—into the
simulated environment. CSS is utilized to position and
style all of the design details and objects, which include the
composition window and its various content such as the
composition title, the solution graph and the descriptive
panels of the graph elements (see Figure 6.2). The graph

1http://www.chezpoor.com/minesweeper/minesweeper.html

http://www.chezpoor.com/minesweeper/minesweeper.html

94 6 Evaluation

Figure 6.1: The simulated environment runs on a web browser, and is designed to
look like a typical code editor. The composition icons are visible across the “code
editor.”

elements themselves are made out of screen shots of rel-
evant code chunks that have been taken from a separate
code editor. Meanwhile, on the “code editor” part, CSS is
also responsible for placing the composition icons and the
gray box that highlights the relevant code segment. We fur-
ther utilized CSS to “turn off” the elements that are not dis-
played by default (i.e. the highlight boxes, the composition
window), and ultimately it is just a matter of writing some
JavaScript functions that would display and hide certain
elements based on users’ interactions with the prototype.
And finally, JavaScript also helps to provide the ability to
change the focus of the “code editor” depending on the se-
lected graph element.

In the end, we have a web browser-based environment that
manages to simulate most of the features that we have pro-
posed in our design of Code Mixer. Everything is as has
been described in the previous chapter: clicking on a icon
in the editor will display the relevant composition in the ap-

6.2 The Prototype 95

Figure 6.2: Clicking the composition icon will display the application window.

Figure 6.3: Placing the mouse cursor over a graph element displays its description
panel.

96 6 Evaluation

plication window, hovering on a graph element will bringThe prototype
includes most of the

proposed features,
although some

features are omitted
due to technical

limitations.

up the elemement’s description (see Figure 6.3), and click-
ing a graph element will make the code editor focus on the
associated code segment. However, some features are omit-
ted from the prototype due to the limited technical capabil-
ities of our selected technologies. The unavailable features
include the ability to modify a composition, the zoom-and-
pan and drap-and-drop interaction styles, and the pattern-
centered information of the compositions. The last feature
is ultimately removed from the prototype because it takes a
lot of effort to build one proper, pattern-approved composi-
tion, let alone seven, which actually confirms our own sus-
picion from the earlier design phases. Nevertheless, these
omissions should not actively prevent us from verifying the
hypotheses that we have presented in the earlier part of this
chapter (see Section 6.1 in p. 91).

6.3 User Studies

We chose to conduct some qualitative user studies to exploreQualitative user
studies were used to

gauge the potential
of our design.

the idea of using user-generated solution graphs to help
code comprehension and distribution. Accordingly, it is not
a big concern of ours to measure the accuracy of the solu-
tions that users would supply, nor the time it takes them
to finish the tasks. Instead, we would like to gauge the po-
tential of our design scheme, and therefore, user feedbacks,
mainly those regarding the experience of using the proto-
type, are of utmost importance.

The user studies were conducted with a total of 10 par-All users in the study
are familiar with

HTML, JavaScript,
and the

Minesweeper game.

ticipants, all of which have at least moderate experience
working with HTML and JavaScript. All participants are
also well aware of the purpose and the available interac-
tions of the Minesweeper game, if not necessarily how to
play it. These prerequisites are necessary so that during the
study, users can fully focus on understanding how the code
is written to achieve the desired result.

6.3 User Studies 97

Protocol

At the start of the study sessions, users are given a brief Users prepare for the
study by playing
around with the
simulated
environment for a
short while.

explanation on the general purposes of our design, as well
as the emphasis that in the study, a simulated environment
will be presented instead of a functional version of the sys-
tem. To ease them into the proper mindset, users are asked
to imagine themselves as a new member of a development
team who has been asked to learn a new code project.
Users are then allowed to familiarize themselves with the
Minesweeper code and the simulated environment by scan-
ning through the “code editor” and playing around with its
various features.

Once users are comfortable enough with the environment, The first task
category is code
comprehension,
which inquires users
on how the code is
written to achieve
various
functionalities.

they are presented with several tasks, each of them belongs
to a certain category. The first task category is code compre-
hension, and it involves asking the users to describe how the
Minesweeper code fulfills various functionalities. Users are
given four tasks with different levels of complexity, from a
straightforward inquiry about the pre-condition and the re-
sult of executing a single function, to questions that require
them to contrast two similar functions and identify multi-
ple parts of code segments that are related to a single func-
tionality. It bears repeating that the code that is presented
to the users are actually a group of images, so users could
not perform textual searches on the code. They are there-
fore encouraged to use the pre-made compositions to help
them finish the tasks, but are otherwise given full freedom
to use an alternative approach (e.g. pens and papers).

The second task category is information foraging, and it in- The second task
category is
information foraging,
which asks users to
select a composition
and integrate its
content into the
existing code.

volves giving the users a code modification task which can
be solved by using an existing composition. Users are to se-
lect the most relevant composition from a group of three (to
emulate “search results”), and then they are asked to incor-
porate its content into the existing code. The titles of these
compositions are deliberately removed, due to our interest
in finding out whether the solution graphs alone are suffi-
cient for users to determine the most relevant composition
(fourth hypothesis, see Section 6.1 in p. 91). Once they have
chosen one composition out of the three, users are asked

98 6 Evaluation

Figure 6.4: In the second phase, users are given a choice of three compositions, and
they are asked to select one to fulfill the given task.

to incorporate the revelant graph elements into the existing
code. To accommodate this task, we give users access to a
code editor that contains all the four files that make up the
Minesweeper project. For the sake of simplicity, users are
only asked to find the exact locations in the code to which
they would “drag” the relevant elements, but they are also
allowed to go the distance and actually copy the contents
of the selected composition and alter them as necessary. To
emulate a typical working session, and to test our fifth hy-
pothesis (see p. 91), users are given more leeway than in the
previous category; they can use the various pre-made com-
positions, as well as perform textual searches to finish the
task at hand.

The final task category deals with the creation of a composi-The final task
category deals with

the creation of a
composition.

tion, specifically its solution graph. As we have mentioned,
due to technical limitations, we do not provide users with
the ability to drag and drop existing code segments into
the solution canvas. Instead, users are presented with a
group of graph elements on a single page (as if they have
just dragged these elements into the canvas themselves),
and then asked to construct a graph using these elements.
Our main purpose for including this category despite the

6.4 The Results of The Studies 99

limited interaction is to gain insight on how varied the re-
sulting graphs would be if users are given full flexibility in
building their solution graphs (third hypothesis, see Sec-
tion 6.1 in p. 91). Furthermore, users are also given the
choice to simply sketch their prefered structure on a piece
of paper.

Finally, to cap off the sessions, users are given a question- Users are given a
questionnaire in
order to acquire their
general sentiments
of our design.

naire that focuses on the general ideas of our design, as well
as the particulars of the user interface and its interaction
styles. Naturally, they are also welcome to give their feed-
backs on other topics not included in the questionnaire. The
findings we gathered from this study are then processed to
help us determine the future direction of our design.

6.4 The Results of The Studies

The questionnaire consists of a group of statements, each We treat the
questionnaire as a
Likert-type data, and
we employ
non-parametric
procedures to
analyze it.

addresses a particular design detail of Code Mixer. Users
are then presented with five different choices that denote
their level of agreement with the given statements, from
“strongly agree” all the way to “strongly disagree”. We
treat each statement as an individual Likert Item and assign
the choices with scores ranging from 1 to 5, with 1 denoting
the most positive reaction. Since we are interested in see-
ing the effectiveness of every single design decision on its
own, we treat the results as a Likert-Type data, as oppoased
to Likert Scale, which measures the composite of a series of
Likert-type items. Accordingly, we employ non-parametric
procedures based on median (Mdn) to determine the central
tendency of each item, but we also calculate the average
(M) score for each item as supplementary information. As
for the variability of the data, we measure the frequencies of
each choices for each Likert item. The full results of both
analyses can be seen in Appendix B.

100 6 Evaluation

Statements Mdn M
I think Code Mixer can improve code com-
prehension

1 1

I think Code Mixer can improve code-
related information sharing

1 1.1

I think Code Mixer can improve code-
related problem solving

1 1.1

Table 6.1: General Reactions on Code Mixer

6.4.1 General Reaction to Code Mixer

To our delight, there is a collective agreement among the
study participants that Code Mixer, with its task-orientedThe users react

positively to the
general idea of Code

Mixer in terms of its
ability to provide help

during maintenance
tasks.

compositions and straightforward interaction styles, can
indeed help developers with their day-to-day program-
ming activities, particularly maintenance tasks. As a mat-
ter of fact, an absolute concensus (Mdn: 1, M: 1) is reached
that Code Mixer would provide help for developers during
code comprehension periods (see Table 6.1). Participants
are also highly confident (Mdn: 1, M: 1.1) that Code Mixer
could facilicate information sharing, which in turn would
improve information foraging. These positive results are
achieved despite participants experiencing various degrees
of difficulties while finishing the tasks presented in the
study, which we attribute to users needing a little more time
to familiarize themselves with the code. The user feedbacks
have nevertheless given us confidence that the general di-
rection of our design is already on the right track.

6.4.2 Interface Details and Visual Identity

The questionnaire is divided into several different cate-Users reacted
positively to the way

we depict an
association between
a code segment and

a composition.

gories, the first of which focuses on the various facets of
the user interface. To start, users are mostly receptive of
our method of depicting an association between a code seg-
ment with a composition, which is accomplished by insert-
ing the composition icons in the code editor (Mdn: 1 M:
1.6, see Table 6.2). They also react positively to the use of

6.4 The Results of The Studies 101

Statements Mdn M
I liked the placements of various icons in the
working area as a way to identify existing
compositions

1 1.6

I liked the use of a gray box to highlight the
part of the working code that is connected to
a certain icon

1 1.3

I liked the use of a pop-up window to con-
tain the compositions (as opposed to, for in-
stance, an integrated section in the working
area)

3 3.1

I was able to differentiate a certain compo-
sitions from the others based on its title and
its icon in the working area

2 2

I was able to quickly recognize a certain
composition based on the user-generated
shapes it contains

2 2.5

I liked the variety of the shapes that the el-
ements of a compositions can have, which
is based on the information that they actu-
ally contain (as opposed to a set of generic
shapes that are provided by the system)

1 1.8

I liked the variety of positions that the el-
ements of a composition can have (as op-
posed to automatic positioning by the sys-
tem)

1 1.8

Table 6.2: Reactions on Code Mixer’s Interface

gray box to highlight the relevant code segment, which will
be displayed when the mouse cursor hovers over the icon
(Mdn: 1 M: 1.3).

Meanwhile, the majority of users (eight people, Mdn: 1) Users respond
positively to the
flexible structure of
the solution graph,
but have mixed
reactions regarding
the application
window.

indicate a preference for the flexible structure of the so-
lution graphs as opposed to automatic positioning. Sim-
ilarly, content-based graph elements also receive the ma-
jority’s positive votes (seven people, Mdn: 1), beating the
alternative of a combination of generic shapes and labels.
The biggest disagreement among users originates from the
placement of the application window. With an average
score of 3.1 and a median value of 3, users are seemingly

102 6 Evaluation

evenly divided between the current approach of hosting the
composition in a new pop-up window and in an integrated
panel in the IDE. Clearly, this is something that we need to
ponder about in our future design phases.

While constructing the prototype, we inadvertently as-Further measures
need to be taken

when assigning icons
to a composition.

signed the same icon shape to all compositions, with only
different colors separating one composition from the oth-
ers. This would raise an interesting issue during one of the
study session. One of the study participants suffers from a
partial color-blindness, and thus, struggled to distinguish
between some of the icons inserted in the simulated code
editor. This case has brought into our attention that some
further measures need to be taken when assigning auto-
matic icons for compositions.

Another category included in the questionnaire is theUsers only use the
composition icons to

distinguish the
different

compositions.

strength of the identity of the compositions. A majority of 8
participants claim to be able to distinguish among different
compositions by using their titles and icons. However, fur-
ther inquiries reveal that most subjects pay attention solely
to the icons while ignoring the titles, having become used
to treat a window title as a mere design decoration instead
of a valuable content. On the one hand, the answers from
the questionnaire confirm our first hypothesis (see Section
6.1 in p. 91), but the following finding tells us that it has not
been fully satisfied. We would like to equip the composi-
tions with as strong an identity as possible, and therefore
we need to come up with a design tweak that highlight the
composition title so it can also help users identify a compo-
sition. Some users have suggested that to increase the vi-
sual identity, the background color of the composition win-
dow should be altered according to the color of the icon (not
unlike the way iTunes 11 displays album tracks), but we are
quite wary of color-related adjustments after the problem
we encountered with the aforementioned user with color
blindness, and this particular idea has the potential to make
the work area too cluttered.

Meanwhile, it has also been mentioned that to improve a
composition’s visual identity, content-based thumbnail im-
ages would act as graph elements, while graph structures
should solely be based on users’ whims. However, during

6.4 The Results of The Studies 103

the study we observed that most users seemed not to notice Users seem not to
notice the different
structures of the
solution graphs,
despite reacting
positively to our
design choices.

the variety of structures of the presented solution graphs,
which disproves our second hypothesis (see p. 91). Nev-
ertheless, as has been stated above, users did react posi-
tively to these features, and some even voiced their agree-
ment that these features can improve a composition’s vi-
sual identity. This contradiction indicates that users may
need some time to become accustomed to the structures of
the solution graphs, particularly when the graphs are not
self-made.

6.4.3 Information Clarity and Interaction Style

The last two questionnaire categories, which cover infor- Users have little
problem
understanding the
information
contained by the
pre-made
compositions.

mation clarity and interaction styles, find the users in rel-
ative agreement with our design decisions, with all state-
ments across the two categories averaging at least a 2, and
all but one item has a median value of at least 1.5 (see Table
6.3). In the former category, users mostly manage to under-
stand the information contained by the pre-made composi-
tions, including the intentions of the graph elements. This
finding incidentally supports our decision to relegate the
pattern-centered properties to the application menu, since
their omission from the prototype ultimately did not stop
the users from finishing the tasks. Users also find the con-
tents of the graph elements readable, implying acceptance
of the text-wrapping technique.

Moreover, users managed to identify the currently active Users are mostly
satisfied with the
current interaction
styles.

graph element without a hitch, and they were also able to
easily locate the associated code segment in the simulated
code editor. Nevertheless, some users did propose the sug-
gestion to increase the border size of the active graph el-
ement, so as to make it stand out even more. A couple
of users were also not aware that placing the mouse cur-
sor over a graph element would bring up their description
panel, but when informed of this feature, they all reacted
positively. This behavior nevertheless signifies that a de-
sign tweak is needed to make the existence of this feature
more obvious. Finally, the last questionnaire category in-
dicates that users are mostly satisfied with the interaction

104 6 Evaluation

Statements Mdn M
I was able to understand the general pur-
pose of each composition presented in the
study

1.5 1.6

I was able to understand the specific pur-
pose of each element contained by the com-
positions presented in the study

1 1.6

I was able to easily access and understand
the additional information (i.e., the descrip-
tive texts of the elements) of a composition

1.5 1.8

I was able to identify the parts of the work-
ing area which are associated to the elements
of the compositions

1 1.4

I was able to easily locate the element of a
composition that is currently active

1 1.5

While doing the second task, I found the
content of the compositions to be readable

2 2

I liked the idea of activating the application
window by clicking an icon in the working
area (as opposed to, for instance, having the
composition area visible at all times)

1 2

I found it easy to navigate between all the
elements of a composition

1 1.3

I found it easy to navigate from the work-
ing area to the application window and the
other way around

1 1.4

Table 6.3: Reactions on Code Mixer’s Information Clarity
and Interaction Style

styles that we have proposed, which implies that our de-
cision to make them as conventional as possible has paid
off.

6.4.4 Additional Comments

We have mentioned that in the second task category, which
was information foraging, we presented a set of three compo-
sition with no titles to the users, to see if users can find the
most relevant information based on their contents alone.

6.4 The Results of The Studies 105

It turned out all users managed to identify the most ap- Users managed to
locate the most
appropriate solution
from the content
alone.

propriate composition to solve the given task, and all but
one managed to find the appropriate locations in the code
editor to which the content should be inserted. This con-
firms our fourth hypothesis (see Section 6.1 in p. 91), which
suggests that properly-made compositions can be easily
understood even by those unfamiliar with the code. All
users also instinctively utilized Code Mixer to navigate the
source code, in combination with textual searches that were
allowed in this phase of the study, verifying our fifth hy-
pothesis.

Meanwhile, in the third task category, we asked users to We cannot yet verify
our hypothesis
regarding the
structural variety of
users’ constructed
graphs.

construct a graph out of a set of elements to examine our
third hypothesis regarding the structural variety of the re-
sulting graphs. We did not give the users any other task de-
scriptions, and some users performed this task on the given
environment, while the others opted to do it on a piece of
paper. Some of the resulting graphs did vary from the oth-
ers, although half of them took the form of a straight line,
either horizonzally or vertically. Therefore, we cannot yet
validate the truthfulness of our third hypothesis (see p. 91).
We feel that further investigations are required, with a bet-
ter equipped simulated environment, as well as a properly
defined task.

Since the questionnaire only covers the design details of The majority of users
reacted positively to
the zoom-and-pan
interaction styles and
the pattern-centered
information.

the prototype, it still lacks some of the features that were
skipped due to technical limitations. We nevertheless
would like to get some opinions on these features, so
we had brief discussions with all users about them, even
though the users can not get first-hand experience with
them yet. As it turned out, a majority of nine users reacted
positively to the zoom-and-pan interaction style, and vastly
preferred it to the alternative of using scrollbars to explore a
window with a fixed zoom level. Eight users further agreed
that pattern-centered information would increase the value
and accessibility of a composition, while the other two felt
that this feature may be superfluous.

Moreover, all users reacted positively to the navigation
style of dragging and dropping contents between the ap-
plication window and the code editor, and they had no

106 6 Evaluation

problem with entering the composition title manually, al-All users reacted
positively to the
drap-and-drop

interaction style and
the automatic

assignment of icons.

though some did express that a default title may have been
“nice.” Finally, all users also gave positive reactions to our
current approach of assigning automatic icon to a composi-
tion, while giving them the flexibility to change this icon at
any other time.

Outside of the questionnaire, some users also offered someOne promising idea
is to give the users

the ability to view all
compositions that are
contained by a single

code project.

ideas that they believed could improve the overall system.
One particularly interesting concept was presented by two
users in two separate occasions, and the idea roughly re-
volves around providing the users with a way to view
all the compositions that are contained by a single code
project. They argued that this feature would further im-
prove the accessibility of compositions, especially for the
cases in which users forget the exact code segments that
have been associated with a composition, something that
we are in agreement with. When this idea was presented
to the other users in the following study sessions, they all
reacted positively to this feature.

Another user also raised the valid notion that in manySome users asked
for more information

when the mouse
cursor is placed over
the composition icon.

cases, opening the application window to display the com-
position may not be necessary. For instance, sometimes
users may only need a reminder of the composition title of
a certain composition icon, and therefore when user places
the mouse cursor over the icon, it may be a good idea to
present the user with this information. Ultimately, these
last two ideas, along with the various findings from the
user study, are taken into account when we make the fi-
nal adjustments to our design, which will be elaborated in
the next section.

6.5 Final Design Adjustments

The user studies demonstrate that users react very posi-Although no change
is required for the

essence our design,
some design details

still need to be
further adjusted.

tively towards the essence of our design, so no fundamental
twist is needed in this area. Code Mixer would remain as
we intended it to be: providing users with a task-oriented
outlook of code through lightweight creation, distribution
and reusing of compositions. However, the studies did

6.5 Final Design Adjustments 107

showcase some design details that require some further ad-
justments in order to better achieve our design goals.

The very first thing that we would address is the concept Despite some
concerns from the
users, we maintain
our current approach
of hosting the
application in a
pop-up window.

that has generated the biggest disagreement among the
users: the placement of the application container. Exactly
half of the users are in favor of our current approach, while
the other half are more partial to having Code Mixer as an
integrated part of the IDE. The proponents of the latter ar-
gue that an integrated panel would make the overall ex-
perience more natural. They claim that it can save users
some time, since they would be able to activate the panel
just one time, and afterwards they no longer have to click
on the composition icons in the IDE. These are valid points,
but we still maintain that our current approach offers more
flexibility, both for the users and the eventual producers of
the system. Hosting the application in a separate window
means that from the get go, Code Mixer would have the
versatility to work with many different types of IDE, since
there is no need to tailor the interface to suit the interface
convention of each IDE. Morever, a pop-up window would
give the users the possibility to modify the position and size
of the solution canvas, and furthermore, they can simply
let the application stay hidden in the background when it is
not needed. Ultimately, our final decision is to maintain our
current approach, despite some concerns from the users.

Another concept that did not test as well as our expecta- Users only focuses
on one of the three
elements that we
intended to improve
the visual identity of
a composition.

tion is the visual identity of the compositions. As it turned
out, most users only pay attention to the composition icons
for identification, which is only one of the three elements
that are supposed to strengthen a composition’s identity,
the other two being the composition title and the structure
of the solution graph. Our intention is for a composition
to bring the users an instant reminder of its content, and
therefore a strong visual identity is crucial. We hypothesize
that with more exposure time to the solution graphs, users
would gradually learn to distinguish their different struc-
tures, although further study is required to really confirm
this assumption.

The one element that we can fix right now is the apparent
“invisibility” of the composition title, which may be caused

108 6 Evaluation

Figure 6.5: The new interface adds new elements in the
graph to signify available operations. It also contains a
more conspicuous space to host the title.

by the tendency to treat the title as a mere extension of theThe composition title
is given its own
segment in the

application window,
with a contrasting

background from the
solution canvas.

window decoration. We attribute this problem to the lack
of contrast between the canvas background and the title,
which is exacerbated by the fact that the title is sharing the
same area with the solution graph, and simply loses the
fight for attention against the more eye-catching graph. The
solution is pretty straightforward: the composition title no
longer floats on top of the solution canvas, but occipies its
own segment in the application window. It is further given
a contrasting background color in order to emphasize its
isolation from the canvas (see Figure 6.5).

One problem that caught us off guard during the study wasSome users took a
long time to discover

that the are
supposed to click on
the graph elements.

the two occurences in which users failed to notice on their
own that placing the mouse cursor over a graph elements
would bring out its description panel. It has been estab-
lished that our intention is for the users to click on the var-

6.5 Final Design Adjustments 109

Figure 6.6: Placing the mouse cursor over the composition icon in the IDE displays
the composition title and a thumbnail image of the solution graph.

ious graph elements to navigate the code efficiently, and
since clicking inevitably requires mouse hovers, it would
simultaneously activate the hidden panel. However, two
users in particular took a long time before they started to
navigate the given code using the composition window,
probably due to the lack of clear signifiers that users are
supposed to do anything with the graph elements. To rem-
edy this, we decided to add two small design elements that
should catch the users’ attention.

The first new element is an arrow heads at the bottom right Two design elements
have been added,
one to signify the
existence of a
descriptive text, and
the other to indicate
a set of available
operations.

corner of a graph element, which indicates “further infor-
mation available,” and coversely, a lack of this symbol im-
plies that no descriptive text is available for a certain ele-
ment. Users then no longer have to perform mouse hover
on all graph elements just to verify the existence of a de-
scription, the way the previous design would require them
to. The second design element that has been added to the
graph element serves a similar purpose, only it signifies the
existence of a set of possible operations that could also be
accessed through right click on the mouse. This set of oper-
ations has been omitted from the prototype, but they are
actually quite important, since they are the ones that al-

110 6 Evaluation

Figure 6.7: The composition library lists all the composi-
tions that have been used by a code project. It is contained
in the same application window that hosts all the other
Code Mixer components.

low user to add or modify the descriptive text of a graph
element. Accordingly, at the top right corner of each ele-
ment, a small “+” (plus) sign has been added, to signify that
“there is more to do here” (see Figure 6.5). Furthermore,
despite being a relatively minor tweak, it bears mentioning
that we have also decided to take up the user suggestion to
increase the size of the border of the selected graph element
to make it even more obvious.

Finally, the last design adjustments involves incorporatingUsers are presented
with more

information when the
mouse cursor is on a

composition icon.

two new features, both of which originated from user study
participants. The first additional feature provides the users
with more information when the mouse cursor is placed on
top of the composition icons in the IDE. Where before this
action would only highlight the relevant code segment, it
now additionally presents the users with the composition
title and a thumbnail view of the solution graph (See Figure
6.6). The feature would be particularly beneficial for those
cases in which users only need a quick reminder of a certain
composition, and it would spare them the requirement to
open the application window every single time.

6.5 Final Design Adjustments 111

The second and final feature to be added into the design A composition library
is provided to let
users quickly view all
the composisions
that have been used
by a project.

is a local composition library that supplies the users with a
list of all the compositions that are contained by a single
code project. To maintain consistency, the library is dis-
played in the same application window, and it can be ac-
cessed through a keyboard shortcut or selecting the appro-
priate application menu (See Figure 6.7). With this feature,
we give users a new method of accessing the compositions,
which adds to the previous two methods of clicking the
composition icon in the IDE and opening the composision
file in their local machine. The library eliminates the need
to browse the entirety of a code project to investigate all
existing compositions, a task that can easily become cum-
bersome for very large projects. Ultimately, it provides a
much more efficient method to achieve our design goal of
providing the users with a task-oriented outlook of code.

113

Chapter 7

Summary and future
work

In this paper we present a design for Code Mixer, a tool
that provides assistance to developers throughout the en-
tirety of the maintenance period. Section 7.1 briefly sums
up the work that has been undergone in this research, while
in section 7.2 we present some research areas that still re-
quire further investigations.

7.1 Summary and Contributions

When facing a maintenance task, developers typically Developers are
presented with many
narrow-focused tools
which they tend to
neglect.

spend some time trying to understand code (code compre-
hension) before they perform code modification, which is
frequently done by looking for, and subsequently tailoring,
existing solutions found on the Web (information foraging).
Various tools have been proposed to help developers fin-
ish their maintenance-related tasks, but most of them have
a rather specific focus, dealing with only one of the two
stages of the maintenance phase. Developers are conse-
quently required to utilize a number of tools to address dif-
ferent types of problems, despite the finding by various re-
search that they are not really inclined to make use of these
tools in the first place.

114 7 Summary and future work

Accordingly, we set out to devise a design for Code Mixer,Code Mixer hosts
compositions that are

rooted in real world
tasks, while providing
more comprehensive

help for developers.

a tool that can help solve developers’ maintenance-related
problems in a more comprehensive manner. We introduce
the two user roles, composers and consumers, as well as
the pieces of information that are shared between the two,
called the compositions. Our approach is to revolve our de-
sign around the creation of compositions, which are rooted
in real world tasks (or problems), regardless of their types.
Three design principles are established for a tool that sup-
port this scheme, namely an emphasis on visual represen-
tations, lightweight creation and reuse of compositions and
equipping the compositions with task-related context. We
also propose a few other attributes that would improve our
design, which include accessibility, modifiability, record-
ability, as well as supporting collaborative effort and giving
them spatial freedom when building the compositions.

The design period of Code Mixer is split up into four phasesThe design period
consists of four

phases that build
incrementally over

time.

that build incrementally over time. In the first phase, we
identify the need to provide a standardized structure for
task descriptions, which is fulfilled by borrowing the de-
sign patterns format. In the second design phase, the idea
of a central repository that hosts the compositions is intro-
duced, along with a complementary pair of desktop appli-
cations that serve to connect the users and the repository.

The notion of Code Mixer is finally realized during theCode Mixer is
created out of the

desire to balance the
workload and unify

the user experience
of the two user roles.

third design phase, which arises out of the desire to bal-
ance the workload and unify the user experience of the two
user roles, so as to encourage more users to actively assume
both roles. A single application window is designed to con-
tain all the task-related information of a composition, and
users are allowed to determine the structure of their solu-
tion graphs. To further increase the visual identity of a com-
position, its solution graphs are made out of thumbnail im-
ages of its actual content. Furthermore, compositions icons
are scattered across the code editor and they serve to iden-
tify the code segments that are associated with a certain
composition. In the end, users can easily create compo-
sitions only by dragging and dropping elements between
the code editor and the application window, and they can
jump into the relevant code segments in the code editor by
simply traversing the solution graph. The user interface is

7.1 Summary and Contributions 115

ultimately given further tweaks in the last design phase to
make it as efficient as possible. This is the reason that in the
final version of the design, the entirety of the application
window serves as a canvas for the solution graph.

To test the validity of our design, we constructed a web User studies are
conducted to gauge
user reactions.

browser-based simulated environment which contained
most of the features that we had designed. We then con-
ducted qualitative user studies with 10 users to acquire
their overall sentiments and ideas on our proposed design.
Study participants unanimously agreed that Code Mixer
could be helpful for both code comprehension and infor-
mation foraging, although some of the user interface details
did receive a more mixed reaction.

Based on the findings from the user studies, we then per- The results of the
user studies are
used to incorporate
final tweaks into the
design and two new
features.

formed some final tweaks to the user interface design, on
top of adding two new features. The first is an enhanced
overview of a composition’s content when users point the
mouse cursor over its icon in the code editor, which will
save the users some time when all they need is a quick
reminder of a composition’s content. The second addi-
tional feature is the Composition Library, which provides
the users with a quick glimpse of all the compositions that
are used by a code project. This feature would grant the
users easy access to all available compositions in a code
project without having to traverse through all the source
code files to track the existence of composition icons.

Ultimately, what separates Code Mixer from most other Code Mixer stands
out because it
bridges the gap
between code
comprehension and
information foraging.

help tools would be the way it bridges the gap between
code comprehension and information foraging. It helps in-
formation foraging by supplying a standardized structure
for task descriptions and ensuring easy creation, distribu-
tion and reuse of compositions. Meanwhile, it improves
code comprehension by providing a task-oriented outlook
into source code, as well as efficient navigating method
that lets users focus only on the task at hand. Moreover,
since our proposed design of Code Mixer has been ap-
proved by users and manages to fulfill all of our established
design principles and properties, we are confident that it
could eventually accomplish our goal of helping develop-
ers throughout the entirety of the maintenance period.

116 7 Summary and future work

7.2 Future Work

Code Mixer has managed to fulfill most of our design goals
and is well receiced by the users. Nevertheless, there are
still some areas that need to be addressed and some re-
search questions that require further investigations.

Implementation

Given that the purpose of this thesis work is to formu-XML can be used to
build a composition,

as it has a flexible
structure and can

support information
exhange across the

Web.

late a design for Code Mixer, we have not really covered
the technical aspects of implementing the tool. One of the
most fascinating parts may be the method used to actualize
the compositions, as our design primarily revolves around
the creation and distribution of compositions. One existing
approach that potentially can be borrowed to implement
Code Mixer is that of Codelets [Oney and Brandt, 2012],
where Extensible Markup Language (XML) is used to contain
the metadata of a piece of Codelet. Similarly, one can uti-
lize XML to segmentize a composition by assigning a cer-
tain tag for each of the pattern-related information. XML
is already widely used to exhange information across the
Web, which means it can support the distribution of com-
positions that is very essential to our design scheme. Ad-
ditionally, XML has the benefit of being flexible, and there-
fore an XML-based establishment is always ready to adapt
to future changes in information structure.

Additional Feature

We have mentioned before that the current version of CodeOne possible
extension is to allow

multiple users to
work on a single

composition together
from multiple

machines.

Mixer can only support collaborative creation and mod-
ification of compositions in a somewhat limited manner.
Although multiple persons can work together on a sin-
gle composition, they still have to do it in a single ma-
chine. The alternative is for each member of the collabo-
rative group getting their own turn to modify a composi-
tion using their own machine, before sending it to the other
colleagues. This method is clearly not very efficient, and it

7.2 Future Work 117

may even result in multiple versions of compositions that
are hard to unify. Accordingly, one possible new feature
that can be added to the system is the ability to collabo-
ratively work on a single composition from multiple ma-
chines. This feature would ensure that Code Mixer bet-
ter satisfies the collaboration-friendly property that we estab-
lished in the initial design phase.

Further Evaluations

One research area that has not been extensively covered in Code Mixer still lacks
a meticulous method
to search for
compositions and
organize the search
results.

this thesis work is an efficient method to search for a com-
position. Thus far, we rely solely on the design pattern for-
mats to help users choose the most relevant composition
that would suit their problems from a list of search results.
However, further studies are required to verify whether our
selected approach is indeed effective. There are also more
research areas that can still be explored, which include de-
vising the best technique to retrieve compositions from the
repository based on user-entered search terms, along with
the most effective way to sort and display the search results.

Another potential research area touches on the automatic More research is
required to
accomplish
automatic icon
assignment.

icon assignments for a composition once it is download to
a code project. An algorithm that can perform such task ef-
ficiently still needs to be devised. It bears reiterating that
based on the findings from the user studies, the composi-
tion icons should not be too dependant on colors, which
implies that more attention should be given to the shapes
of the icons themselves or the graphic that it contains, if
any. We would refer interested readers to the work of Lewis
et al. [2004] which proposes automatic drawing of vari-
ous desktop icons to increase the visual identities of doc-
uments, since it covers roughly the same area of interest.

Finally, observations during the user studies pose one in- It has yet to be
determined that
spatial memory can
gradually build over
time.

teresting question regarding the effectiveness of the free-
form structures of the solution graphs. We have mentioned
that most users prefered to be given spatial freedom when
building the graph, and we intented to take advantage of
each user’s personal touch to improve the visual identity

118 7 Summary and future work

of a composition. However, during the studies we noticed
that most users did not pay attention to the actual forms
of the presented graph structures, a tendency that we at-
tributed at the time to the users needing more time to fa-
miliarize themselves with the compositions. Consequently,
further research is required to determine if spatial mem-
ory would indeed build gradually over time, as well as to
investigate the methods that can be used to speed up this
process.

119

Appendix A

Detailed Views of the Prototype

A.1 Code Comprehension

In the first phase of the study, we present the users with five pre-made composi-
tions that they can utilize to solve the given code-comprehension tasks. They are
the following:

• Composition #1: Game is started
User clicks on a button on the welcome page, which would evoke a function
that opens the game in a new window.

• Composition #2: A menu item is selected
User selects a game level from the menu. When a normal level is selected,
the game simply reloads. When a custom level is selected, user is presented a
new window to input the desired game properties.

• Composition #3: Custom level is selected
User inputs game width, height, and number of bombs. The system then
verifies if user inputs are valid or not. If they are, the game reloads with the
new values, otherwise, an error message is displayed.

• Composition #4: When a bomb is clicked
If a cell that contains a bomb is clicked, the game changes all cells into the
appropriate images and stops all game functions.

• Composition #5: Initialize a game
Setting up the game, including building the game board and placing bombs
at random locations, based on the game level.

120 A Detailed Views of the Prototype

(a
)C

om
po

si
ti

on
#1

(b
)C

om
po

si
ti

on
#2

Fi
gu

re
A

.1
:T

he
fir

st
tw

o
co

m
po

si
ti

on
s

in
th

e
fir

st
ta

sk
.

A.1 Code Comprehension 121

(a
)C

om
po

si
ti

on
#3

(b
)C

om
po

si
ti

on
#4

Fi
gu

re
A

.2
:T

he
se

co
nd

tw
o

co
m

po
si

ti
on

s
in

th
e

fir
st

ta
sk

122 A Detailed Views of the Prototype

(a
)C

om
po

si
ti

on
#5

pa
rt

1
(b

)C
om

po
si

ti
on

#5
pa

rt
2

Fi
gu

re
A

.3
:T

he
la

st
co

m
po

si
ti

on
in

th
e

fir
st

ta
sk

A.2 Information Foraging 123

A.2 Information Foraging

In the second phase of the study, we ask users to select one of the three give compo-
sitions that would best fit the given problem, which is to add a new menu item to
the game. The correct answer is the second choice. The first choice is actually Com-
position #3 from the previous task, and the third choice deals with mouse events in
the menu.

Figure A.4: The first composition in the second task

124 A Detailed Views of the Prototype

(a
)T

he
se

co
nd

ch
oi

ce
(b

)T
he

th
ir

d
ch

oi
ce

Fi
gu

re
A

.5
:T

he
la

st
tw

o
co

m
po

si
ti

on
s

in
th

e
se

co
nd

ta
sk

A.3 Building a Composition 125

A.3 Building a Composition

In the third phase of the study, we ask users to build a solution graph out of the
given elements. All elements are draggable, although no arrows are available.
Users are also asked to keep in mind the step number contained by each element.

Figure A.6: The simulated environment for the third task

127

Appendix B

The Results of User Studies

B.1 Background

Num Statements Mdn M
#1 I am comfortable working with HTML 1 1.2
#2 I am comfortable working with Javascript 1 1.4
#3 I am familiar with the game Minesweeper 1 1.9

Table B.1: Questionnaire result - Background

Figure B.1: Questionnaire frequency distribution - Background

128 B The Results of User Studies

B.2 Shapes & Forms

Num Statements Mdn M
#4 I liked the placements of various icons in the working area

as a way to identify existing compositions
1 1.6

#5 I liked the use of a gray box to highlight the part of the work-
ing code that is connected to a certain icon

1 1.3

#6 I liked the use of a pop-up window to contain the composi-
tions (as opposed to, for instance, an integrated section in the
working area)

3 3.1

#7 I was able to differentiate a certain compositions from the
others based on its title and its icon in the working area

2 2

#8 I was able to quickly recognize a certain composition based
on the user-generated shapes it contains

2 2.5

#9 I liked the variety of the shapes that the elements of a com-
positions can have, which is based on the information that
they actually contain (as opposed to a set of generic shapes
that are provided by the system)

1 1.8

#10 I liked the variety of positions that the elements of a compo-
sition can have (as opposed to automatic positioning by the
system)

1 1.8

Table B.2: Questionnaire result - Shapes & Forms

Figure B.2: Questionnaire frequency distribution - Shapes & Forms

B.3 Information Clarity 129

B.3 Information Clarity

Num Statements Mdn M
#11 I was able to understand the general purpose of each compo-

sition presented in the study
1.5 1.6

#12 I was able to understand the specific purpose of each element
contained by the compositions presented in the study

1 1.6

#13 I was able to easily access and understand the additional
information (i.e., the descriptive texts of the elements) of a
composition

1.5 1.8

#14 I was able to identify the parts of the working area which are
associated to the elements of the compositions

1 1.4

#15 I was able to easily locate the element of a composition that
is currently active

1 1.5

#16 While doing the second task, I found the content of the com-
positions to be readable

2 2

Table B.3: Questionnaire result - Information Clarity

Figure B.3: Questionnaire frequency distribution - Information Clarity

130 B The Results of User Studies

B.4 Interaction Style

Num Statements Mdn M
#17 I liked the idea of activating the application window by click-

ing an icon in the working area (as opposed to, for instance,
having the composition area visible at all times)

1 2

#18 I liked the idea of activating the gray box highlight with a
mouse hover on the icon in the working area (as opposed to,
for instance, having the box visible at all times)

1 1.3

#19 I found it easy to navigate between all the elements of a com-
position

1 1.3

#20 I found it easy to navigate from the working area to the ap-
plication window and the other way around

1 1.4

Table B.4: Questionnaire result - Interaction Style

Figure B.4: Questionnaire frequency distribution - Interaction Style

B.5 General Idea 131

B.5 General Idea

Num Statements Mdn M
#21 While doing the first task, I found the information that I was

looking for easily by using Code Mixer
2 2.1

#22 While doing the second task, I found it easy to select the
most appropriate solution to my problem among a group of
choices

2 2.2

#23 While doing the second task, I found it easy to integrate ele-
ments of a code structure into the working area

2 2.1

#24 While doing the third task, I found it easy to build a compo-
sition

2 1.6

#25 I think Code Mixer can improve code comprehension 1 1
#26 I think Code Mixer can improve code-related information

sharing
1 1.1

#27 I think Code Mixer can improve code-related problem solv-
ing

1 1.1

Table B.5: Questionnaire result - General Idea

Figure B.5: Questionnaire frequency distribution - General Idea

133

Bibliography

Christopher Alexander. The timeless way of building, vol-
ume 1. New York: Oxford University Press, 1979.

Christopher Alexander, Sara Ishikawa, and Murray Silver-
stein. A pattern language: towns, buildings, construction,
volume 2. Oxford University Press, USA, 1977.

Rune Baggetun, Ellen Rusman, and Caterina Poggi. De-
sign patterns for collaborative learning: From practice to
theory and back. In World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications, volume 2004,
pages 2493–2498, 2004.

Jan O Borchers. A pattern approach to interaction design.
In Proceedings of the 3rd conference on Designing interactive
systems: processes, practices, methods, and techniques, pages
369–378. ACM, 2000.

Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J LaViola Jr. Code
bubbles: a working set-based interface for code under-
standing and maintenance. In Proceedings of the 28th inter-
national conference on Human factors in computing systems,
pages 2503–2512. ACM, 2010.

Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva,
and Scott R Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1589–1598.
ACM, 2009.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R Klemmer. Example-centric programming: inte-

134 Bibliography

grating web search into the development environment.
In Proceedings of the 28th international conference on Human
factors in computing systems, pages 513–522. ACM, 2010.

Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira
Mezini. Ide 2.0: collective intelligence in software devel-
opment. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, pages 53–58. ACM, 2010.

Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J
Ko. Let’s go to the whiteboard: how and why software
developers use drawings. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
557–566. ACM, 2007.

Rylan Cottrell, Robert J Walker, and Jörg Denzinger. Semi-
automating small-scale source code reuse via structural
correspondence. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engi-
neering, pages 214–225. ACM, 2008.

Lotte De Rore, Monique Snoeck, Geert Poels, and Guido
Dedene. Software patterns to improve knowledge trans-
fer: an experiment. Available at SSRN 1376214, 2009.

Robert DeLine and Kael Rowan. Code canvas: zooming to-
wards better development environments. In Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, pages 207–210. ACM, 2010.

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. Code
thumbnails: Using spatial memory to navigate source
code. In Visual Languages and Human-Centric Comput-
ing, 2006. VL/HCC 2006. IEEE Symposium on, pages 11–18.
IEEE, 2006.

Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacob-
sen, and Steven P Reiss. Debugger canvas: industrial ex-
perience with the code bubbles paradigm. In Proceedings
of the 2012 International Conference on Software Engineering,
pages 1064–1073. IEEE Press, 2012.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez,
and Susan T. Dumais. The vocabulary problem in
human-system communication. Communications of the
ACM, 30(11):964–971, 1987.

Bibliography 135

Andreas Girgensohn and Frank M Shipman. Supporting
knowledge acquisition by end users: tools and represen-
tations. In Proceedings of the 1992 ACM/SIGAPP Sympo-
sium on Applied computing: technological challenges of the
1990’s, pages 340–348. ACM, 1992.

Paul A Gross, Micah S Herstand, Jordana W Hodges, and
Caitlin L Kelleher. A code reuse interface for non-
programmer middle school students. In Proceedings of
the 15th international conference on Intelligent user interfaces,
pages 219–228. ACM, 2010.

Björn Hartmann, Mark Dhillon, and Matthew K Chan. Hy-
persource: Bridging the gap between source and code-
related web sites. pages 2207–2210. ACM, 2011.

Reid Holmes, Rylan Cottrell, Robert J Walker, and Jörg
Denzinger. The end-to-end use of source code exam-
ples: An exploratory study. In Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, pages 555–
558. IEEE, 2009.

Miryung Kim, Lawrence Bergman, Tessa Lau, and David
Notkin. An ethnographic study of copy and paste pro-
gramming practices in oopl. In Empirical Software En-
gineering, 2004. ISESE’04. Proceedings. 2004 International
Symposium on, pages 83–92. IEEE, 2004.

Andrew J Ko, Brad A Myers, Michael J Coblenz, and
Htet Htet Aung. An exploratory study of how develop-
ers seek, relate, and collect relevant information during
software maintenance tasks. Software Engineering, IEEE
Transactions on, 32(12):971–987, 2006.

Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consis-
tent layout for thematic software maps. In Reverse Engi-
neering, 2008. WCRE’08. 15th Working Conference on, pages
209–218. IEEE, 2008.

Thomas D LaToza, Gina Venolia, and Robert DeLine. Main-
taining mental models: a study of developer work habits.
In Proceedings of the 28th international conference on Soft-
ware engineering, pages 492–501. ACM, 2006.

Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Braf-
man, and Scott R Klemmer. Designing with interactive

136 Bibliography

example galleries. In Proceedings of the 28th international
conference on Human factors in computing systems, pages
2257–2266. ACM, 2010.

John P Lewis, Ruth Rosenholtz, Nickson Fong, and Ul-
rich Neumann. Visualids: automatic distinctive icons
for desktop interfaces. In ACM Transactions on Graphics
(TOG), volume 23, pages 416–423. ACM, 2004.

Chung-Horng Lung, Gerald T Mackulak, and Joseph E Ur-
ban. Software reuse and knowledge transfer through
analogy and design patterns. In proceedings of the interna-
tional conference on software engineering research and prac-
tice, pages 618–624, 2002.

Gail C Murphy, Mik Kersten, and Leah Findlater. How are
java software developers using the elipse ide? Software,
IEEE, 23(4):76–83, 2006.

Fernando Olivero, Michele Lanza, and Mircea Lungu. Gau-
cho: From integrated development environments to di-
rect manipulation environments. Proceedings of FlexiTools,
2010, 2010.

Fernando Olivero, Michele Lanza, Marco D’Ambros, and
Romain Robbes. Enabling program comprehension
through a visual object-focused development environ-
ment. In Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on, pages 127–134. IEEE,
2011.

Stephen Oney and Joel Brandt. Codelets: linking interac-
tive documentation and example code in the editor. In
Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems, pages 2697–2706. ACM,
2012.

Peter Pirolli and Stuart Card. Information foraging in
information access environments. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, pages 51–58. ACM Press/Addison-Wesley Publish-
ing Co., 1995.

Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,

Bibliography 137

Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid
Maalej. How do professional developers comprehend
software? In Proceedings of the 2012 International Confer-
ence on Software Engineering, pages 255–265. IEEE Press,
2012.

Janice Singer, Timothy Lethbridge, Norman Vinson, and
Nicolas Anquetil. An examination of software engineer-
ing work practices. In Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative research,
page 21. IBM Press, 1997.

Vineet Sinha, David Karger, and Rob Miller. Relo: Help-
ing users manage context during interactive exploratory
visualization of large codebases. In Visual Languages
and Human-Centric Computing, 2006. VL/HCC 2006. IEEE
Symposium on, pages 187–194. IEEE, 2006.

Jamie Starke, Chris Luce, and Jonathan Sillito. Working
with search results. In Proceedings of the 2009 ICSE Work-
shop on Search-Driven Development-Users, Infrastructure,
Tools and Evaluation, pages 53–56. IEEE Computer Soci-
ety, 2009.

M-AD Storey and Hausi A Muller. Manipulating and docu-
menting software structures using shrimp views. In Soft-
ware Maintenance, 1995. Proceedings., International Confer-
ence on, pages 275–284. IEEE, 1995.

Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek
Rayside, Marin Litoiu, and Mark Musen. Shrimp views:
an interactive environment for information visualization
and navigation. In CHI’02 extended abstracts on Human
factors in computing systems, pages 520–521. ACM, 2002.

Edward R Tufte and PR Graves-Morris. The visual dis-
play of quantitative information, volume 2. Graphics press
Cheshire, CT, 1983.

Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal.
Snipmatch: using source code context to enhance snip-
pet retrieval and parameterization. In Proceedings of the
25th annual ACM symposium on User interface software and
technology, pages 219–228. ACM, 2012.

139

Index

analogical reasoning, 59

bento box approach, 15
Blueprint, 30, 58, 65

central repository, 66
Code Bubbles, 21, 77
Code Canvas, 23, 86
code completion, 16
code comprehension, 8
code modification, 1
Code Thumbnail Desktop, 26
Code Thumbnail Scrollbar, 25
Code Thumbnails, 24, 77
Codelet, 32, 58
collaborative learning, 60
composers, 48
composition

- association, 74, 77
- composition library, 111
- context, 61
- icon, 74
- problem, 61
- reference, 62
- solution, 61
- solution canvas, 80
- solution graph, 75
- title, 61, 107

compositions, 48
consumers, 48
conventional tutorial, 64
copy-and-paste programming, 9
CSS, 92

Debugger Canvas, 24
design patterns, 59
design principles, 49

- portability, 50, 65, 88

140 Index

- task orientation, 51, 88
- visual emphasis, 50, 88

evaluation, 91–111

fisheye view, 17
future work, 116–118

Gaucho, 43

HTML, 92
HyperSource, 27
hypotheses, 91

information foraging, 9
information foraging tools, 30
information network, 63
interruptions, 12

JavaScript, 92
Jigsaw, 36
Just in time comprehension, 12

Latent Semantic Indexing, 30
Likert Item, 99
Likert-type data, 99
Looking Glass, 40, 58

mental model, 8
Minesweeper, 92
Multidimensional Scaling, 30

nested graphs, 17
novel programming approach, 39

opportunistic programming, 9

pattern language, 67
prototype, 92

qualitative user studies, 96
questionnaire, 99

- background, 127
- general idea, 100, 131
- information clarity, 103, 129
- interaction style, 103, 130
- shapes & forms, 100, 128

Relo, 19
research base, 47

Scratch, 41, 58

Index 141

secondary properties, 52
- accessibility, 52, 89
- collaboration-friendly, 53, 89
- modifiability, 53, 89
- recordability, 54, 89
- spatial freedom, 53, 89

SHriMP Views, 17, 86
sketches, 2
SnipMatch, 37, 65
softfare maintenance, 1
Software Cartography, 29
software comprehension tools, 17
software design patterns, 61
software maps, 29
software visualization tools, 1
spatial freedom, 76

task-oriented view, 74
The Adaptive Ideas, 34, 58

Unified Modeling Language, 76

visual homogeneity, 73
visual uniformity, 25, 45

Typeset September 8, 2013

	Abstract
	Acknowledgements
	Conventions
	Introduction
	Objectives
	Overview and Contributions

	The Lives Of Developers
	A Typical Work Session
	The Various Predicaments

	Related Work
	Software Comprehension Tools
	SHriMP Views
	Relo
	Code Bubbles
	Code Canvas
	Code Thumbnails
	HyperSource
	Software Cartography

	Information Foraging and Code Reuse Tools
	Blueprint
	Codelet
	The Adaptive Ideas Design Tool
	Jigsaw
	SnipMatch

	Novel Ways for Programming
	Looking Glass
	Scratch
	Gaucho

	Summary

	The Research Base
	Design Principles
	Secondary Properties
	Summary

	The Design
	Incorporating Design Patterns
	The Pattern Language
	Code Mixer
	Code Mixer: Retouched

	Evaluation
	Our Initial Hypotheses
	The Prototype
	User Studies
	The Results of The Studies
	General Reaction to Code Mixer
	Interface Details and Visual Identity
	Information Clarity and Interaction Style
	Additional Comments

	Final Design Adjustments

	Summary and future work
	Summary and Contributions
	Future Work

	Detailed Views of the Prototype
	Code Comprehension
	Information Foraging
	Building a Composition

	The Results of User Studies
	Background
	Shapes & Forms
	Information Clarity
	Interaction Style
	General Idea

	Bibliography
	Index

