

Eric Lee, Thorsten Karrer and Jan Borchers 1

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Toward a Framework for Interactive Systems to
Conduct Digital Audio and Video Streams

Eric Lee, Thorsten Karrer, and Jan Borchers

Media Computing Group
RWTH Aachen University
52056 Aachen, Germany

{eric, karrer, borchers}@cs.rwth-aachen.de

Following advances in commodity hardware and computing power, interactive conduct-
ing systems have grown in complexity and capability. Modern conducting systems incorpo-
rate research from a variety of disciplines, from motion tracking, to gesture recognition and
interpretation, to digital signal processing. Frameworks have emerged in recent years to en-
able rapid development of such complex systems, including Max/MSP for manipulating and
processing synthesized and sampled audio (Puckette 2002), and EyesWeb for gesture track-
ing (Camurri et al. 2003). Today's computers are, moreover, able to handle large chains of
complex filters and other operations on digitally sampled audio and video streams in real
time.

In contrast, modern computer music systems often do not take full advantage of these ca-
pabilities by continuing to use synthesized music, usually MIDI-based; even less incorporate
video. The advantage of using synthesized music over digitally sampled audio streams is a
higher level of semantic access to the data, such as beats, notes and voicings. However, digi-
tal audio and video recordings can offer a higher level of fidelity and realism: today's synthe-
sizing technology is still unable to reproduce, for example, the unique character of the Vienna
Philharmonic playing in their Golden Hall of Vienna's Musikverein. Part of the problem can
be attributed to the difficulty of working with time-based effects in current multimedia
frameworks such as Apple's QuickTime (http://apple.com), Microsoft's Direct-
Show/DirectSound (http://microsoft.com), or Max/MSP.

We have encountered some of these difficulties in our own work, which includes a series
of interactive conducting systems that incorporate audio and video recordings. These systems
have been well-received as museum exhibits around the world. Personal Orchestra, which
was coordinated by Max Mühlhäuser, now at Darmstadt University, was installed in the
HOUSE OF MUSIC in Vienna in 2000 (Borchers et al. 2004), and is the first system to use
audio and video recordings in an interactive conducting system. It switched between a set of
preprocessed audio tracks to allow variable speed audio playback without pitch-shifting arti-
facts. You're the Conductor, our follow-up system for the Boston Children's Museum in 2003
(Lee et al. 2004) in collaboration with Teresa Marrin Nakra at Immersion Music, featured a
better audio/video rendering engine capable of time-stretching audio in real time. Most re-
cently, we created a “hybrid” Personal Orchestra which incorporates the gesture recognition
of Personal Orchestra with the audio/video rendering engine of You're the Conductor.

Our conducting systems allow the user to control various aspects of the musical recording
using simple conducting gestures, including tempo, dynamics, and instrument emphasis. We
have found that users unfamiliar with our systems, as is usually the case in a museum, most
readily grasp the temporal interaction of changing the tempo; children, in particular, enjoy

Eric Lee, Thorsten Karrer and Jan Borchers 2

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

pushing the limits of how quickly or slowly they can make the orchestra play. In an evalua-
tion session where we silently observed users interacting with Personal Orchestra and then
interviewed them, 93% of the users realized that they could control tempo by moving the ba-
ton faster or slower, 77% realized that they could control volume by making larger or smaller
gestures with the baton, and 37% realized that they could control the instrument emphasis by
conducting to different sections of the orchestra shown on the large display (Borchers et al.
2004).

Allowing the user to freely manipulate the tempo of recorded audio and video poses a
number of interesting research challenges. In this article, we focus on the specific challenges
of this temporal interaction, especially when video accompanies the audio, and our solutions.
We begin by describing our current system design and its individual components; this design,
which more generally describes our three conducting systems, incorporates our recent re-
search on interpreting conducting gestures and audio time-stretching. We then discuss how
this design has become unnecessarily complex as improvements over previous designs were
made. This complexity motivated us to design and prototype a new software framework for
digitally sampled audio and video streams; this framework adopts a more general and intui-
tive model of time that we believe is applicable to a wider class of computer music systems.
We show how this framework helped simplify the design of our conducting systems. The
two contributions of this article are the framework with its proposed model of time, and our
improved audio time stretching algorithm; the discussion surrounding our conducting sys-
tems provides a context for motivating and describing these contributions.

Terminology

The use and scope of terms such as synthesized audio and digitally sampled audio
streams has evolved with technology over the years. We will clarify their usage in this article
in an attempt to minimize confusion with other uses of the same term.

Synthesized audio exploits the quasi-periodic nature of musical audio signals to reduce
the amount of information required to represent a musical piece digitally. MIDI is often em-
ployed to store and process these music semantics, which are in turn passed to a synthesizer
that renders the audio output. Modern synthesizers often use a number of short snippets of
recorded audio, sound samples, from real instruments to recreate more realistic sounds. The
general class of synthesizers which employ this technique are often referred to as wavetable
synthesizers.

Digitally sampled audio streams, also known as pulse code modulation (PCM) audio, are
sequences of numerical values obtained by sampling an analog audio signal at a constant
sampling rate; the sampling rate is usually determined based on the Nyquist theorem. Each
numerical value in these sequences is also called a sample, although this should not be con-
fused with the "sound samples" used in wavetable synthesis; in this article, the term "sample"
will always refer to a numerical value in a digital audio stream. Working with digitally sam-
pled audio streams typically requires significantly more processing power and storage space
than synthesized audio, although audio streams can offer higher realism, as they are able to
capture arbitrary real-world sounds.

Eric Lee, Thorsten Karrer and Jan Borchers 3

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Related Work

Mathews' Radio Baton (1991) was one of the first systems that allowed a user to control
computer music using a baton and conducting gestures; conducting gestures were determined
through the movement of one or more batons emitting radio frequency signals above a flat
receiver panel. These gestures were used to control the playback of a MIDI file. In personal
communication with the authors in May 2005, Mathews related that a version of the Radio
Baton system was turned into an exhibit at the Children's Discovery Museum in San Jose,
USA in 1995.

Since Mathews' work on the Radio Baton, a number of conducting systems have been de-
veloped, including Morita et. al's conducting system (1991), Marrin's Conductor's Jacket
(2000), Realtime Music Solutions' Sinfonia (http://rms.biz), and Usa and Mochida's Multi-
modal Conducting Simulator (1998); all of these systems featured improvements in gesture
recognition and/or output quality. Kolesnik (2004) has compiled an extensive list in his Mas-
ter's thesis, and we refer the reader to this work for a more complete and detailed discussion
than is possible here. We will instead briefly outline only those systems that incorporate digi-
tal video and/or sampled audio streams, as these are the most relevant for this discussion.

Ilmonen and Takala's (1999) conducting system used artificial neural networks, and was
perhaps the first conducting system to include video in addition to audio. However, audio
was synthesized using MIDI, and the video consisted of artificially rendered 3D avatars.

Murphy et al. (2003) created a system that incorporated recorded audio time-stretched in
real time using a variant of the phase vocoder algorithm. They did not include video. Audio
was processed using Mixxx (Andersen 2003), an open source digital DJ system.

Most recently, Kolesnik's (2004) Master's thesis work on a conducting recognition, analy-
sis and performance system incorporated digital audio that was also time-stretched using a
phase vocoder variant. There was an option to provide accompanying video output; however,
the video playback was adjusted independently of the audio, and thus, synchronous audio and
video playback was not guaranteed. The audio and video rendering modules were imple-
mented in Max/MSP, and in his thesis he also described some workarounds to the challenges
he encountered while trying to incorporate a real time phase vocoder module in Max/MSP.

In contrast to the above research, which focus primarily on new methods for recognizing
conducting gestures, our work considers conducting as a natural metaphor for improving us-
ers' interaction with computer music. While a majority of our users may have musical experi-
ence, they are not necessarily professional conductors. Thus, our systems incorporate tech-
niques for offering high quality, time-stretched audio synchronized with video of an orchestra
to increase immersiveness.

Design of an Interactive Conducting System

Figure 1 shows a general block diagram for all of our conducting systems; each module
will be detailed in the following sections.

Eric Lee, Thorsten Karrer and Jan Borchers 4

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 1: Block diagram of our interactive conducting systems.

User Beat Extraction

The first task after receiving positional information from the baton, such as (x,y) coordi-
nates, is to determine where the user has marked her beats.

The problem of extracting beats from user gestures has been discussed in literature previ-
ously. Numerous approaches have been proposed, ranging from simple minima/maxima
analysis of the baton's path (Borchers et al. 2004; Kolesnik 2004), to more complex systems
utilizing artificial neural networks (Lee et al. 1992; Ilmonen and Takala 1999), or Hidden
Markov Models (Usa and Mochida 1998).

Personal Orchestra recognized only simple up and down gestures, and a simple turning
point analysis of the gestures was sufficient to determine the user's beats. You're the Conduc-
tor, which was primarily targeted towards children and their parents in a children's museum,
utilized a simpler gesture recognition scheme which allowed users control over the music
speed without the need for absolute beat-level precision. More details on the exact algorithm
can be found in (Lee et al. 2004).

User to Music Beat Mapping

The speed of the musical recording must be continuously adjusted as the user marks beats
with the baton, so that the orchestra is following the conductor. In Personal Orchestra, this
speed calculation also ensures the beats in the musical recording remain aligned with the
user's beats. When a user marks a beat, part of the last music beat may not have been played
yet, and instantaneously adjusting the music position would result in audible skips in the mu-
sic. A more realistic approach is to gradually adjust the speed of the music to match the user
input (see Figure 2). Our algorithm calculates an adjusted movie speed such that the music
beat and the gesture beat will be synchronized after a certain time interval, ∆t, based on the
following relation:

Eric Lee, Thorsten Karrer and Jan Borchers 5

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

!

v
u

=
T
1
"T

0
+ #T

t
1
" t

0
+ #T

 (1)

The lower case variables denote “real time” and upper case variables denote the movie
position, or “movie time”. At time t0, the user increases his conducting speed, vu, and marks
another beat at time t1; the movie, however, has only advanced to position T1. The movie
speed,

!

v
m

= "T

"t , is calculated such that the user beats are synchronized with the movie beats
at time t1+∆t. Substituting ∆T = vm∆t into (1) and solving for vm yields:

!

v
m

=
v
u

+ T
0
"T

1() t1 " t0 + #t()
#t t

1
" t

0
+ #t()

 (2)

A more sophisticated approach to mapping user beats to music beats should also take into
consideration whether or not the user is a conductor. Our recent work aimed at better under-
standing the various mental models of conducting by studying the temporal characteristics of
conducting gestures, both for conductors and non-conductors (Lee et al. 2005). We found that
while conducting styles vary widely from person to person, and even amongst conductors
themselves, where and how consistently a person marks her beat relative to the music beat is
sufficient to determine whether or not she is a conductor.

Figure 2: Beat following algorithm. The user increases his conducting speed (thin line) at
time t0, which is recognized by the system at time t1. At this time, the movie speed (thick line)
is increased to

!

v
m

= "T

"t to catch up with the user's conducting by time t1+∆t.

Our results have interesting implications for the design of interactive conducting systems,
particularly for the user beat to music beat mapping. Conductors, unsurprisingly, place their
beats precisely and consistently ahead of the music beat. Non-conductors, on the other hand,
place their beats much less precisely: sometimes they will lead the music, and sometimes
they will follow it. Furthermore, we found that some non-conductors will sometimes mistak-
enly conduct to the rhythm of the music rather than to the beat. Thus, while conductors would
favor a more responsive system, or a small value of ∆t in (1), non-conductors would encoun-
ter usability issues with the same system; one such issue that we frequently observed is the
“spiral of death” where users, in response to a slowdown of the orchestra, slow down their
conducting, which causes a further slowdown of the music tempo, and so on.

Eric Lee, Thorsten Karrer and Jan Borchers 6

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

During the development of You're the Conductor, our collaborator Teresa Nakra found,
through informal user tests, that having no beat synchronization did not adversely affect most
non-conductors' experience with the system; in fact, most users did not notice that the system
did not explicitly synchronize the beat of the music to their beating movements. Instead, they
often naturally synchronized their own movements to the beat of the music.

Audio Time-Stretching

Simply changing the speed of an audio recording by resampling results in the well-known
pitch-shifting effect, and algorithms for time-stretching audio without changing the pitch
have been studied since Gabor's (1946) work on granular synthesis. Time-stretching orches-
tral music, however, is significantly more challenging than time-stretching other audio, such
as speech. Orchestral music is polyphonic, while speech is monophonic. Degradations to
time-stretched speech quality are normally tolerated as long as the resulting audio is still in-
telligible; subtle degradations to time-stretched music quality, in contrast, are less tolerated
due to its impact on an otherwise enjoyable experience. Finally, a world-famous orchestra,
such as the Vienna Philharmonic, will not tolerate a system that presents its performances
with significant audio artifacts. The more complex algorithms used to time-stretch orchestral
music have thus not been able to run in real time, until recently.

When Personal Orchestra was developed in 1999, computers were still unable to perform
time-stretching in real time with sufficient quality. Thus, we chose to use Prosoniq's Mini-
mum Perceived Loss Time Compression/Expansion (MPEX) algorithm
(http://mpex.prosoniq.com). It produced high quality results, but required 32 seconds of
processing time per second of audio on an Intel 400 MHz Pentium III computer. To adjust
the playback speed of the movie to user input in real time, we prepared a set of audio tracks
offline, and then automatically switch to the one that best matches the desired speed while the
user is conducting. Unfortunately, this scheme creates problems for audio and video synchro-
nization, and our solutions will be discussed in a later section.

Of course, this scheme is undesirable because the range of playback speeds is limited.
Since changes to the speed are discrete, the playback engine is unable to precisely match the
desired conducting speed, and audible pops and clicks can be heard when switching between
tracks; a short cross-fade when switching between audio tracks helped to minimize these
glitches. A final disadvantage is the large amount of overhead required to prepare new mov-
ies for this system.

For You're the Conductor, which began development 3 years later, we developed an algo-
rithm to perform the time-stretching in real time; the resulting audio quality was comparable
to MPEX for orchestral music. Our algorithm, a variant of the phase vocoder algorithm
(Flanagan and Golden 1966), is based on previous work by Laroche and Dolson (1999). The
phase vocoder, despite its higher processing requirements and complexity over other algo-
rithms such as granular synthesis, has the advantage that it is capable of producing high qual-
ity output over a wide range of stretching factors for polyphonic audio such as orchestral mu-
sic.

Basic Phase Vocoder

The basic phase vocoder algorithm divides audio data into a series of overlapping win-

Eric Lee, Thorsten Karrer and Jan Borchers 7

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

dows of N samples. Audio duration is expanded and compressed by varying the amount these
windows overlap between the input and output (see Figure 3).

Figure 3: Phase vocoder algorithm. The left and right figures show the playback speed,

!

R
i

R
o

,
doubled and halved, respectively. Respacing the buffers results in phase mismatches, which
are corrected using the phase estimation calculation.

To maintain coherency between the re-spaced windows, the phase of the signal's short
time Fourier transform (STFT) must be adjusted. Let us denote

!

t
i

u and

!

t
o

u to be the times of
the uth window of the input and output, respectively, and

!

"
k

= 2#k
N

 to be the center frequency
of the kth frequency bin of the STFT of a window. Then the phase of the output signal,

!

"Y t
o

u
,#

k(), can be calculated using the following formulae:

!

"Y t
o

u
,#

k() ="Y t
o

u$1
,#

k() + R
o

ˆ % t
i

u() (3)

!

ˆ " k ti
u() =#k +

1

Ri

$ p%k

u (4)

!

"#
k

u =$X t
i

u
,%

k() &$X t
i

u&1
,%

k() & Ri
%

k
 (5)

!

"#
k

u is the heterodyned phase difference between two consecutive input windows; its
principal determination between -π and π,

!

" p#k

u is then used to estimate the instantaneous

frequency

!

ˆ "
k
t
i

u() of a sinusoid in the kth frequency bin. This frequency value is finally used

to calculate the phase,

!

"Y t
o

u
,#

k(). A more detailed explanation of the phase vocoder algo-
rithm is given in (Flanagan and Golden 1966; Laroche and Dolson 1999).

Eric Lee, Thorsten Karrer and Jan Borchers 8

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Unfortunately, the basic phase vocoder algorithm exhibits two types of artifacts: transient
smearing, which occurs because transient signals such as drums are incorrectly treated as si-
nusoids; and a reverberation-like effect, a result of errors in the above phase estimation calcu-
lation, that in turn result in a loss of phase coherence between the different frequency bins of
a single window. We will focus our discussion on the latter, and refer the interested reader to
existing literature on the problem of transient smearing (Bonada 2000; Röbel 2003).

Rigid Phase Locked Phase Vocoder

The reverberation artifacts exhibited by the basic phase vocoder algorithm are caused by
applying the same computations for phase estimation to each frequency bin of the STFT, ir-
respective of whether or not a sinusoid from the original audio signal exists in that bin. To
address this problem, Laroche and Dolson (1999) proposed a rigid phase locking technique,
which aims at preserving the original signal structure. The algorithm, which builds upon the
basic phase vocoder, works roughly as follows:

1. Find the frequency bins that contain amplitude peaks in the STFT, which correspond
to sinusoids in the original audio.

2. For each of these peak frequency bins, estimate the phase using the basic phase vo-
coder algorithm (3).

3. For the remaining frequency bins, “lock” their phase to the phase of the nearest peak
frequency bin using the relation

!

"Y to
u
,#k() ="Y to

u
,#p() +"X ti

u
,#k() $"X ti

u
,#p().

!

"p is the center frequency
of the peak frequency bin closest to

!

"
k .

Laroche and Dolson use a simple local maxima search for the peak-picking algorithm in
the first step: a peak is assumed to exist if the STFT amplitude for a frequency bin is larger
than its two neighboring bins. Using even this simple technique results in a dramatic im-
provement over the basic phase vocoder; however, a closer examination of the resulting time-
stretched audio still reveals audible artifacts. In particular, the bass sounds less full, and ex-
hibits musical overtones compared to the original signal - artifacts coincidentally similar to
those observed in audio poorly encoded using the popular MPEG Audio Layer 3 (MP3) com-
pression algorithm.

Multiresolution Peak-Picking Algorithm

The shallow bass and musical overtone artifacts in the rigid phase locked phase vocoder
can be attributed to Laroche and Dolson's constant-resolution peak-picking algorithm (Laro-
che and Dolson 1999). The human ear interprets frequencies non-uniformly, but the peak-
picking algorithm they proposed is applied to frequencies in a linear scale.

A phase vocoder technique that attempts to compensate for non-uniform characteristics of
the human ear has been proposed previously by Garas (1998), although the validity of that
particular technique has also been questioned (Bernsee 2003).

Instead of proposing a wholly new approach to phase vocoding, we refine Laroche and
Dolson's peak-picking algorithm to consider this non-uniformity by approximating the hu-

Eric Lee, Thorsten Karrer and Jan Borchers 9

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

man ear's frequency response logarithmically. We divide the spectrum into appropriately
sized regions and become more selective in choosing which bins contain a peak for higher
frequencies (see Figure 4). For an STFT window size of 4096 samples, we assumed that the
lowest 16 frequency bins contain a peak corresponding to a sinusoid audible to the human
ear. For the next 16 bins, a bin is considered to contain a peak if its amplitude is larger than
both of its neighboring bins. For the next 32 bins, the amplitude must be larger than its two
neighboring bins, and so on.

Figure 4: Multiresolution peak-picking algorithm. An amplitude plot of the lowest 128 fre-
quency bins is shown, divided into regions that become exponentially larger for higher fre-
quencies. Peak selection is stricter for higher frequencies.

In preliminary listening tests with users, we found that this multiresolution peak-picking
algorithm produces an audible improvement in the bass and reduces musical overtones in the
time-stretched signal.

Implementation

Our phase vocoder was implemented in C, and optimized for the vector processing unit
on PowerPC G4 and higher processors. An 800 MHz G4 processor is sufficient to time-
stretch stereo audio sampled at 44.1 kHz in real time.

In our current implementation, the input audio is sampled at 44.1 kHz and an STFT win-
dow size of 4096 samples (93 msec) with a constant output overlap of 75% is used. Thus,
each output audio block is 1024 samples (23 msec), and the playback speed can be adjusted
43 times per second. To minimize latency but still grant the system the necessary processing
time, we chose to start the computationally intensive calculations for time-stretching one
audio block in advance. Since an audio block is scheduled for playback while the previous
audio block is still playing (see Figure 5), the maximum possible time that can elapse be-
tween a speed change request and when it takes effect is 69 msec; this latency is less than a

!

1

64
 note in a 4/4 piece at 100 beats per minute. The scheme maximizes use of the processor,

at the cost of slightly increased latency: a computer barely able to perform the time-stretching
calculations in less than 23 msec will be given the opportunity to do so. In any case, some
latency in the speed changes is unavoidable, which has consequences for audio and video
synchronization, discussed below.

Eric Lee, Thorsten Karrer and Jan Borchers 10

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 5: Temporal ordering of audio processing and playback. At time t1, sample block B is
scheduled for playback and audio time-stretching for block C begins. If a speed change event
arrives immediately after t1, it does not take effect until block D.

Video Time-Stretching

Video can be time-stretched by altering the playback speed; while this simple algorithm
creates artifacts for certain types of video - for example, free-falling objects no longer behave
naturally - this is not a problem with our relatively static footage of an orchestra.

Audio and Video Synchronization

The last step in our design is to synchronize the audio stream with the video stream. Syn-
chronization is an area that has been studied extensively. Because of the previously discussed
latency between when a speed change is requested and when it takes effect, independently
setting the speeds of the audio and video results in drift over time. Two-way communication
between the components being synchronized is required to ensure they remain synchronous
(Lamport 1978), and these algorithms are implemented in all modern multimedia frameworks
such as QuickTime and DirectShow/DirectSound.

Unfortunately, these same multimedia frameworks are incapable of handling media
where the timebase changes continuously, as is the case with dynamically time-stretched
audio and video. In Personal Orchestra, we were able to circumvent the synchronization
problem by using pre-processed audio tracks that were pitch-shifted rather than time-
stretched. Since the mathematical inverse of time-stretching is pitch-shifting, one can decom-
pose a time-stretching operation into a pitch-shift followed by resampling. A pitch-shifted
signal stays in the same timebase, so the movie we prepared for playback consists of a series
of tracks pitch-shifted offline in half-tone steps. During playback, we switched to the appro-
priate track and delegated the resampling to QuickTime, which negated the pitch-shift. Thus,
for Personal Orchestra, the audio time-stretching was partially completed offline, with the
resampling, video time-stretching, and synchronization handled by QuickTime (see Figure
6).

Eric Lee, Thorsten Karrer and Jan Borchers 11

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 6: Audio/video rendering in Personal Orchestra. The source movie has n audio tracks
pitch-shifted at various offsets. During playback, QuickTime selects an audio track and re-
samples it to negate its pitch-shift and achieve the desired playback speed. Audio and video
synchronization is handled internally by QuickTime.

It should be noted that this inverse relationship between pitch-shifting and time-stretching
is purely mathematical. Practically, the algorithms cannot produce perfect results due to dis-
cretization and quantization, and thus rather diverse approaches for addressing the artifacts
specific to each operation have been proposed. Formant correction, for example, is important
for pitch-shifting (Lent 1989), while compensating for transient smearing is more applicable
to time-stretching.

To achieve the highest quality time-stretch possible, it is thus undesirable to employ the
Personal Orchestra approach of pitch-shifting followed by resampling. In You're the Conduc-
tor, our time-stretching algorithm directly outputs the resampled audio data; however this re-
sampling operation in the time-stretching changes the timebase of the data. Although current
multimedia frameworks ensure synchronous audio and video playback, they are incapable of
handling media with continuously changing timebases, and thus the responsibility of syn-
chronizing time-stretched audio with video falls on the developer of the application itself.

We chose to synchronize the video to the audio in You're the Conductor, and calculate an
adjusted video playback speed to ensure the video catches up with the audio by the end of the
next audio block:

!

fadj =
To "Tc + #T

to " tc + #t
 (6)

Here, t denotes “real time” (the timebase of the stretched audio) and T denotes “movie time”
(the timebase of the video and the unstretched audio, see Figure 7). tc is the current time and
to is the time at which the next audio block will begin playing with a new speed. ∆t and ∆T
are the lengths of the audio block in real time and movie time, respectively. Tc is the current
movie time in the audio and video stream, and To is the movie time of the audio stream when
the current audio block has finished playing. The adjusted playback speed, fadj, is computed
such that the video will be synchronized with the audio when the next block finishes playing
at time to + ∆t. The video playback speed is adjusted again at time tc'.

Eric Lee, Thorsten Karrer and Jan Borchers 12

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 7: Audio and video synchronization algorithm. The thin and thick lines show the
audio and video progression, respectively. At time tc, the next audio output block, which
starts at to, is scheduled for playback. Their corresponding values in movie time, Tc and To,
are required to compute the adjusted video playback speed. This speed is adjusted again at
time tc'.

Design Analysis

A closer analysis of the various modules in our conducting system design reveals a num-
ber of interesting observations:

The equation (1) describing the algorithm for mapping user beats to music beat mapping
is identical to the equation (6) used for synchronizing audio and video. The difference in the
two modules lies in their individual implementations: which parameter to solve for, and the
units of time used to calculate the adjusted speed: beats for one, and seconds for the other.
Since the tempo of a piece varies during a performance, the beats in the resulting digital
audio data will not be evenly spaced, and thus a conversion from beats to seconds is non-
trivial.

The design presented in Figure 1 consists of multiple stages of synchronization. First, the
user beats are synchronized with the audio, and then the audio is synchronized with the
video. This “daisy chaining” is necessary because the time units implicitly change from beats
to seconds between the first and second synchronization stages.

The parameters required to perform the audio and video synchronization cannot be ob-
tained from the time-stretched audio and video alone, due to the timebase change from the
implicit resampling operation in the audio time-stretching; this is the main reason for having
to implement a custom audio and video synchronization module instead of delegating this
responsibility to the multimedia framework. Figure 8 is a more detailed diagram of the
audio/video rendering modules that shows where the parameters required for audio and video
synchronization originate. To compute the adjusted video speed, the synchronization module
must obtain the length of the unstretched audio block, ∆T in equation (7), from the original
audio signal, indicated by the thick dotted line in Figure 8. This additional connection is
normally unnecessary, as in the case of user to music beat mapping, and is furthermore inele-
gant because it is a connection further up the data flow chain, breaking the modular nature of
the intended design.

Eric Lee, Thorsten Karrer and Jan Borchers 13

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 8: Audio/video rendering in You're the Conductor. The dotted lines show the flow of
temporal information; example values are given for one second of input data for clarity. The
audio and video synchronization module must retrieve temporal information from the origi-
nal audio data, indicated by the thick dotted line, to compute the adjusted stretch factor for
the video.

These above problems could be solved by using synthesized audio and video, since the
semantics of the data are explicitly known (see Figure 9). This observation points us to a pos-
sible solution for sampled audio and video streams as well: the semantic nature of the data
must be retained throughout the processing pipeline.

Figure 9: Audio and video synchronization with synthesized music versus a digitally sampled
audio stream. On the left is the original movie where 6 frames of video are synchronized
with 3 MIDI note events and an audio stream with 6 samples. On the right, the movie has
been time-expanded by 50% (recall that video time-stretching does not change the total num-
ber of frames, only the speed at which they are played). The mapping between synthesized
music and video remains the same; however, the mapping of video frames to audio samples
has changed, because of the increased number of samples. More information is required to
resynchronize the sampled audio with the video.

Eric Lee, Thorsten Karrer and Jan Borchers 14

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

A Conceptual Model Problem

The conflict in time models between synthesized music and digitally sampled audio
streams can be summarized as a conceptual model problem. A conceptual model represents
how people are likely to think about and respond to a system (Liddle 1996). Our conceptual
model of time is similar to beats and notes in a musical piece, the “movie time”. Current mul-
timedia frameworks, on the other hand, expose a time model based on clock ticks in real
time, the “clock time”. This clock drives, for example, audio sampled at 44.1 kHz and video
at 30 frames per second. For applications that do not manipulate time, these two models are
compatible, since movie time can be described as a linear function of real time. Consider,
however, a more complex example of an audio clip divided into three segments, where the
first segment is time expanded, the second is time compressed, and the third remains un-
changed (see Figure 10). The relationship between movie time and clock time, which is now
non-linear, can no longer be described as easily. This incompatibility of time models in cur-
rent multimedia frameworks motivated us to propose a new semantic time framework.

Figure 10: Difference between our conceptual model of time and the system model of time.
On the left, an audio clip is divided into three segments. The two time models, beats and
clock ticks, are also shown. On the right, segment A is time-expanded and segment B is time-
compressed, creating a non-linear relationship between the two models.

The Semantic Time Framework

The above problems apply more generally to applications which incorporate time-based
manipulation of multiple, synchronized digital audio and video streams. While our interactive
conducting systems are one example of this type of application, other examples include: disc
jockey (DJ) software, where two or more independent music tracks must be synchronized;
personal video recorders (PVRs), which allow users to view recorded programs at any arbi-
trary playback speed; and video conferencing systems, which must resynchronize the audio
and video streams as they arrive from the other speaker. Thus, to address the problem more
generally, we chose to introduce the “semantic time framework”, which borrows some con-
cepts taken for granted in synthesized music, and generalizes them for digitally sampled
audio and video streams. The generalized and reusable software components that form our
framework can then be directly reused to assist in the development of these other applica-
tions.

Eric Lee, Thorsten Karrer and Jan Borchers 15

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Semantic Time

The main contribution of our new framework over current ones such as QuickTime, Di-
rectShow/DirectSound or Max/MSP is the adoption of a temporal model that is linked to the
semantics of the underlying data.

Distinction between semantic time and real time has been proposed before (Bordwell and
Thompson 2003; Davis 1993); several theoretical constructs (Jaffe 1985; Honing 2001) have
been created to more easily understand and manipulate the mapping from "score time" to
"real time" in a musical performance. Jaffe's time maps, in particular, are supported as a pro-
tocol for synchronizing to the MIDI time code in MusicKit, a software system for building
music, sound, signal processing, and MIDI applications (http://musickit.sourceforge.net). To
date, however, there seem to be no frameworks for sampled, time-based data such as audio
and video where this distinction between semantic time and real time is integral to the sys-
tem.

One approach to address the conflict in time models is to preserve the original movie
timecode throughout the processing pipeline, especially after time-based operations such as
time-stretching; there are no well-known frameworks today that do even this. Alternatively,
one could attempt to apply the MIDI model of time, based on beats and notes, to the sampled
audio stream; ignoring for the moment how one could go about extracting the note informa-
tion from an arbitrary sampled musical recording, this scheme would still not be satisfactory
as digitally sampled audio streams are clearly not limited to music. Our goal is a more gen-
eral approach, which we will show has additional benefits for more complex applications
such as an interactive conducting system.

Our framework adopts a temporal model of semantic time. The current model of a clock
ticking at regular intervals in real time is an artificial construct created by engineers to more
conveniently work with digitally sampled data streams. Semantic time, on the other hand, is
tied to the semantics of the media, “movie time”, and is thus more intuitive for users of the
framework.

To illustrate the concept of semantic time, consider again the difference in mental models
when time expanding one second of audio sampled at 44.1 kHz by a factor of two. For regu-
lar users, this model is “one second of audio at half speed”. Audio frameworks, however, rep-
resent the time-stretched audio only as 88200 samples - the semantic information about it be-
ing “one second” is lost. Now, let us arbitrarily divide this 1 second audio clip into 1000 se-
mantic time units (stu) originally spaced 1 msec of clock time apart. After time expansion,
the audio still consists of 1000 stu, but now spaced 2 msec of clock time apart, which is syn-
onymous with the user model.

Where our framework becomes particularly helpful is when one chooses semantic time
units that are not spaced at regular intervals. Particularly for music, a more appropriate scale
is “beats of the music” (1 stu = 1 beat), and an audio recording of a musical performance will
undoubtedly contain variations in the tempo. The idea is the same, however, since the num-
ber of beats does not change after time-stretching - only the spacing between them has. What
our framework does is to abstract the tedious bookkeeping of which audio sample corre-
sponds to a musical beat from the user, which, as we have shown, changes when the audio is

Eric Lee, Thorsten Karrer and Jan Borchers 16

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

time-stretched.

Implementation

Our prototype implementation for this framework was written in C++ running on Mac OS
X. Video data is encapsulated as a QuickTime movie with extra metadata for storing seman-
tic time. Audio is stored as 32-bit floating point samples and uses Apple's Core Audio library
(http://developer.apple.com/audio); a semantic time value is stored for each sample as meta-
data. The framework allows one to programmatically link modules such as the synchroniza-
tion and time-stretching together. It also provides services for working with semantic time
units to assist in the creation of new modules.

Modules that change the timebase of the media must ensure the mapping from semantic
time to sample number is maintained. In the case of the audio time-stretching module using
the phase vocoder, this bookkeeping is somewhat tedious due to the fact that the semantic
time units can be non-evenly spaced, and due to the nature of the phase vocoder algorithm
computing the final output using an overlap-add method (see Figure 11). Our algorithm for
computing the semantic time values, t(s), for the output buffer samples is:

!

t s() = interpolate " t " s # $(), " t " s % &()() (7)

!

" s =
s

#s
" s
1
$ " s

0() (8)

Figure 11: The semantic time value stored with each audio sample, s, must be recomputed
when the audio is time-stretched, using the corresponding sample, s', in the original audio.

Here, s is a sample number in the output buffer with a corresponding sample number s' in
the input buffer. Since s' will normally lie in between two sample numbers, t(s) must be in-
terpolated from the neighboring semantic time values, t'(), in the input buffer; our implemen-
tation currently uses linear interpolation. ∆s is the distance between two windows in the out-
put buffer.

The semantic time values for an output audio block are computed just before processing
of the next block begins, since the starting sample number of this next block in the input
buffer must be known to perform the calculation.

Eric Lee, Thorsten Karrer and Jan Borchers 17

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Note that once this module has been implemented once, it can be reused in other applica-
tions that utilize audio time-stretching without any further modifications, and thus abstracting
the above details from the user.

Improved Conducting System Design

This framework, with a more general and intuitive time model for digitally sampled mul-
timedia streams, has allowed us to simplify the design of our interactive conducting systems.

We begin by redesigning the audio/video rendering modules in the context of our frame-
work (see Figure 12). Unlike the original design (Figure 8), this revised design is independent
of implementation. The input and output parameters, in units of semantic time, neatly abstract
the implementation details. Our framework, for example, accommodates both the pitch-
shifting followed by resampling and the phase vocoder approaches to time-stretching without
requiring any changes to the synchronization module. The temporal information that flows
between the modules, in units of semantic time, is also more intuitive for users of the frame-
work. Moreover, one does not need to worry about the details of remapping audio samples to
video frames because of the timebase change.

Figure 12: Revised audio/video rendering engine in You're the Conductor using the semantic
time framework (compare with Figure 8). Temporal information is now in a more intuitive
scale of semantic time units (stu); the design is also more elegant in that it does not expose
any implementation-specific details.

With this modular, implementation-independent synchronize module, we can further
simplify our general conducting system design, since the audio and video synchronization
algorithm is identical to the mapping of user beats to music beats. Using a common semantic
time unit of musical beats throughout the entire system, we can combine the two operations
into a single one where the audio and video are synchronized directly to the musical beats
(see Figure 13).

Eric Lee, Thorsten Karrer and Jan Borchers 18

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Figure 13: Revised conducting system design (compare with Figure 1). The two synchroni-
zation modules have been merged, and beats are used as the time units throughout the sys-
tem.

In our current implementation, the beats of the music were manually determined offline
using a simple software tool we wrote; this tool allows one to tap out the music beats along to
the music, and then fine-align them using a view of the audio waveform. One could also use
a beat detection algorithm presented in current literature (Jensen and Andersen 2003; Goto
2001; Dixon 2001) to do this in real time. Unfortunately, there currently does not appear to
be an algorithm that is able to reliably detect the beat of orchestral music, such as the Blue
Danube Waltz by Johann Strauss. In a recording we have of this piece, performed by the Vi-
enna Philharmonic, the tempo varies between 15 and 80 beats per minute, with an average of
50 beats per minute; we have observed that even people often have trouble tracking the beat
of this piece.

Beyond Interactive Conducting Systems

Our discussion so far has focused on how our semantic time framework can help one
more easily build interactive conducting systems which use time-stretching. One could argue,
however, that time-stretching is a rather semantically simple operation on the temporal axis,
similar to scaling the brightness of an image. As our framework matures, we hope to expand
this framework to include more semantically rich time-based operations, such as: a module to
remove “dead” time where the audio is silent or the video is empty; a module to equalize the
time axis such that semantic time units become uniformly spaced; a module which shifts the
micro-timing within a beat to create a “swing” effect in music.

Another area we are currently exploring is other possibilities for semantic time units.
Units of music beats, which can be non-uniformly spaced in time, were used to demonstrate
the flexibility of our framework. What other units exist for music or other types of audio such
as speech?

Eric Lee, Thorsten Karrer and Jan Borchers 19

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Conclusions

We discussed the challenges of designing interactive conducting systems that incorporate
digitally sampled audio and video streams. We presented our implementation of the phase
vocoder that features a multiresolution peak peaking algorithm; the algorithm compensates
for the human ear's non-uniform response to frequency, and produces audibly better results
over previous algorithms. We also discussed how the use of time-stretching in sampled audio
and video, which modify the timebase of the media, led to an increasingly complex and un-
modular design. Moreover, unnecessary effort was required to design and implement an
audio and video synchronization module, functionality that is already available in modern
multimedia frameworks, but was not suitable for use in our application. Our analysis of these
problems motivated us to design and implement a new multimedia framework using semantic
time. This framework, unlike current multimedia frameworks, uses “semantic time”, which is
more general and allows non-uniform spacing between the time units. Semantic time allows
us to support operations which change the timebase of the data, such as time-stretching,
without breaking the modularity of the intended design or require users of the framework to
think about the tedious bookkeeping details associated with these timebase changes. Finally,
we showed how applying our framework to interactive conducting system has resulted in a
simpler and more elegant design.

As we continue our work in designing interactive conducting exhibits for public spaces,
we will further improve our time-stretching algorithms, and refine our semantic time frame-
work for time-based effects with multimedia. Although discussion of our semantic time
framework was limited to the context of our interactive conducting systems, we are continu-
ing to explore how this framework enables more sophisticated time-based interaction with
music; the semantic time framework is the foundation for not only our latest conducting sys-
tem under development for the Betty Brinn Museum in Milwaukee, but also a system for
computer-assisted, co-operative improvisation system with medieval music. Time-based in-
teraction with music and multimedia is becoming increasingly popular, and our aim is to
build a toolkit of time-based effects that will assist others in constructing increasingly inno-
vative, interactive multimedia systems.

Acknowledgements

The authors would like to thank Max Mühlhäuser, Wolfgang Samminger, the HOUSE OF
MUSIC in Vienna, and the Vienna Philharmonic for their contributions to Personal Orchestra;
Teresa Marrin Nakra, Immersion Music, Ron Yeh, the Boston Children's Museum, and the
Boston Pops for their contributions to You're the Conductor; Ingo Grüll for his contributions
to the hybrid Personal Orchestra; and Julius Smith and Rafael Ballagas for their valuable
feedback in an early draft of this article.

References

Andersen, T. H. 2003. ”Towards novel DJ interfaces.” Proceedings of the NIME 2003 Con-
ference on New Interfaces for Musical Expression. pp. 30–35.

Eric Lee, Thorsten Karrer and Jan Borchers 20

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Bernsee, S. M. 2003. “Time Stretching and Pitch Shifting of Audio Signals.” The DSP Di-
mension. http://dspdimension.com/html/timepitch.html.

Bonada, J. 2000. “Automatic technique in frequency domain for near-lossless time-scale
modification of audio.” Proceedings of the ICMC 2000 International Computer Music
Conference. Berlin: ICMA, pp. 396–399.

Borchers, J., E. Lee, W. Samminger, and M. Mühlhäuser. 2004. “Personal Orchestra: A real-
time audio/video system for interactive conducting.” ACM Multimedia Systems Journal
Special Issue on Multimedia Software Engineering, 9(5): 458–465. Errata published in
next issue.

Bordwell, D., and K. Thompson. 2003. Film Art: An Introduction. New York: McGraw-Hill.

Camurri, A., B. Mazzarino, and G. Volpe. 2003. “Analysis of Expressive Gesture: The
EyesWeb Expressive Gesture Processing Library.” Gesture Workshop 2003 Lecture
Notes in Computer Science, vol. 2915. Genova: Springer, pp. 460–467.

Davis, M. 1993. “Media Streams: An Iconic Visual Language for Video Annotation.” Telek-
tronikk, 4(93): 59–71.

Dixon, S. 2001. “An Interactive Beat Tracking and Visualisation System.” Proceedings of the
ICMC 2001 International Computer Music Conference. Havana: ICMA, pp. 215–218.

Flanagan, J. L., and R. M. Golden. 1966. “Phase Vocoder.” Bell Systems Technical Journal,
45(Nov): 1493–1509.

Gabor, D. 1946. “Theory of Communication.” Journal of Institution of Electrical Engineers,
pp. 429–457.

Garas, J., and P. C. Sommen. 1998. “Time/Pitch Scaling Using the Constant-Q Phase Vo-
coder.” Proceedings of the 1st STW Workshop on Semiconductor Advances for Future
Electronics (SAFE 98). pp. 173–176.

Goto, M. 2001. “An Audio-based Real-time Beat Tracking System for Music With or With-
out Drum-sounds.” Journal of New Music Research, 30(2): 159–171.

Honing, H. 2001. “From time to time: The representation of timing and tempo.” Computer
Music Journal, 35(3), 50–61.

Ilmonen, T., and T. Takala. 1999. “Conductor Following With Artificial Neural Networks.”
Proceedings of the ICMC 1999 International Computer Music Conference. Beijing:
ICMA, pp. 367–370.

Jaffe, D. 1985. “Ensemble Timing in Computer Music.” Computer Music Journal, 9(4): 38–
48.

Jensen, K., and T. H. Andersen. 2003. “Beat estimation on the beat.” Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics. New York:
IEEE.

Eric Lee, Thorsten Karrer and Jan Borchers 21

Computer Music Journal 30(1), Spring 2006 – Preprint Draft February 9, 2006

Kolesnik, P. 2004. Conducting Gesture Recognition, Analysis and Performance System. M.S.
thesis, McGill University.

Lamport, L. 1978. “Time, clocks, and the ordering of events in a distributed system.” Com-
munications of the ACM, 21(7): 558–565.

Laroche, J., and M. Dolson. 1999. “Improved Phase Vocoder Time-Scale Modification of
Audio.” IEEE Transactions on Speech and Audio Processing, 7(3): 323–332.

Lee, E., T. Marrin Nakra, and J. Borchers. 2004. “You’re the Conductor: A Realistic Interac-
tive Conducting System for Children.” Proceedings of the NIME 2004 Conference on
New Interfaces for Musical Expression. pp. 68–73.

Lee, E., M. Wolf, and J. Borchers. 2005. “Improving Orchestral Conducting Systems in Pub-
lic Spaces: Examining the Temporal Characteristics and Conceptual Models of Conduct-
ing Gestures.” Proceedings of the CHI 2005 Conference on Human Factors in Computing
Systems. pp. 731–740.

Lee, M., G. Garnett, and D. Wessel. 1992. “An Adaptive Conductor Follower.” Proceedings
of the ICMC 1992 International Computer Music Conference. San Jose: ICMA, pp. 454–
455.

Lent, K. 1989. “An Efficient Method for Pitch Shifting Digitally Sampled Sounds.” Com-
puter Music Journal, 13(4): 65–71.

Liddle, D. 1996. Design of the Conceptual Model in Bringing Design to Software, edited by
T. Winograd, 17–31. Addison-Wesley.

Marrin Nakra, T. 2000. Inside the Conductor’s Jacket: Analysis, interpretation and musical
synthesis of expressive gesture. Ph.D. thesis, Massachusetts Institute of Technology.

Mathews, M. V. 1991. Current Directions in Computer Music Research. Cambridge: MIT
Press. Chap. The Conductor Program and Mechanical Baton, pages 263–282.

Morita, H., S. Hashimoto, and S. Ohteru. 1991. “A Computer Music System that Follows a
Human Conductor.” IEEE Computer, 24(7): 44–53.

Murphy, D., T. H. Andersen, and K. Jensen. 2003. “Conducting Audio Files via Computer
Vision.” Gesture Workshop 2003 Lecture Notes in Computer Science, vol. 2915.
Genova: Springer, pp. 529–540.

Puckette, M. 2002. “Max at seventeen.” Computer Music Journal, 26(4): 31–43.

Röbel, A. 2003. “Transient detection and preservation in the phase vocoder.” Proceedings of
the ICMC 2003 International Computer Music Conference. Singapore: ICMA, pp. 247–
250.

Usa, S., and Y. Mochida. 1998. “A Multi-modal Conducting Simulator.” Proceedings of the
ICMC 1998 International Computer Music Conference. Ann Arbor: ICMA, pp. 25–32.

