
RNTHAACHEN UNIVERSITY

Attention Drivers! - Analyzing Driver Distraction

Diploma Thesis at the Media Computing Group Prof. Dr. Jan Borchers Computer Science Department **RWTH** Aachen University

by Dominik van Engelen

> Thesis advisor: Prof. Dr. Jan Borchers

Second examiner: Prof. Dr. Klaus Wehrle

Registration date: Nov 30th, 2010 Submission date: Mar 31th, 2011

I hereby declare that I have created this work completely on my own and used no other sources or tools than the ones listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

> Aachen, March2011 Dominik van Engelen

Contents

	Abstract		xv	
	Überblick		xvii	
	Acknowledgements			xix
1	Intr	oductio	n	1
2	Rela	ated wo	rk	5
	2.1	Huma	n Attention	5
	2.2	Huma	n Attention Models	6
		2.2.1	Predicting Dual-task Performance with the Multiple Resources Ques- tionnaire (MRQ)	7
		2.2.2	Control of Cognition	7
		2.2.3	Threaded Cognition: An Integrated Theory of Concurrent Multitasking .	8
		2.2.4	Modeling drivers' visual attention al- location while interacting with in- vehicle technologies	8
	2.3	Driver	Attention Studies	9

		2.3.1	Collision warning design to mitigate driver distraction	9
		2.3.2	Effects of voice technology on test track driving performance	9
		2.3.3	The impact of distraction mitigation strategies on driving performance	10
		2.3.4	Driver distraction, telematics design, and workload managers: Safety is- sues and solutions	11
		2.3.5	Overview Driver Attention Studies .	11
	2.4	Indust	trial Trends	11
	2.5	Europ	ean Statement of Principles	13
3	The	oretical	Model	15
	3.1	The 4-	dimensional Multiple Resource Model	15
		3.1.1	Stages	16
		3.1.2	Processing Codes	17
		3.1.3	Perceptual Modalities	18
		3.1.4	Visual Channels	19
		3.1.5	Overview: Possible Resource Demands	20
	3.2	Comp	utations with the 4-d Model \ldots .	20
		3.2.1	Create Task Analysis Shell	22
		3.2.2	Construct the Conflict Matrix	22
		3.2.3	Resulting Conflict Matrix	24
		3.2.4	Computation of Interference Values .	24

		3.2.5	Normalize Interference Values	27
	3.3	Discus	ssion of the Multiple Resource Model .	28
		3.3.1	Pro	28
		3.3.2	Contra	29
4	Мос	deling	Driver Distraction	31
	4.1	Defini	tion of Driver Distraction	31
	4.2	Atom	ar Aspects of Driving	32
		4.2.1	Identify Basic Components	33
		4.2.2	Mapping between Components and Resources	34
		4.2.3	Assign Values	36
		4.2.4	Special Conditions	36
	4.3	Exem	plary Driving Tasks	37
		4.3.1	City Driving	37
		4.3.2	Rural Road Driving	38
		4.3.3	Highway Driving	38
		4.3.4	Worst Driving Tasks	39
	4.4	Secon	dary In-Vehicle Tasks	40
	4.5	Exem	plary Secondary Tasks	40
		4.5.1	Search Radio Frequency	41
		4.5.2	Listen to the Radio	43
		4.5.3	Play Tetris	44

	4.5.4	Worst Secondary Tasks	44
	4.5.5	Further Secondary Tasks	45
4.6	How t	o use the 4-d model	45
	4.6.1	Reference Values	46
	4.6.2	Influence of Driving Environment	48
	4.6.3	Influence of Secondary Tasks	51
	4.6.4	Context-sensitive variances in Sec- ondary Tasks	53
4.7	Softwa	are for Computations with the 4d-Model	55
Eval	uation		57
5.1	Works	hop about Task Modeling	57
	5.1.1	Reason for the Workshop	57
	5.1.2	Content of the Workshop	58
	5.1.3	Where did the Workshop took place .	58
	5.1.4	Participants and Background	58
5.2	Result	s of the Workshop	60
	5.2.1	Resulting Tasks	60
	5.2.2	Design Aids	61
	5.2.3	Real-time Requirements	61
	5.2.4	Situation Awareness	62
5.3	What i	s still missing	62

5

6 Summary and future work 65

Contents

	6.1 Summary and contributions		65
			66
A	Workload Scales		
	Bibl	iography	71
	Inde	2X	75

ix

List of Figures

3.1	4-d multiple resource model in it's original version	16
3.2	4-d multiple resource model with added tac- tile modality	19
4.1	Atomic driving components	33
4.2	Classification of secondary tasks	41
4.3	Traditional car radio	42
4.4	Software for computation of interference values	55
5.1	Workshop about Task Modeling	59

List of Tables

2.1	Overview Driver Attention Studies	12
3.1	Overview resources with examples	21
3.2	Example Demand Vector	22
3.3	Conflict Matrix without adjustments	24
3.4	Conflict Matrix with adjustments	25
3.5	Demand components for two tasks A and B.	25
3.6	Conflict matrix for task A and B	26
4.1	Typical driving subtasks and their resource demands	35
4.2	Demand vector for city driving	38
4.3	Demand vector for rural road driving	38
4.4	Demand vectors for highway driving tasks .	39
4.4 4.5		39 43

4.7	Demand vector for playing Tetris via touch- screen	44
4.8	Demand vectors for further secondary tasks .	45
4.9	Overview: Driving and secondary tasks for the following situations	46
4.10	Conflict matrix for rural road driving and searching a certain radio frequency	49
4.11	Conflict matrix for highway driving and searching a certain radio frequency	50
4.12	Demand vector for secondary task with little conflict	54
5.1	The resulting demand vectors from our workshop	61
A.1	Workload Component Scales from Aldrich et al. part 1	69
A.2	Workload Component Scales from Aldrich et al. part 2	70

Abstract

At least 25% of all accidents in the USA result from some kind of inattention of the driver (Stutts et al. [2001]). Driver distraction is already heavily involved in traffic accidents and it will become even more important in the near future due to in-vehicle systems and devices, which are increasingly installed in cars.

Analyzing driver distraction is a challenging task because driving itself is already a multitasking scenario and can not be explained by simplistic models. On the other hand, models with high complexity can hardly be used in the industry since development cycles have become rather short and need near-term predictions if an interface is useful or not.

In this thesis a general multitasking model for analysis is used and mapped to the specific area of driving. The 4-dimensional multiple resource model by Wickens uses different resources to describe tasks and has emerged as a well-accepted reference model. Potential conflicts in resource demands between tasks are identified and used to derive possible interferences. Furthermore another input modality, the haptic sense, is added to the model and the issue of having no red-line in task overload is addressed with the help of rescaling factors. This method is implemented via software.

The very complex problem of how to describe driving and secondary tasks is treated by differentiating them in atomar components and determining which resources are required in which quantity. This way it is possible to represent even complicated tasks as simple demand vectors for further calculations.

Although an empirical validation of this thesis remains to be done, the predictions of the model are in accord with familiar multitasking scenarios. In a workshop about task modeling five driving and five secondary tasks were created in cooperation. For all of them the model was able to calculate useful predictions.

The workshop also demonstrated the insufficient consideration of real-time requirements of secondary tasks. At this point the model could need further amendments.

Although confirmation by further studies is needed, the present results show that this approach could be a very helpful tool to support industry and interface designers and an important contribution to increased road safety.

Überblick

Bereits 2001 ging in mindestens 18,6% der polizeikundigen Autounfälle deren Ursache auf irgendeine Form von Fahrerablenkung zurück, welche durch geschicktes Design der Fahrzeug HMI beeinflussbar ist - Tendenz steigend (Stutts et al. [2001]). Auf Basis dieser Fakten und der Tatsache, dass heutzutage immer mehr technische Hilfssysteme in Fahrzeugen zum Einsatz kommen, ist der Fahrerablenkung eine besondere Bedeutung zuzumessen.

Jedoch ist die Analyse von Fahrerablenkung in höchstem Maße komplex, da die Fahraufgabe selbst schon eine Form des Multitaskings darstellt. Dementsprechend sind einfache Modelle, die lediglich eindimensional die Aufmerksamkeitsschwelle beschreiben, nicht sinnvoll einsetzbar.

In dieser Bachelorarbeit wird eine innovative, industrietaugliche Methode zur schnellen Abschätzung des Einflusses von sekundären Aufgaben auf die Fahrerablenkung entwickelt. Dazu wurde das 4-dimensionale multiple Ressourcenmodel von Wickens adaptiert und um den taktilen Sinn erweitert. Das Modell identifiziert potenzielle Konflikte um Ressourcen und berechnet daraus Interferenzen. Zudem wird die Problematik eines fehlenden kritischen absoluten Interferenzwertes mittels Reskalierung adressiert. Des Weiteren wurde das Verfahren softwaregestützt implementiert.

Um sowohl Fahraufgaben als auch Sekundäraufgaben adäquat modelieren zu können, werden diese in atomare Aspekte zerlegt und im Hinblick auf ihre Resourcenbelegung untersucht. Die Resultate werden in Form von Bedarfsvektoren dargestellt und für weitere Berechungen mit dem 4-d Model genutzt.

Die entwickelte Methode wurde in ersten Tests erprobt und konnte ihre Eignung zur schnellen Anwendung unter Beweis stellen. In einem Workshop zum Thema Modellierung von Fahr- und Sekundäraufgaben wurden jeweils fünf Aufgaben modeliert. Die zugehörigen Interferenzberechungen des Models sind plausibel und decken sich mit realen Erfahrungswerten. Eine qualitative Bewertung der entwickelte Methode ist jedoch zum jetzigen Zeitpunkt nur eingeschränkt möglich, da der Abgleich mit empirischen Methoden noch aussteht.

Im Falle einer erfolgreichen Validierung könnte der hier vorgestellte Ansatz jedoch eine wertvolle Bereicherung für Industrie und Interface Designer sein und somit einen wesentlichen Beitrag zur allgemeinen Verkehrssicherheit leisten.

Acknowledgements

I would like to thank Prof. Dr. Borchers who kindly allowed me to do my thesis at the Chair of Computer Science i10 of the RWTH Aachen University in the field of Human Machine Interfaces.

I would also like to thank Prof. Dr. Wehrle, who kindly accepted to co-supervise this thesis.

Special thanks to Dipl.-Inform. Jonathan Diehl, Dipl.-Ing. Markus Jordans, and Dipl.-Ing. Volker Schmidt who supervised this work and had always helpful ideas. Furthermore, I would like to thank Dr. Dr. Carsten Röcker for his support in the field of evaluation.

Especially I would like to thank Prof. Dr. Wickens for answering my questions regarding his multiple resource model.

Moreover, I would like to thank P3 Group for participating on my workshop and Club i10 for ideas, input and suggestions after my initial talk.

Last but not least, I would like to thank Christoph Pallasch for support in programming, Franziska Ludwicki for support in psychological papers, Dr. Christine Rieck, Steffen Baumgardt, and Christoph Pallasch for proofreading my thesis, and my family and friends for all different kinds of support.

Chapter 1

Introduction

At least 25% of all accidents in the USA, which are known by the police, result from some kind of inattention of the driver (Stutts et al. [2001]). Specific sources of distraction among distracted drivers were: Outside persons/objects/events, adjusting radio/CD, fellow passengers in the vehicle, eating/drinking, etc. When these sources are categorized, at least 18,6% of the accidents can be related to the vehicle's human machine interface (HMI).

Although the study of Stutts et al. [2001] is about ten years old it must be assumed that the problem of driver distraction is rising since more and more technical systems are integrated in vehicles nowadays. Consequently, vehicle's HMI design is more important than ever to prevent distraction from the primary driving task.

When supporting HMI designers, the most important factors are time and money. There are methods to describe driver distraction, but most of them are time-consuming and costly. Methods of analysis have to be fast, practical, and inexpensive, otherwise they are useless from an industrial point of view without any reference to their actual value.

On the other hand simple models, which treat the level of attention as an one-dimensional threshold, are not useful, because the very complex aspect of multitasking is overdistraction is an important factor in accidents

vehicle's HMI design is of high importance

most important factors when supporting designers are time and money

simple models are not sufficient

simplified. Moreover a simple time-line analysis is not sufficient because tasks also vary in attentional demands which are not influenced by time. The goal of this thesis is to present a model which is capable model should be fast, of predicting interference between driving and secondary practicable. tasks. The analyzation with the help of the model should universally usable be fast and practicable without neglecting the complexity of and capture the multitasking and have scientific plausibility. Furthermore, complexity it should have scientific plausibility and be universally usable for all kinds of driving and secondary tasks, even if the interface of the secondary task does not exist yet. Therefore I will examine the following research questions: considered research Which model is suitable for this kind of application? How questions can such a model be adapted and used for our requirements? How can one get a detailed description and understanding of driving? Which factors are relevant for secondary tasks and their interfaces? What can further research do to support the approach presented in this thesis? Chapter 2 treats the topics human attention (2.1) and huchapter 2 contains man attention models (2.2) to cover necessary psychologbasics, related work ical background. Subsequently to that, driver attention and industrial trends studies are considered at 2.3, which addresses empirical experiments more than theoretical models. Since industry is heavily involved in the topic of driver distraction as well, section 2.4 gives some examples from industry leaders discussing the topic, whereas section 2.5 covers the legal basis for suretyship. In chapter 3.1 Wickens' 4-dimensional multiple resouce chapter 3 considers model is introduced. This model provides the basis for our the 4-dimensional further investigations. After explaining it in greater detail, multiple resource I will show how to make calculations with the model at 3.2. model There are some pro and contra arguments for and against the 4-dimensional multiple resouce model at the end of chapter 3.1. During the next section, I give hints on how some of these contra arguments could be addressed. Subsequently, in chapter 4, we will address the question chapter 4 analyzes how to model driver distraction. Following to the definithe modeling of tion (4.1), the atomar aspects of driving and its characteridriver distraction zation will be threated at 4.2. In the next part (4.3) exemplary driving tasks are modeled for later calculations with the model. Similar to the atomar aspects of driving, section 4.4 investigates the nature of secondary tasks, followed by examples of secondary tasks in section 4.5. Ongoing, we will have a look at how to use the 4-d model in section 4.6. Since I implemented the calculations with the model in software, I will refer to that in section 4.7.

Chapter 5 describes a workshop about task modeling which I have done in the course of this thesis. While section 5.1 explains the workshop itself, section 5.2 highlights its results. In the end of this chapter (5.3) I consider the question what is still missing after the workshop.

The last chapter, number 6, summarizes the outcomings of this thesis at 6.1 and indicates future work to be done in this area of science at 6.2.

chapter 5 contains the workshop about task modeling

chapter 6 treats summary and future work

Chapter 2

Related work

This chapter contains five main sections. The first one deals with human attention, including topics like definition of attention, and why attention is important for this thesis. In the second section I will focus on psychological models for human attention and how they have changed over the time. The third section is about driver attention studies. A lot of research has been done and is done in this topic and I will give a short overview as well as a comparison why I write this thesis and what its benefits are. In the fourth section industrial trends are considered. Not only for research but also for industry driver distraction is a really important contemporary topic and almost every related company does its own research. The last section briefly introduces the european statement of principles, a collection of guiding principles, which summarizes essential safety aspects for in-vehicle systems.

2.1 Human Attention

Attention is the cognitive process of selectively concentrating on one aspect of the environment while ignoring other things. Attention has also been referred to as the allocation of processing resources (Anderson [2004]). A common example is the so called cocktail party effect where a person is able to listen exclusively to what another person is saying structure of chapter 2: human attention, human attention models, driver attention studies, industrial trends, european statement of principles

definition of attention

attention is closely linked to driver distraction

developement of human attention research from abstract models to more concrete tasks

Wickens' multiple resource model has emerged as a well-accepted reference model

use Wickens' model for analysis and interference predictions

human attention models predict human attention behavior while ignoring every other conversation in the room.

A task which is performed in parallel to a more important first task is called a secondary task. Performing a secondary task while driving has a lot to do with human attention. When the driver is no longer able to allocate enough processing resources to the driving task and his attention is completely focussed on the secondary task, the situation can become really dangerous and risky for all traffic participants. Therefore we should have a closer look at models for human attention.

Attention has been a topic in psychology for the last 40 years and is one of the most intensely studied topics within psychology and cognitive neuroscience. During this time there is a trend from completely abstract models of human attention (Treisman and Gelade [1980], Posner et al. [1980], Posner [1980], Posner and Petersen [1990]) to models of more concrete tasks such as rapid scene analysis or selective visual attention (Itti et al. [1998], Desimone and Duncan [1995]).

One particular model, the multiple resource model by Wickens, was released in 2002 and emerged as a reference in multiple resource theory. The model fulfils neurophysiological plausibility as well as design decisions and has appeared to stand the test of time in its ability to account for three decades of dual-task research and to support design decisions (Wickens [2008]). This model will be explained in detail in chapter 3.1.

In this thesis, I will use Wickens model to analyze driver distraction and show how this model can be used to predict interference between driving and secondary tasks.

2.2 Human Attention Models

A human attention model is a model created to simulate human attention. In general, such a model is generated out of observation and empirical data and should help to predict human attention behavior. The view of attention changed over the time from an allor-none single-channel bottleneck view of attention (Broadbent [1971], Welford [1967]) to parallel processing and divided attention (Kieras [2007], Salvucci and Taatgen [2008], Boles et al. [2007]).

2.2.1 Predicting Dual-task Performance with the Multiple Resources Questionnaire (MRQ)

The human attention model by Boles et al. [2007] uses a statistical method (factor analysis) to measure workload in particular mental processes. Auditory and visual processing has further been differentiated within each hemisphere (brain region) into subprocesses. In this manner, 14 separate resources of perception emerge (and 17 overall).

In their experiments, the mean ratings showed high diagnosticity in identifying specific mental processing bottlenecks. Though, with the profilation of more resources, it becomes more difficult to precisely associate each with brain locations (and therefore gain full neurophysiological plausiblitily).

2.2.2 Control of Cognition

Kieras [2007] and Meyer constructed a human informationprocessing architecture that is especially suited for modeling dual-task performance, named EPIC (Executive Process-Interactive Control). The EPIC architecture includes peripheral sensory-motor processors surrounding a production-rule cognitive processor, and is being used to construct computational models for basic multiple-task situations.

The main difference to other cognitive architectures is the focus on perceptual and motor operations. Many features of the EPIC architecture have later been incorporated into other cognitive architectures.

change in view of attention from single to parallel processing

statistically analyzing mental processes to identify resources

pro: high diagnosticity, contra: full neurophysiological plausiblitily

informationprocessing architecture to construct computational models for basic multiple-task situations

difference to other models is the focus on perceptual and motor operations

2.2.3 Threaded Cognition: An Integrated Theory of Concurrent Multitasking

The model by Salvucci and Taatgen [2008] of threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual and motor resources).

By instantiating this mechanism as a computational model, threaded cognition provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks. Like the EPIC architecture (2.2.2), this model invokes multiple resource constructs within perceptual modalities to account for dual-task interference patterns.

2.2.4 Modeling drivers' visual attention allocation while interacting with in-vehicle technologies

A computational model of visual attention while interactpredict visual ing with in-vehicle technologies was developed by Horrey scanning behavior of et al. [2006]. This model focuses on driver performance driver and visual scanning and can predict to which points the driver is looking. The model is based upon former research on visual attention. Researchers discovered that the allocation of visual attention to different parts of the visual field is driven by four factors: Salience, Effort, Expectancy, and Value (SEEV). focal vision increased Overall, the task priority had a significant impact on scanning, meaning that focal vision (for in-vehicle tasks) caused scanning behavior while ambient vision increased scanning behavior while ambient vision (for lane does not keeping) resulted in no increment in scanning. For more details on focal vs. ambient vision see chapter 3.1.4.

streams of thought

represented as

predictions how

multitasking results in interference

threads of

processing

2.3 Driver Attention Studies

Because the topic driver attention is a broad field, most researchers try to restrict their studies to a subpart of driver distraction. Since these studies get their results from experiments in the real world, a good model should be capable of explaining their outcomes.

2.3.1 Collision warning design to mitigate driver distraction

Hoffman and Hayes [2004] researched on how alert strategy and alert modality affect how well collision warning systems mitigate driver distraction and direct drivers' attention to the car ahead when it unexpectedly brakes. They set up two experiments in which drivers interacted with invehicle systems (email) and a collision warning system signaled a braking lead vehicle. Therefore, they used graded alerts, i.e. alerts which increase in their intesity, like a warning signal becoming louder if the distance to another car decreases.

Their results showed that graded alerts led to a greater safety margin and a lower rate of inappropriate responses to nuisance warnings. Moreover, graded alerts were more trusted than single stage alerts. Furthermore they discovered that haptic alerts (a vibrating seat in their experiments) were perceived as less annoying and more appropriate. In conclusion, graded haptic alerts should be considered as an alternative or addition to traditional alerts (sounds and warning lights). The 4d-model can give hints which alerts to use for such collision avoidance strategies.

2.3.2 Effects of voice technology on test track driving performance

Ranney et al. [2005] observed the effects of voice technology in cars. In general, performing in-vehicle tasks leads to good models should explain results of studies

experiments on alert strategies and modalities

results with graded alerts were better than single stage alerts

voice-based interfaces reduce distraction diversion of both peripheral (visual and manual) and attentional (cognitive) resources from driving. In their experiments, performing secondary tasks resulted in significant decrements to vehicle control, target detection, and car-following performance. In contrast, their voice-based interface helped reduce the distracting effects of secondary task performance.

This matches their assumption, that the auditory mode will involve less interference than the visual mode because driving inputs are mainly visual, which was derived from the multiple resource model of Wickens.

2.3.3 The impact of distraction mitigation strategies on driving performance

The influence of adaptive interfaces was analyzed by Donmez et al. [2006]. For that purpose an advising strategy that alerts drivers of potential dangers and a locking strategy that prevents the driver from continuing a discrete task were presented to drivers of different ages in two modes (auditory, visual) and two road conditions (curves, braking events). In these experiments, the subject was driving on a curvy road and was informed that the system would either advise them or lock them out when the roadway required their attention, specifically when the lead vehicle was braking or there was a curve ahead. While driving, the subject had to perform visual and auditory secondary tasks.

The experiments showed that visual distractions were worse than auditory ones for curve driving and drivers did brake more abruptly under auditory distractions. The locking strategy also resulted in longer minimum reaction time to collision. Their study results in the observation that adaptive interfaces can reduce abrupt braking on curve entries resulting from auditory distractions and can also improve the braking response for distracted drivers.

results match predictions of Wickens' model

influence of adaptive interfaces was analyzed

adaptive interfaces can reduce abrupt braking and improve braking response

2.3.4 Driver distraction, telematics design, and workload managers: Safety issues and solutions

Closely related to driver distraction, the research on workload managers bridges the gap between theoretical models and usability. A workload manager is a device that attempts to determine if a driver is overloaded or distracted, and if they are, alters the avaibility of telematics and the operation of warning systems (Green [2004]).

Green identifies the unique nature of telematic tasks and describes likely workload manager architectures, applicable regulations, and industry efforts. For instance, when to present non-safety critical messages to the driver based on the speed, windshield wiper movement, and other vehicle data. He also mentions that dialog managers in the Volvo S40 and V40 block telephone calls when drivers are turning or changing lanes, situations where drivers should be focusing on the primary task of driving. In summary workload managers are very useful to assist driving and can provide great safety benefits.

2.3.5 Overview Driver Attention Studies

Table 2.1 contains a short summary of the considered studies.

2.4 Industrial Trends

The Navigation Strategies USA¹ event is the primer conference on consumer-centric navigation products, featuring top names from companies such as Nokia, Volkswagen, Ford SYNC, Panasonic, Wikitude Drive, GM, Virgin Mobile, T-Mobile, Sprint, BMW, Pandora and TomTom.

Dev Khare from Venrock stated, that automotive original

workload managers determine if a driver is overloaded or distracted

workload managers are useful to assist driving and can provide safety benefits

Navigation Strategies USA event is North America's biggest navigation conference

Phone usage in-car discussion by experts

¹http://www.thewherebusiness.com/navigationusa/index.shtml

2 Related work

Study	Main result	What is missing
2.3.1	graded alerts led to a greater safety,	when does driver distraction start?
	haptic alerts were perceived as less	ightarrow should be avoided much earlier
	annoying and more appropriate $ ightarrow$	in the chain of cause and effect
	reduce distraction related crashes	
2.3.2	voice technology leads to fewer dis-	voice technology cannot be used
	tractions while driving	for everything \rightarrow comparison with
		other interfaces as alternatives
		would be helpful
2.3.3	adaptive interfaces improves	study does not include events that
	breaking response	impose great demand, such as
		braking events that occur on the
		curve entry
2.3.4	workload managers can assist driv-	workload managers rules \rightarrow Wick-
	ing and provide safety benefits	ens' model can be used to derive
		those rules

Table 2.1: Overview Driver Attention Studies

equipment manufacturers (OEMs) will loose their influence on mobile devices and in-vehicle technology, including all their margins on navigation, radio, etc., if they don't act soon.

people want all areas of typical consumer services in their vehicle	Considering what services people want in their cars, sug- gestions spanned all areas of typical consumer services, e.g., phone calls, emails, voice search on the web, internet radio, local POI search, navigation, and social network ac- cess (Facebook, Twitter).

consequence for
industry is increased
competition betweenThis trend to personalization includes vehicle specific apps
as well as access to all the other apps in consumers' lives. In
consequence, there will be increased competition between
OEMs and personal
devices brought into
vehiclesDEMs and personal devices brought into vehicles. Impor-
tant questions, like where the navigation software will be
installed, will be guided by the key aspect of how fast new
services can be integrated.

driver distraction is	To see how closely the topic driver distraction is linked to
highly actual in	industry, look at the following three statements to the ques-
industry	tion "What are the challenges of using the vehicle as an app
	platform, and what could hinder growth in this area?".

- Byron Shaw from GM stated driver distraction and regulation to be the most important issues for GM right now.
- Dev Khare from Venrock emphasizes that apps have to be certified for safety, and
- Stephan Durach from BMW mentions, that simple handling within the car is a major aspect, so that the driver is able to concentrate on his major task driving.

2.5 European Statement of Principles

The European Statement of Principles on Human Machine Interfaces (HMI) for In-Vehicle Information and Communication Systems (ESoP) is a collection of guiding principles and summarizes essential safety aspects for in-vehicle systems. "These guiding principles have been produced by a group of experts representing public organizations and industry set up as a Task Force by the European Commission in January 1998" ESoP². In 2006, an new version of the ESoP was released including some extensions regarding mobile devices like nomadic devices, mobile phones and PDAs.

The ESoP consists of 43 principles, explanations of these principles, good vs. bad examples, references to standards and suggestions, not only for safety but also for usability aspects. This statement of principles could be of help for manufacturers to address the following critical issues:

- How to design and locate information and communication systems in such a way that their use does not interfere with the driving task.
- How to present information without impairing the driver's field of vision.

the ESoP is a collection of guiding principles for in-vehicle systems

the ESoP contains 43 principles for safety and usability aspects

²ftp://ftp.cordis.europa.eu/pub/telematics/docs/tap_transport/hmi.pdf

	• How to design system interaction such that the driver maintains safe control of the vehicle, feels comfort- able, and confident with the system, and is ready to respond to unexpected occurrences.
main topics: overall design, installation, information presentation, interaction,	The ESoP addresses the overall design, installation, infor- mation presentation, interaction with displays and con- trols, system behavior, and information about the system. The statement of principles does not cover aspects of in- formation and communication systems not related to HMI such as electrical characteristics, material properties, sys- tem performance, and legal aspects.
problems with the ESoP: lot of principles are insufficiently concrete	Although the ESoP addresses important safety aspects, it can be quite hard to handle as a manufacturer because a lot of principles are insufficiently concrete. I will show how to derive more concrete guidelines with the help of Wickens 4-d model.
negative example	For example, principle 2.1.2 states: "The system should be designed in such a way so that the allocation of driver at- tention to the system displays or controls remain compat- ible with the attentional demand of the driving situation" (ESo [1998]). But what means 'compatible with the atten- tional demand of the driving situation? This statement is not only subjective, but also highly case sensitive, accord- ing to every single driving situation.

Chapter 3

Theoretical Model

3.1 The 4-dimensional Multiple Resource Model

In this chapter I will introduce Wickens 4-dimensional multiple resource model (Wickens [2002, 2008]). As stated before, a model for analyzing driver distraction has to be capable of multitasking to address workload prediction adequately. Wickens' model meets this demands, and I will show how the model is useful both as a design tool and in means of predicting multitask workload overload (Wickens [2008]).

The multiple resource model proposes that there are four important categorical and dichotomous dimensions that account for variance in time-sharing performance. That is, in the original form of the model, each dimension has two discrete levels.

The quintessence is that there will be greater interference between two tasks if they share stages (perceptual/cognitive vs. response), sensory modalities (auditory vs. visual), codes (visual vs. spatial), and channels of visual information (focal vs. ambient) (Wickens [2002]). These four dimensions are shown schematically in figure 3.1.


In the following part I will describe the four dimensions

Wickens' model is capable of multitasking and fullfills requirements

the 4-d model is structured in 4 dimensions: stages, modalities, codes, and visual channels

there will be greater interference between two tasks if they share dimensions

the following subsections will explain these dimensions

Figure 3.1: The 4-d multiple resource model in it's original version

in greater detail. Another interesting point to mention is the fact, that all of these differences can be associated with distinct physiological mechanisms.

3.1.1 Stages

The *stages of processing* dimension indicates that perceptual and cognitive tasks use different resources than responding tasks (Wickens [2008]). Perceptual tasks demand understanding of sensory information like processing visual or auditive information. Cognitive tasks, like remember a symbol or estimate the distance between your vehicle and another one, use the same mental resources unlike responding tasks. Such tasks correspond to the selection and execution of actions.

perceptual and cognitive tasks use different resources than responding tasks

stage dichotomy is supported by experiments This stage dichotomy is supported by both experiments as

well as physical differences. Experiments have shown that when the difficulty of responding in a task is varied this manipulation does not affect performance of a concurrent task whose demands are more perceptual and cognitive in nature and vice versa (Wickens [2002]).

It is important that the stage dichotomy can be associated with different brain structures. That is, speech and motor activity tend to be controlled by frontal regions in the brain (forward of the central sulcus), while perceptual and language comprehension activity tends to be posterior of the central sulcus.

However, since resource-demanding perceptual tasks and cognitive tasks involving working memory to store or transform information are both supported by common resources, there will be substantial interference between these two as well. For example, visual search coupled with mental rotation, or speech comprehension coupled with verbal rehearsal, both provide examples of operations at different stages (perceptual and cognitive) that will compete for common stage-defined resources, and will thus be likely to interfere.

3.1.2 Processing Codes

The *codes of processing* dimension indicates that analogue/spacial activity uses different resources than does categorical/symbolic activity (usually verbal or linguistic), a dichotomy expressed in perception, working memory, and action (Wickens [2008]). The separation of spatial and verbal resources seemingly accounts for the relatively high degree of efficiency with which manual and vocal responses can be timeshared, assuming that manual responses are usually spatial in nature (tracking, steering) and vocal ones are usually verbal (speaking) (Wickens [2002]). For a neuroscientific explanation that this separation can often be associated with the two cerebral hemispheres see (Polson and Friedman [1988]).

The processing codes are especially useful to predict when it might or might not be advantageous to employ voice stage dichotomy is also supported by neuroscience

perception and cognition are both supported by common resources and therefore interfere with each other

spacial activity uses different resources than verbal activity

example: processing codes are used to employ voice vs. manual control vs. manual control. More detailed, manual control may disrupt performance in a task environment imposing demands on spatial working memory (e.g. driving), whereas voice control may disrupt performance of tasks with heavy verbal demands.

3.1.3 Perceptual Modalities

The *perceptual modalities* dimension, which is nested within perception and not within cognition or response, indicates that auditory perception uses different resources than visual perception (Wickens [2008]). Wickens explains this as cross-modal time-sharing (combining a visual with an auditory task) is better than intra-modal time-sharing (combining two tasks, which require the same perceptual modality, i.e., auditory + auditory or visual + visual).

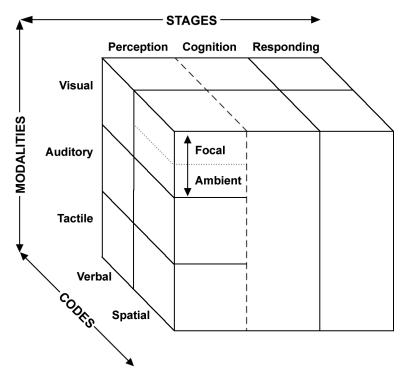
Since driving is always the primary task in this thesis, the secondary task should include as little visual perception as necessary because driving has heavy visual attention demands.

The advantage of cross-modal over intra-modal timesharing can be explained by peripheral factors: "Two competing visual channels (VV), if they are far enough apart, will require visual scanning between them - an added cost. If they are too close together they may impose confusion and masking, just as two auditory messages (AA) may mask one another if they occupy nearby or overlapping temporal frequencies" (Wickens [2002]).

It is important to keep in mind that cross-modal timesharing is generally better than intra-modal timesharing, but there are also exceptions in which two displays are more practical than one display and one auditory message, because auditory perception is not preemptive.

One issue is that in the current version of the multiple resource model tactile interference is not included (Wickens [2008]). Wickens confirmed that he is working on an extension of his model to include a tactile channel and suggests that this added tactile channel will probably have very sim-

auditory perception uses different resources than visual perception


while driving, secondary tasks should demand little visual perception

cross-modal time-sharing is better than intra-modal time-sharing

exceptions in which two displays are more practical than one display and one auditory message

extension with tactile perception

ilar properties to current auditory resource. He argues, that the extension can be integrated into the existing model and will not change any basic concept. Therefore, I added the tactile component to the perceptual modalities dimension. In consequence, the new figure of the 4-d model looks like this (3.2).

Figure 3.2: The 4-d multiple resource model with added tactile modality

3.1.4 Visual Channels

The *visual channels* dimension was added later to the previous three. It is a nested dimension within visual spatial resources and distinguishes between focal and ambient vision.

The primary functions of the focal visual system are visual search, object recognition, and other tasks requiring high visual acuity, including reading text. Thus, use of focal vision is tightly linked to eye movements (Horrey et al. visual channels is a nested visual dimension

functions of focal vision are visual search, object recognition, and other

[2006]).

functions of ambient vision is sensing orientation and ego motion In contrast, ambient vision is used for sensing orientation and ego motion (the direction and speed with which one moves through the environment). This parallel processing is used very much while driving, for example when keeping the car moving forward in the centre of the lane (ambient vision) while reading a road sign, glancing at the rear view mirror or recognizing a hazardous object in the middle of the road (focal vision) (Wickens [2002]).

limitations of ambient vision: not effectively support hazard detection Studies have shown that ambient vision can support certain driving tasks, but not others. For example, Summala et al. [1996] showed that experienced drivers could use ambient visual resources to maintain vehicle control (lane keeping), even without fixating directly on the outside world. In subsequent work, Summala, Lamble and Laakso showed that ambient vision did not effectively support the important driving task of hazard detection (Summala et al. [1998]).

3.1.5 Overview: Possible Resource Demands

After characterizing the four dimensions, the following table could help to survey the possible resource demands.

previous publications did not include tactile resources and often did not distinguish between spatial and verbal vision

11 resources with

examples

greatest value of the model is in predicting relative differences between different task configurations Note that previous publications often simplified visual perception as being focal or ambient and did not distinguish between spatial and verbal for this part of perception, even though this is more accurate. Moreover, as stated above (3.1.3), the perception of tactile information has not been officially added to the model, yet.

3.2 Computations with the 4-d Model

The computational multiple resource model has its greatest value in predicting the relative differences in task interference between different task configurations. Stated in other terms, the model can be used to predict the level of disruption or interference between two tasks when they have to

Stage	Resource	abbr	Example
Perception	Visual-Spatial-Focal	Vsf	estimate distances
Perception	Visual-Spatial-Ambient	Vsa	lane keeping
Perception	Visual-Verbal	Vv	reading text, reading traffic signs
Perception	Auditive-Spatial	As	audio location
Perception	Auditive-Verbal	Av	listen to a message
Perception	Tactile-Spatial	Ts	feel distances between buttons
Perception	Tactile-Verbal	Tv	reading braille
Cognition	Cogntive-Spatial	Cs	mental rotation, rehearsing a mental image
Cognition	Cogntive-Verbal	Cv	rehearsing a phone number or other list
Responding	Response-Spatial	Rs	all kinds of manual activities
Responding	Response-Verbal	Rv	speaking, voice-controle

Table 3.1: Overview resources with examples

be time-shared. In a high demand multi-task environment, like driving, the model can be employed either in a more informal intuitive fashion or in a more formal computational fashion (Wickens [2002, 2008]).

In the informal use, the model can help designers to make decisions such as when it is better to use voice control than manual control, to use auditory rather than visual displays, or to use spatial graphic, rather than verbal material.

In a more formal use, the model can be applied to compute the amount of interference predicted between two tasks.

An advantage of the multiple resource model over other models that base upon timeline analysis is the value added by varying quantitative and qualitative resource demands. Tasks also vary in their resource demands in ways not accounted for by time. E.g., driving while reading provides a lot of interference (above the overload level), whereas driving while listening to the identical message, will often be well below the overload threshold, even though both of these circumstances occupy the same amount of time in a timeline analysis.

Before we can start to derive interference values from the model, we have to create a task analysis shell and a conflict matrix. This is explained in the two following subsections. informal use of model: help designers to make decisions

formal use of model: compute interference between two tasks

advantage over timeline analysis is the value added by varying quantitative and qualitative resource demands

task analysis shell and conflict matrix are needed to begin calculations

components of resource vectors: qualitative and quantitative levels of demanded resources	First of all, we create a task analysis shell, i.e., construct a re- source vector for each task. Every resource vector contains two different types of information: Firstly which resources are demanded (the qualitative level of resource demands) and secondly how many of the different resources are de- manded (the qualitative level of resource demands).
scale for quantitative specification from 0 to 3	For this quantitative specification a simple four-level cod- ing has emerged to be adequate for most circumstances (Wickens [2008]). Thus, each task-component is specified as being insignificant (0), easy (1), moderate (2) or difficult (3), depending on task characteristics and overall difficulty. This specification is independent of which resources may be demanded (e.g., perception vs. response, auditory vs. visual vs. tactile).
example resource vector for vehicle control	For example, the task of vehicle control in automobile driv- ing may be represented as demanding: visual (focal and ambient) + tactile (spatial) + cognitive (spatial) + manual resources, and therefore the corresponding table could look like this:

3.2.1 Create Task Analysis Shell

					Dem	and	Vecto	or				Sum of	
Task	Perceptual Cognition Respon								Perceptual Cognition Response De				Demanded
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources	
Vehicle Control	2	2	2	0	0	1	0	2	0	2	0	11	

Table 3.2: Example Demand Vector

In conclusion, this task is characterized by the demand vector [2,2,2,0,0,1,0,2,0,2,0].

3.2.2 Construct the Conflict Matrix

function of conflict matrix: represent conflict between resource pairs conflict values are derived from a heuristic In this step the amount of conflict between resource pairs across tasks is determined. This is very essential to represent the **multiple** aspect of the model.

The conflict values are derived from a heuristic. We assume that the amount of conflict is proportional to the number of shared resources within the 4-d model. Since the conflict values are symmetric, we restrict ourselves to an upper triangle matrix.

Later on, we can adjust particular conflict values, if they are not suitable. If two tasks cannot share a resource, their conflict value should be 1.0 (, e.g., voice response cannot be shared). If two tasks can perfectly share a resource, their conflict value should be 0.

The numbers for each cell are determined as follows.

- 1. Every channel pair has a baseline conflict value of 0.2. This describes a fundamental cost of concurrence or general capacity for which all tasks compete in a time sharing situation.
- 2. Each added dimension of overlapping resources increments the conflict value by 0.2.
- 3. Since cognitive resources do not involve the Auditory-Visual-Tactile modality distinction, their conflict within perceptual resources (that do involve this distinction) is defined as an average value between sharing and separate modality resources. For these average values, we have to look at the whole row/column, not just the triangle matrix.
- 4. In certain circumstances, e.g., given the physical separation of the interfaces for the two channels, the corresponding conflict values should be adjusted. Thus, for example, the value of the visual-spatial perception channel will be lowered, if the two visual sources are close together, and increased to the extent that they are widely separated, particularly if they both demand focal processing for their performance. Note that this adjustment of conflict values should not be based on differences in single task demands, since these were already captured by the single task analysis shell.

single steps

baseline conflict

penalize overlapping

resource demands by adding 0.2

cognitive resources

get an average value

between sharing and

separate modality

adjust particular

values can be

reasonable

resources

value of 0.2

previous heuristic leads to the following conflict matrix When we apply the previous heuristic, our corresponding conflict matrix looks like this:

	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv
Vsf	1	0,8	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Vsa		1	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Vv			0,8	0,4	0,6	0,4	0,6	0,5	0,67	0,2	0,4
As				0,8	0,6	0,6	0,4	0,65	0,47	0,4	0,2
Av					0,8	0,4	0,6	0,45	0,67	0,2	0,4
Ts						0,8	0,6	0,65	0,47	0,4	0,2
Tv							0,8	0,45	0,67	0,2	0,4
Cs								0,8	0,6	0,4	0,2
Cv									0,8	0,2	0,4
Rs										0,8	0,6
Rv											0,8

3.2.3 Resulting Conflict Matrix

exemplary calculation for the combination	E.g., the conflict value for the combination [Vsa,Vsf] is de- rived as
[Vsa,Vsf]	0.2 (basic conflict value) + 0.2 (both Perception) + 0.2 (both V(visual)) + 0.2 (both s(spatial)) = 0.8.
adjust values in conflict matrix	Since two verbal responses (speaking) at the same time are not possible it makes sense to adjust this conflict value to 1.0 instead of 0.8, which would be the value derived from the heuristic. Similarly, Wickens adjusted the conflict val- ues between cognitive und response resources (Wickens [2002]).
conflict matrix for further calculations	This leads us to the adjusted conflict matrix 3.4, which will be used for further calculations in this bachelor thesis.
	3.2.4 Computation of Interference Values
until now we have a	At this point we have a task analysis shell and a conflict

until now we have aAt this point we have a task analysis shell and a conflict
matrix, which are necessary and essential to derive inter-
ference values.

	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv
Vsf	1	0,8	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Vsa		1	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Vv			0,8	0,4	0,6	0,4	0,6	0,5	0,67	0,2	0,4
As				0,8	0,6	0,6	0,4	0,65	0,47	0,4	0,2
Av					0,8	0,4	0,6	0,45	0,67	0,2	0,4
Ts						0,8	0,6	0,65	0,47	0,4	0,2
Tv							0,8	0,45	0,67	0,2	0,4
Cs								0,8	0,6	0,6	0,4
Cv									0,8	0,4	0,6
Rs										0,8	0,6
Rv											1

Table 3.4: Conflict Matrix with adjustments

The total interference between a time-shared pair of tasks is represented by the by the sum of two components:

- 1. a **demand component** (specifying the resource demand), and
- 2. a **multiple resource conflict component** (specifying the degree to which overlapping resources are required).

For the demand component, each task combination gets a total resource demand value. Thus, it is computed by summing the average demand across all 11 resources within a task and summing over both tasks.

interference value is composed of a demand component and a multiple resource conflict component

demand component is average resource demand over two tasks

example task

analysis shell

Assume we have created the following task analysis shell in 3.2.1 for two tasks A and B.

						Sum of						
Task	Perceptual Cognition Response						ponse	Demanded				
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
Task A	2	2	2	0	0	2	0	2	1	2	0	13
Task B	0	1	0	0	3	0	2	0	3	0	3	12

Table 3.5: Demand components for two tasks A and B

In this case the task combination A and B gets a demand value of

example calculation for demand component between A and B amount of interference increases with difficulty of tasks theoretical range of demand value: 0 - 6 $\frac{13}{11} + \frac{12}{11} = 2,27.$

increases with the difficulty (resource demands) of one or both of the time-shared tasks. Applying these numbers, the total task demand for two tasks can theoretically range from 0 (two automated tasks)

The underlying assumption is, the amount of interference

to 6 (two difficult tasks). In real task scenarios the upper and lower bound will not occur because neither it does make sense to analyze two completely automated tasks nor there are tasks which need every resource capacity at once. I will refer to that at section 4.6.1.

conflict component is derived by summing over conflict matrix entries demanded by both tasks For the resource conflict component, the two tasks are compared, in the extent to which they share demands on common levels of each of the four dimensions, which means summing the conflict matrix components of all cells that are demanded by both tasks.

								Task	Α				
					Per	ceptu	al			Cogr	nitive	Response	
			Vsf	Vsv	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv
		Ex.	2	2	2	0	0	2	0	2	1	2	0
	Vsf	0	1	0,8	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
	Vsv	1		1	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
	Vv	0			0,8	0,4	0,6	0,4	0,6	0,5	0,67	0,2	0,4
Task	As	0				0,8	0,6	0,6	0,4	0,65	0,47	0,4	0,2
	Av	3					0,8	0,4	0,6	0,45	0,67	0,2	0,4
	Ts	0						0,8	0,6	0,65	0,47	0,4	0,2
B	Tv	2							0,8	0,45	0,67	0,2	0,4
	Cs	0								0,8	0,6	0,6	0,4
	Cv	3									0,8	0,4	0,6
	Rs	0										0,8	0,6
	Rv	3											1

Table 3.6: Conflict matrix for task A and B

example calculation of conflict component between A and B In this case the task combination A and B gets a demand value of

 $\begin{array}{l}1+0, 6+0, 6+0, 75+0, 47+0, 4+0, 4+0, 45+0, 67+0, 2+\\0, 45+0, 67+0, 2+0, 8+0, 4=8, 06.\end{array}$

The conflict component can therefore range from 0 (every resource pair of the two tasks has at least one 0-entry) to 66 (both tasks need all possible resources and the conflict matrix contains nothing else than 1.0).

3.2.5 Normalize Interference Values

In the original form of Wickens' multiple resource model it is possible that the conflict component dominates the total interference and the demand component becomes irrelevant, even if it should represent two difficult tasks.

To compensate this weak point of the model, we introduce a scale factor which relativizes these values. Therefore, we multiply the conflict component by

> 2 * maximum task difficulty sum of all conflict matrix entries

As a result, the conflict component for our examples with maximum task difficulty of 3 and 66 conflict matrix entries also stays in between the range from 0 to 6.

In the previous case, the conflict value does not stay in between the range from 0 to 6. After rescaling we get:

 $\frac{2*3}{36,09}*8,06=0,17*8,06=1,37$

In the last step, the total interference is then computed as the sum of the demand and the conflict component, giving a total interference value between 0 and 12.

In our example we get a total interference value of

2,27+1,37=3,64

theoretical range of conflict component: 0 - 66

problem: conflict component dominates the total interference solution: introduce a scale factor which relativizes these values new range of the conflict component: 0 - 6 rescaling our example finally add the two components

complete the example

3.3 Discussion of the Multiple Resource Model

this section discusses pro and contra arguments of the 4-d model	A short overview of positive and negative aspects of the multiple resource model is presented in this section. One particular contra point, the problem of no red-line, will be adressed later at section 4.6.1.
	3.3.1 Pro
Wickens had two main criteria for his 4-d model	Wickens himself stated that the rationale for defining these four dimensions is based strongly on the confluence and joint satisfaction of two criteria (Wickens [2008]).
first criterion: neurophysiological plausability	1. As mentioned before, these four dimensions should have neurophysiological plausability, not just be an exclusively theory-based invented construction. Since all parts in the 4-d model can be linked to dif- ferent parts of the brain, the construction fulfills this requirement.
second criterion: support of design decisions	2. The model should help designers to make relatively straightforward decisions. Instead of being totally ab- stract and theoretically Wickens was also interested in practical usefulness of the model. This criterion emerged from his human factors orientation.
4-d model satisfies both criteria	Both points, neurophysiological plausability and design decisions, appeared to be fairly well satisfied in the proposed cube model.
model has stand the test of time	Furthermore, the model has appeared to stand the test of time in its ability to account for three decades of dual-task research and to support design decisions (Wickens [2008]).
additional advantages are	Besides these two main aspects the model has additional advantages (Tas [2003]):
the model is simple in computation	• The model is relatively simple in computation. No

deeper mathematical understanding is necessary to calculate conflict values between tasks. Because of this, practical usefulness is not compromised.

- It is flexible in its applications. We will use it to analyze driver distraction, but it is not restricted to that area. Other multitasking scenarios can be analyzed with it's help as well.
- It can make adequate performance predictions. As far as the modeled scenarios have been evaluated with real experiments the model predicts useful results. Though, more experiments should be done to evaluate the model and collect further data.

the model is flexible in its applications

the model can make adequate performance predictions

3.3.2 Contra

Unfortunately, there are some weak points, too.

- The prediction of total interference values does not inform which task suffers from the overload (Wickens [2008]).
- Other mechanisms, unrelated to resources, are not involved. Although it is possible that other aspects influence interference between two tasks as well (Wickens [2008]).
- There are no fixed rules for resource allocation and therefore some expertise is required to establish conflict values and demand vectors (Wickens [2002]).
- Officially, the tactile input modality is still missing. After contacting Wickens I added the tactile perception to be able to include this very important sense in task modeling as well. The official extension of the model will be covered in one of Wickens' upcoming publications.
- There is no characterization of resource demand on a single scale with some kind of 'red line' (Wickens [2008], Tas [2003]) I try to adress that issue at section 4.6.1, but this approach should only be viewed as a recommendation, not a rule.

there are some weak points no information which task suffers from overload other aspects than resources are not involved no fixed rules for resource allocation

officially tactile modality is still missing

no single scale with red line

Chapter 4

Modeling Driver Distraction

4.1 Definition of Driver Distraction

There is currently no universally agreed upon definition of driver distraction. Most of them agree that distraction involves a shifting of attention away from the driving task, e.g. "Driver distraction can be defined as the diminished attention of the driver to the driving task" (Donmez et al. [2006]).

However, a lot of these definitions fail to address the fact that not all events or objects that divert attention from the driving task are going to create a distraction. If there is no negative effect of the secondary task on driving performance or control, then distraction has not occurred.

Therefore, Young [2007] defines driver distraction as "occurring when a driver's attention is, voluntarily or involuntarily, diverted away from the driving task by an event or object to the extend that the driver is no longer able to perform the driving task adequately or safely".

Since driver distraction has become a very important area of science, new models are invented to explain this specific situation. Young [2007] categorizes distraction into four no universally agreed upon definition of driver distraction

failure of most definitions: not everything that diverts attention creates distraction

definition in this thesis

categorization of dd into visual, auditory, physical, and cognitive distraction distinct types:

- visual distraction, e.g., the driver neglects to look at the road
- auditory distraction, e.g., the driver focuses his/her attention on auditory signals rather than on the road environment
- biomechanical (physical) distraction, e.g., the driver removes one/both hands from the steering wheel
- cognitive distraction, e.g., the driver is distracted by his/her thoughts.

But what makes driver distraction so interesting and complex to explain? The most important difference to previous attention models is the fact, that a model for driver distraction must be capable of multitasking. All previous models are not sufficient, if they cannot explain or predict the behavior of a driver performing a secondary task while driving.

When using the vehicle, drivers must continually allocate their attentional resources to both driving and non-driving tasks. Because many aspects of the driving task become automated with experience, drivers are often capable of dividing their attention between concurrent tasks without any consequences to driving performance or safety.

> Distraction can occur either because the secondary task is so complex or compelling that drivers fail to allocate (or prioritize) sufficient attention to driving, or because the demands of the driving task are so high that they do not allow the performance of a secondary task at any level (Young [2007]).

4.2 Atomar Aspects of Driving

break up multitasking into smaller parts

In this chapter we will have a closer look at the basic components of driving. This is necessary since we want to

special about driver distraction models is multitasking

drivers allocate attentional resources to driving and non-driving tasks

reasons for distraction: complexity of secondary task, demands of driving tasks

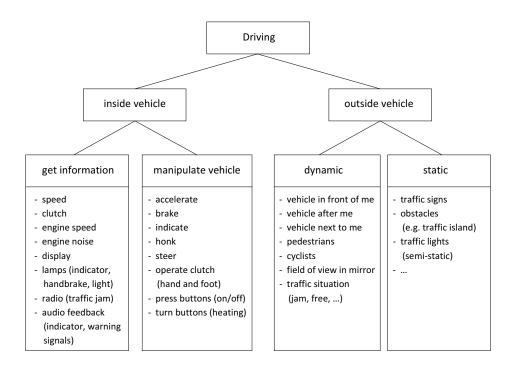


Figure 4.1: Atomic driving components

consider multitasking and therefore should know which atomar components are involved in the driving task.

Such a consideration can be very interesting but also difficult because driving itself involves the continual multitasking of a number of subprocesses that make use of the driver's cognition, perception, and motor movements (Salvucci [2002]).

4.2.1 Identify Basic Components

First of all, we have to **identify** these subtasks. This can be done by dividing the driving task into smaller and smaller subtasks. Figure 4.1 classifies activities, which are involved in driving.

As you can see, driving involves much more activities than oneself is usually aware of. This list is not entitled to be interesting but challenging consideration since driving already is multitasking

identify basic components by dividing the driving task into subtasks

driving involves a lot activities

complete, but shows one way to identify subprocesses systematically.

4.2.2 Mapping between Components and Resources

identify demandedIn the next step, after we have identified several subpro-
cesses, we have to classify which resources are demanded
by them. This classification can be done easily with the help
of table 3.1.

example no. 1: read We choose a task, e.g., *read traffic signs*, and contemplate traffic signs We choose a task, e.g., *read traffic signs*, and contemplate the different possible resources from the table. Since traffic signs must be recognized at a glance, this task demands **visual focal and verbal resources**, whereas tactile and auditive resources are not involved. Though the read traffic sign(s) must be recognized, processed and understood and, in consequence, **cognitive processing** is also demanded, depending on the nature of the visual processing (verbal or spatial or both).

To give another example, we choose the task *operate steering* example no. 2: wheel. Since the driver has to have at least one hand at the operate steering steering wheel, no visual resources are required to localize wheel it. One may disagree and can argue that you need some visual resources to analyze the result of your steering wheel movements. If this is your point of view, feel free to change the later demand vectors for your analyzation. The auditory channel is not relevant for this task as well, whereas tactile, cognitive and responding processes in their spatial classification are all necessary. The tactile spatial resources will help to feel the position of the steering wheel (turned, center position, ...). The cognitive spatial resource is used to interpret this information and to calculate, in which direction the steering wheel must be turned to achieve the desired effect whereas the responding spatial resource is needed to accomplish the operation "turn steering wheel".

Table 4.1 contains some of these classifications, including the previous two examples:

task	demanded resources
read traffic signs	verbal (symbols, text) vision,
	cognitive verbal processing
estimate + correct distance	focal spatial vision,
between ownvehicle and	ambient spatial vision,
(dynamic and static) obstacles	cognitive spatial processing,
	spatial responding
lane keeping	ambient spatial vision,
	tactile spatial,
	cognitive spatial processing,
	spatial responding
check speedometer, tachometer,	focal spatial vision,
	verbal vision,
	cognitive verbal processing
check/recognize other	verbal vision,
display elements	ambient vision,
	cognitive verbal processing
look at mirrors	focal spatial vision,
	ambient spatial vision,
	cognitive spatial processing
accelerate, decelerate,	tactile spatial processing,
brake, operate clutch	auditory processing (feedback),
	cognitive spatial processing,
	spatial responding
operate steering wheel	tactile spatial processing,
	cognitive processing,
	spatial responding
use indicator	tactile spatial (distance) processing,
	tactile verbal (recognize
	correct arm) processing,
	cognitive spatial processing,
	spatial responding
auditory feedback from vehicle	auditory spatial (where) processing,
(hear engine, indicator,)	auditory verbal (what) processing,
	cognitive spatial processing,
	cognitive verbal processing

Table 4.1: Typical driving subtasks and their resource demands

4.2.3 Assign Values

determine quantity of
demanded resourcesFinally, we have to determine how many resources are de-
manded by the identified subprocesses.

Either this can be done intuitively since we chose a very simple demand classification in chapter 3.2.1, namely insignificant (0), easy (1), moderate (2) or difficult (3), or, we can use the scale of Aldrich et al. [1989]. You can find the scale in the appendix (A).

extension of Aldrich'sThis quantitative scale of demand for different molecularscale with ourtasks was developed by researchers and is still in use inresource names andsoftware tools nowadays (Wickens [2002]). For the purposeour scale valuesof this thesis, I extended this table by two columns: The *Resource* column maps the described task to the considered resources of the 4-d model (see again 3.1) and the *New Value*column represents the original scale values in our simplified classification, ranging from 0 to 3.

4.2.4 Special Conditions

particular driving situations can be affected by driving surface, wind, light, traffic conditions, etc. Once we understood driving as a set of subcomponents, we can use this knowledge to create resource vectors for different driving situations. Note that these driving scenarios are exemplary. It is also possible to adjust the values in order to match different conditions. Particular situations can be affected by

- driving surface (rain, black ice, snow, bouldering, ...)
- wind regime
- lighting conditions
- visibility conditions
- traffic conditions (holdup, emergency lights, ...)

and can be treated suitable by adjusting the corresponding demand values.

two possibilities:

help of A

intuitively or with the

4.3 Exemplary Driving Tasks

In this part we will construct demand vectors for exemplary driving tasks. We will try to model normal situations, including city driving, rural road driving and highway driving, but also situations which are very stressful.

All these demand vectors in section 4.3 and section 4.5 were constructed in a workshop about task modeling. For more information about this workshop, see section 5.1.

4.3.1 City Driving

We now consider driving in the city as first example. Therefore, we have to contemplate which subprocesses are involved and how strong their ressource demands are in this particular environment.

Driving in the city usually involves many dynamic changes in the environment, namely other vehicles, cyclers and pedestrians who all have their individual goals. Thus, the trafficflow must integrate a lot of different conditions in contrast to speedway driving, where the speed of most road users is different, but their direction is the same.

This leads to a lot of accelerating, decelerating and braking to control your own vehicle and make adjustments to the current driving situation (resources: tactile spatial, cognitive spatial, responding spatial). In addition, you need much attentive observation of the environment - direct observation as well as looking at mirrors (resources: visual spatial focal, visual spatial ambient, cognitive spatial). In between you have to check the speedometer (resources: visual verbal, cognitive verbal), use the indicator, read traffic signs (resources: visual verbal, visual spatial focal, cognitive verbal) etc.

It is noteworthy that this task, as all driving tasks, heavily depends on the traffic situation. Driving through the city at rush hour causes much more cognitive load than on a sunday morning. next: construct demand vectors for exemplary driving tasks

demand vectors result from a workshop (see 5.1)

first example: city driving

characterization of city environment: many dynamic changes, different traffic participant

involved subtasks and resources

task heavily depends on traffic situation

		Demand Vector											
Task			Perceptual						Cognition		ponse	Demanded	
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources	
City Driving	2	2	1	1	0	1	0	3	1	2	0	13	

A resource allocation table for our city driving task could look like this:

 Table 4.2: Demand vector for city driving

4.3.2 Rural Road Driving

second example: rural road driving	Our second exemplary driving task is driving on a rural road. Generally, the cognitive load for this driving task is not as high as for city driving.
particular subtasks and resources	The lane keeping task can sometimes be more pronounced than in the city because of the higher average speed (re- sources: visual spatial ambient, tactile spatial, cognitive spatial, responding spatial), whereas breaking, accelerating and estimation of distances etc. (resources: cognitive spa- tial, responding spatial) are not done as often as in the city.
more space for secondary tasks	In consequence, the lower degree of involving our visual and cognitive resources leaves more room for secondary ac- tivities.

		Demand Vector										
Task		Perceptual Cogr								nition Response		Demanded
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
Rural Road	1	2	1	1	0	1	0	1	1	1	0	9

Table 4.3: Demand vector for rural road driving

4.3.3 Highway Driving

third example: highway driving Our third considered driving task is driving on the highway. Highway driving is characterized by very high velocity which hampers other subtasks. For example, the difficulty of reading traffic signs (resources: visual verbal, visual focal spatial, cognitive verbal, cognitive spatial), lane keeping (resources: visual spatial ambient, tactile spatial, cognitive spatial, responding spatial), and observation of your environment, mainly other vehicles, (resources: visual spatial focal, visual spatial ambient, cognitive spatial) can increase significantly in special conditions. The higher velocity extends braking distances and the sensitivity of vehicle guidance as well. Additionally, your car becomes more susceptible to squalls and changing wind regimes if you, for example, overtake another car or truck.

Thus, the following table contains two task variations of highway driving, namely normal highway driving and highway driving through a building site. changed conditions compared to previous examples because of speed

two variants of highway driving: normal and through a building site

		Demand Vector									Sum of	
Task			Perc	ceptu	al			Cog	nition	Res	ponse	Dem.
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Res.
Highway Normal	2	2	1	1	1	1	0	2	1	2	0	13
with Building S.	2	3	1	1	1	2	0	3	1	2	0	16

Table 4.4: Demand vectors for highway driving tasks

4.3.4 Worst Driving Tasks

It is easy to obtain that even such a difficult driving task as highway driving through a building site does never reach the theoretical maximum sum of demanded resources (which is 33 on our scale).

At section 3.3.2 I mentioned that there is no characterization of resource demand on a single scale with some kind of 'red line'.

The following approach could help to get a benchmark in terms of task difficulty:

First of all, we model different driving tasks, as usual. Then, in the second step, we try to model really diffitheoretical maximum demand value is never reached in real applications

there is no characterization of a red line

get a benchmark for task difficulty

model normal and difficult driving tasks

cult and challenging once, like highway driving through a building site. In our group meeting, we identified the task **searching a parking lot in the city with a foreign car** as being the most challenging for us.

When we later perform our calculations with the model, we will use this worst driving task (WDT) as a reference point for our scale.

4.4 Secondary In-Vehicle Tasks

model secondary tasks directly from the interaction we want to model	Similar to driving tasks, we have to characterize secondary tasks in matters of resource demands, i.e., which of the re- sources from table 3.1 are used in the secondary task and how many. Since these secondary tasks are not fixed, such a classification can be done directly from the interaction we want to model.
most important: input and output modalities	The most important aspects for our analyzation are the in- put and output modalities.
input modalities: hands, voice	Input for a in-vehicle device is usually done via hands or via voice. In the case of manually input it can be useful to distinguish between buttons, which give a natural tactile feedback, and touchdisplays which usually dont have this characterization.
output modalities: sound, haptic, visual	In terms of output and information representation, devices can utilize auditory (sound), tactile (haptic) and/or visual (display) senses. To alleviate the mapping between re- source demands and secondary tasks the subdivision of sound into signal vs. message seems to be reasonable.
overview classification of secondary tasks	These classification of secondary tasks is visualized in the following figure:
	4.5 Exemplary Secondary Tasks

five modeled In the next part of this section, we will have a look at five secondary tasks

WDT will be needed later on s a reference

point for our scale

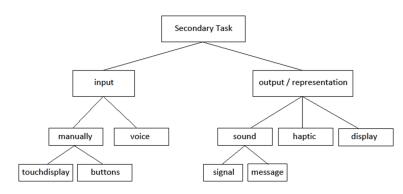


Figure 4.2: Classification of secondary tasks

secondary tasks. They should represent the spectrum from easy daily activities (listen to the radio) to complex secondary tasks like install an app or play a game.

All these demand vectors for secondary tasks, just as the once for our driving tasks in section 4.3, were created in a workshop about task modeling. See section 5.1 for further information.

demand vectors result from a workshop (see 5.1)

4.5.1 Search Radio Frequency

Our first secondary task will be to search a certain frequency on the radio. Assume you have a traditional model without any extras like in picture 4.3.

If the radio is not already switched on, you will have to do that first. This will not need many visual resources (visual spatial focal) since the ON button is different from all the rest and very easy to locate. Maybe you do not even have to look at the radio and can find the button by its shape and position, using your haptic sense (resource: tactile spatial and verbal). In both cases you will have to respond spatial to push the button.

After the radio is switched on, we will search our favourite station (assuming that this one is not already programmed onto a button). We start our search by looking at the actual radio frequency and compare it to the frequency of your

n fre-	what our radio looks
model	like
e to do visual all the n have pe and spatial spatial	procedure of switching on the radio

start search certain frequency

Figure 4.3: Traditional car radio

favourite station (visual spatial focal vision, visual verbal vision + cognitive verbal processing).

Then we select one of the two buttons to adjust the frequency and push it. In this case it is more likely that we have to take another look at the radio to find the correct button, since they are not as easy to feel as the big ON/OFFbutton. Besides from that, we have to look at the street from time to time, leaving only short gazes for getting the information from the radio we need. Because of this, the pushing time of the buttons to select the frequency will be roughly estimated and depends on the difference between the actual station number and the one we want to achieve.

During this whole process, we need visual spatial focal and visual verbal resources to read the numbers on the display, tactile spatial resources to feel the state of the button (pushed/released), cognitive verbal processing to compare numbers and respond spatial resources to push/release the button and maybe switch over to the other one, if we did not get the right frequency at the first time. Maybe it is possible to use auditory verbal processing to recognize the actual station, but this will not work in every situation.

Our corresponding demand vector for this task looks like

get the right frequency by comparing actual frequency and searched frequency

demanded resources for this task

this:

	Demand Vector										Sum of	
Task	k Perceptual Cognition Respon								ponse	Demanded		
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
Search Radio Fr.	2	0	2	0	1	2	1	0	1	1	0	10

Table 4.5: Demand vector for searching a certain radio frequency

4.5.2 Listen to the Radio

Now we will have a closer look at the secondary task **listen to the radio**. In contrast to the previous secondary task, the modeling of this one can be done really straight forward:

When you listen to the radio, you need auditory verbal and a few spatial resources to perceive the song or message and cognitive verbal resources to process your perception. The number of demanded resources may vary in terms of what you perceive. If you listen to a song, the cognitive load is usually not as high as if you listen to an important road message. Some of us may sing along with their favourite song, so we include a little responding verbal, too. modeling of listen to the radio can be done straight forward

demanded resources for listen to the radio

A typical secondary task "Listen to the Radio" could look like this:

	Demand Vector										Sum of	
Task		Perceptual							Cognition		ponse	Demanded
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
Listen Radio	0	0	0	1	2	0	0	0	2	0	1	6

Table 4.6: Demand vector for listen to the radi	Table 4.6:	Demand vec	tor for listen to	o the radio
---	------------	------------	-------------------	-------------

As you can see, even if the device in this and the previous secondary task (search a certain frequency on the radio) is the same, the resource demands are completely different and so the difficulty of the task is. While setting up the radio has a total resource demand of 10, listening to the radio only results in a sum of 6.

Another very important aspect is the factor of time. As long as the performed secondary task is not time-critical, like the same device, different resource demands and task difficulty

listen to the radio is interruptible

previous two, you can interrupt it and later on continue with what you have done before to give all your attention to the more important primary task of driving. secondary tasks If there is no possibility to interrupt the secondary task, it should not be possible to be performed as long as the vehishould be forbid if cle is in motion. they are time-critical **Play Tetris** 4.5.3 modern We recently looked at two very common secondary tasks while driving. However, this thesis would not be contementertainment porary if we would ignore the possibilities of nowadays insecondary task: vehicle systems, including entertainment functionalities as Tetris well. For this reason, our third considered secondary task is to play the computer game Tetris at the vehicles driving console via touchscreen. use touchscreen, Let us assume the game uses a touchscreen (resources: focal sound, characterized spatial and verbal vision, tactile spatial, response spatial), as being difficult and sound (resources: auditory verbal). Furthermore, the game should requiere heavy mental demands (resources: cognitive spatial and verbal). So we model the task play Tetris as follows:

		Demand Vector										
Task		Perceptual								Response		Demanded
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
Play Tetris	3	1	3	0	1	2	0	3	1	3	0	17

Table 4.7: Demand vector for playing Tetris via touchscreen

4.5.4 Worst Secondary Tasks

playing games while driving should be forbidden	Playing games while driving seriously compromises safety and should only be allowed, if the motor is turned off. Ad- ditionally, it is a time-critical secondary task, which makes it even more inappropriate while driving.
WST Tetris as reference	To do this justice, I will refer to playing Tetris as our worst

secondary task (WST), similar to 4.3.4 as our worst driving task.

4.5.5 Further Secondary Tasks

We modeled two more secondary tasks in our workshop.	two more examples
For these tasks I will restrict myself to a short description and the resulting demand vectors.	only results of worshop are presented
The first one was install an app on your smartphone. The second one concerned a service in higher class automobiles from BMW, called BMW Assist ¹ .	install an app and use BMW Assist
This service works in the following way: You can start a re- quest by pushing a button in your centre console. The car makes a telephone connection to the BMW service head- quarters and automatically transmits your vehicle's status and position data. Then you can tell them by phone that you, for example, would like to drive to the nearest restau- rant. The people from the service station will search for what you requested and send the information directly to your navigation device in your car.	description of BMW Assist

		Demand Vector											
Task	TaskPerceptual							Cog	nition	Res	ponse	Demanded	
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources	
Install App	2	1	3	0	1	1	0	2	2	2	0	14	
BMW Assist	1	0	0	0	2	1	0	1	3	0	2	10	

Table 4.8: Demand vectors for further secondary tasks

4.6 How to use the 4-d model

In this chapter I will demonstrate the profit of the multiple resource model within three scenarios in which the model is used to predict interference between driving and a secondary tasks.

next: use of the model in three different scenarios

¹http://www.bmw.com/com/en/owners/navigation/assist₁.html

influence of driving conditions, influence of secondary task, context sesitivity These three scenarios differentiate between their approaches. In the first scenario the influence of the driving conditions is analyzed. The second scenario deals with the effect of variances in secondary tasks, whereas the third scenario derives its' values out of context sensitivity between these two.

use demand vectorsWe already created demand vectors for the following tasksfrom beforeand we will use these demand vectors in later calculations.

					Dem	and	Vecto	or				Sum of
Task			Perc	ceptu	al	Cognition		Response		Dem.		
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Res.
Rural Road	1	2	1	1	0	1	0	1	1	1	0	9
Highway Normal	2	2	1	1	1	1	0	2	1	2	0	13
City Driving	2	2	1	1	0	1	0	3	1	2	0	13
Search Radio Fr.	2	0	2	0	1	2	1	0	1	1	0	10
Install App	2	1	3	0	1	1	0	2	2	2	0	14
BMW Assist	1	0	0	0	2	1	0	1	3	0	2	10

Table 4.9: Overview: Driving and secondary tasks for the following situations

4.6.1 Reference Values

idea behind the model: compare different multitasking scenarios	As stated before, the idea behind the model is to compare different multitasking scenarios and judge, which one will be better than the other, for example if it is better to use voice or manual control during the same driving situation.
Wickens: model is for relative differences, not for absolute predictions	Wickens explicitly mentions this point in his work: The primary value of such a model is predicting relative differ- ences in multitasking between different conditions or inter- faces. It is not designed to make absolute predictions of performance (Wickens [2008]).
hints in terms of an overload-threshold would be helpful	However, it would be useful to have at least some hints which resulting inteference values are allowed, which are critical and which are most likely above the overload- threshold.
we need two new scaling factors	For this reason I introduce another scaling factor for each of

the two (demand and conflict) components.

While the demand vector values from the theoretical model have the possibility to reach a total sum of 33, this value will never be reached when modeling a real scenario. Compa- rably, the same problem occurs with the number of over- lapping resources. Thus, I introduced a worst driving task (4.3.4) and a worst secondary task (4.5.4).	max theoretical values are never reached
The idea behind the two further scaling factors is to see the demand and conflict component between the worst driving task and the worst secondary task as 100% , or in terms of our model, as a 6 on the scale.	see demand and conflict component between WDT and WST as 100%
If you calculate the interference between searching a park- ing lot in the city with a foreign car and play Tetris, you can derive these scaling factors as follows:	calculate scaling factors
The general scaling factor for the demand component be- tween two tasks is	general demand scaling factor
$\frac{22 * maximum conflict value}{Resources demanded by WDT + WST}$	
in our case: $\frac{22*3}{18+17} = 1,89$	in our examples
The general scaling factor for the conflict component of a task is	general conflict scaling factor
2 * maximum conflict value	
conflict component between WDT and WST	
in our case: $\frac{2*3}{4,23} = 1,42$	in our examples

Most calculations with the model using such a rescaling try confirmed, that a critical value for the demand as well as for lir

trying to define red line area: $\frac{2}{3}$ of conflict between WDT and WST

the conflict component is around 4.0 of 6, which is equivalent to $\frac{2}{3}$ of the conflict values between the WDT and the WST.

4.6.2 Influence of Driving Environment

driving tasks restrict secondary tasks	Each driving situation has heavy influence on our possibil- ities to perform secondary in-vehicle tasks. Some driving situations leave a lot of freedom to do so while others will need a great deal of concentration and attention. We know this from our everyday experience.
model should be confirm with experience	In consequence, the model should be confirm with what we already know, but also useful to predict the influence of driving situations in general.
rural road vs. highway driving	Assume we want to check the difference in searching a cer- tain radio frequency (fixed secondary task) while driving on a rural road (driving situaion 1) vs. driving on the high- way (driving situaion 2).
calculate interference for first pair of tasks	We start with computing the interference between rural road driving and searching a certain radio frequency :
unscaled demand component 1	Demand component between rural road driving and search radio frequency: $\frac{9}{11} + \frac{10}{11} = 1,73$
scaled demand component 1	Scaled demand component between rural road and search radio frequency: $1,89*1,73=3,23$
calculate conflict component 1	For the conflict component we first add all relevant con- flict values, i.e., those entries from the conflict matrix where both tasks, need the same resources. These entries are marked in the following conflict matrix:
unscaled conflict component 1	When we sum these entries up, we get

						R	lural	Road	Driv	ing			
				Per	ceptu	Cognitive		Response					
			Vsf	Vsv	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv
		Ex.	1	2	1	1	0	1	0	1	1	1	0
	Vsf	2	1	0,8	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
	Vsv	0		1	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Set	Vv	2			0,8	0,4	0,6	0,4	0,6	0,5	0,67	0,2	0,4
	As	0				0,8	0,6	0,6	0,4	0,65	0,47	0,4	0,2
up	Av	1					0,8	0,4	0,6	0,45	0,67	0,2	0,4
	Ts	2						0,8	0,6	0,65	0,47	0,4	0,2
Radio	Tv	1							0,8	0,45	0,67	0,2	0,4
	Cs	0								0,8	0,6	0,6	0,4
	Cv	1									0,8	0,4	0,6
	Rs	1										0,8	0,6
	Rv	0											1

Table 4.10: Conflict matrix for rural road driving and searching a certain radio frequency

 $\begin{array}{l} 1+0,8+0,6+0,6+0,6+0,75+0,47+0,4+0,8+0,4+\\ 0,4+0,5+0,67+0,2+0,4+0,45+0,67+0,2+0,8+\\ 0,65+0,47+0,4+0,45+0,67+0,2+0,8+0,4+0,8\\ =15,55 \end{array}$

Now we have to do the first rescaling to map the conflict interval rescaling component to the interval 0 - 6:

$$\frac{6}{36,09} * 15,55 = 2,59$$

The second rescaling contains the comparison to the conflict component between the worst driving task and the component 1 worst secondary task:

$$1,42 * 2,59 = 3,68$$

When we add our scaled demand component and ourtotal interferencescaled conflict component, we finally getvalue 1

$$3,23+3,68=6,91$$

	as our total interference value between rural road driving and set up the radio.
calculate interference for second pair of tasks	To compare it with the other task combination, we need the other total interference value as well.
unscaled demand component 2	Demand between highway driving and search radio frequency: $\frac{13}{11} + \frac{10}{11} = 2,09$
scaled demand	Scaled demand component between highway and search radio frequency:

component 2

4 - y

$$1,89*2,09=3,95$$

calculate conflict	For the conflict component we have to add the conflict val-
component 2	ues:

							High	way l	Drivi	ng			
			Per	ceptu	Cogr	nitive	Response						
			Vsf	Vsv	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv
		Ex.	2	2	1	1	1	1	0	2	1	2	0
	Vsf	2	1	0,8	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
	Vsv	0		1	0,6	0,6	0,4	0,6	0,4	0,75	0,47	0,4	0,2
Set	Vv	2			0,8	0,4	0,6	0,4	0,6	0,5	0,67	0,2	0,4
	As	0				0,8	0,6	0,6	0,4	0,65	0,47	0,4	0,2
up	Av	1					0,8	0,4	0,6	0,45	0,67	0,2	0,4
	Ts	2						0,8	0,6	0,65	0,47	0,4	0,2
Radio	Tv	1							0,8	0,45	0,67	0,2	0,4
	Cs	0								0,8	0,6	0,6	0,4
	Cv	1									0,8	0,4	0,6
	Rs	1										0,8	0,6
	Rv	0											1

Table 4.11: Conflict matrix for highwa	y driving and searching a certain radio fre-
quency	

Adding the overlapping resources leads to: unscaled conflict component 2 $1\!+\!0,8\!+\!0,6\!+\!0,6\!+\!0,4\!+\!0,6\!+\!0,75\!+\!0,47\!+\!0,4\!+\!0,8\!+\!0,4\!+$ 0, 6+0, 4+0, 5+0, 67+0, 2+0, 8+0, 4+0, 45+0, 67+0, 2+0,8+0,65+0,47+0,4+0,45+0,67+0,2+0,8+0,4+0,8= 17, 35

Again, we have to to the first rescaling to map the conflict interval rescaling component to the interval 0-6:

 $\frac{2*3}{36,09}*17,35=2,88$

Our relative scaling then computes to:

1,42 * 2,88 = 4,09

And in the end we get a total interference value of

3,95+4,09=8,04

As we can see, searching a certain radio frequency while driving on a rural road is not a big problem whereas performing the same task while driving on the highway causes a lot more intereference.

This is due to the fact that the overall sum of demanded resources is higher with the more complex driving task as well as the interference between these two tasks.

Compared to the interference between our worst driving task and our worst secondary task (play Tetris), we obtain that in the first case none of the components is in the critical area above 4.0, whereas searching a certain radio frequency while driving on the highway should be avoided.

4.6.3 Influence of Secondary Tasks

In this part we will calculate the interference between the	approach no. 2
same driving situation and different secondary tasks.	

The fixed driving situation for this particular scenario will fixed driving task: be normal city driving. normal city driving

scaled conflict component 2

value 2

total interference

searching radio freqency on rural road better than on the highway

reason: sum of demanded resources and interference

in terms of a red line: 1st pair ok, 2nd not

BMW Assist vs. install an app	When we make use of the BMW Assist, this should still work while installing an app in such a traffic situation should cause a lot more problems. With the previous tasks the model predicts the following values:
unscaled demand component 1	Demand component of city driving + BMW Assist: $\frac{13}{11} + \frac{10}{11} = 2,09$
scaled demand component 1	Scaled demand component: $1,89*2,09=3,95$
unscaled conflict component 1	Sum of conflict values: 12,46
intervall rescaling	Rescaling: $\frac{6}{36,09} * 12,46 = 2,07$
scaled conflict component 1	Scaled conflict component: $1,42*2,07=2,94$
total interference value 1	Sum of scaled demand and scaled conflict component: $3,95+2,94=6,89$.
calculate second value	Now we have to calculate the second interference value be- tween the pair of tasks city driving and install an app:
unscaled demand component 2	Demand component of city driving + install in app: $\frac{13}{11} + \frac{14}{11} = 2,45$
scaled demand component 2	Scaled demand component: $1,89 * 2,45 = 4,63$

Sum of conflict values:

20,65

Rescaling:

 $\frac{6}{36,09} * 20,65 = 3,43$

Scaled conflict component:

1,42*3,43=4,87

Sum of scaled demand and scaled conflict component:

value 2 4,63+4,87=9,5As we can see, using the BWM Assist in a normal city driving environment does not jar with any of our restrictions ok because both components (demand and conflict) are below 4.0.

In contrast, installing an app in the same situation is a lot more challenging since both components are in the critical area above 4.0 and thus, this secondary task should be avoided while driving through the city.

4.6.4 Context-sensitive variances in Secondary Tasks

This subsection may be the most interesting one for designers of in-vehicle devices.

While the driving situations can not be influenced by us, we are able to change the input and output modalities of a new device. At this point the model is useful to predict which particular resources can be used in a concrete situation to avoid conflict between the driving and the secondary task.

Let us assume we are driving through the city. In the previous modeled task we needed 13 resources for that. We unscaled conflict component 2

intervall rescaling

scaled conflict component 2

total interference

result: BMW Assist

result: install app not ok

particular interesting for designers

use model to avoid conflict with secondary task

goal: secondary task of average difficulty with minimal conflict

	now want to model a secondary task with as little conflict as possible, but still be of average difficulty. Since searching a certain radio frequency and installing an app both used 10 resources without exceeding the total resource demand value of 4.0 (see 4.6.3) we will stick to that.
in this task 3 resources are not in use: Av, Tv, Rv	If we have a closer look at the demand vector of city driv- ing, [2,2,1,1,0,1,0,3,1,2,0], we can see that the resources
	Auditory Verbal
	• Tactile Verbal
	Responding Verbal
	are not used at all.
create new task out of free resources	Consequently, our design should focus on these resources. Since these large quantity of resources is focused on the ver- bal part, we will also need verbal cognitive resources and maybe some little auditive spatial once.
resulting demand vector could look like this	In this way we derive a demand vector for the device wich could look like this:

	Demand Vector								Sum of			
Task		Perceptual					Cog	nition	Response		Demanded	
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Resources
New Task A	0	0	0	1	2	0	3	0	2	0	2	10

 Table 4.12: Demand vector for secondary task with little conflict

possible interface of secondary task	Such a task could combine a voice-controlled interface with haptic output in forms of symbols.
model predicts little interference in that case	In combination with city driving these tasks have a demand component of $3,94$ and a conflict component of $1,69$ and, thus, cause an interference value of $5,63$.
task B: same number of resources, high interference	In contrast, a new task B with the demand vector $[1,1,1,1,1,1,1,1,1,1,0]$ needs the same number of resources, but its conflict component with city driving is 5,87 and adds up to a total interference value of 9,81.

At this point the model confirms the importance of interface design although it is in the driver's willingness to perform a secondary task while driving.

At the same time it emphasizes designer's responsibility for road safety since he can create devices which do not use heavy demanded resources or disable certain functions via workload managers, as described in section 2.3.4.

4.7 Software for Computations with the 4d-Model

The most challenging part in this approach to driver distraction is the modulation of driving and secondary tasks. Afterwards, the following computations can be done by a computer since these steps are clearely defined.

For this reason I wrote a computer program that calculates the demand and conflict components between task combinations together with their total interference value.

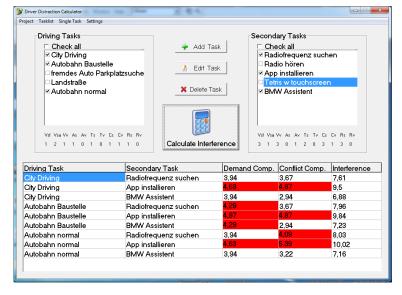


Figure 4.4: Software for computation of interference values

model confirms importance of interface design

designer's responsibility for road safety

after creation of tasks, next steps can be automated

software for interference calculations functions of the program: add/change/delete tasks, calculate interference, save/load projects, sort results The program was written with Borland's Delphi 7 and allows the user to create, edit and delete single tasks for which an interference value should be calculated. Lists of tasks can be saved and loaded into other projects to interchange tasks that were already created between people who use the program. If you want to use a different conflict matrix and/or maximum demand value, these settings can be changed as well and saved as a whole project. Due to the fact that the rescaling from section 4.6.1 is not necessary to use the model, this feature can be enabled or, respectively, disabled by the user. Additionally the calculated values can be sorted by the name of the driving tasks, the name of the secondary tasks, their demand components, their conflict components, or their total interference values.

Chapter 5

Evaluation

5.1 Workshop about Task Modeling

In the following subsections I will explain the benefit of the workshop, its content, where it took place, and the relevant information about its participants.

following: what, how, where, who

5.1.1 Reason for the Workshop

Modeling tasks, driving as well as secondary tasks, is a highly subjective thing. While for the one person a certain situation may be percieved as being easy, the same situation can be judged totally different by another one.

For this reason I decided to do a workshop about modeling driving and secondary tasks. This workshop should not only explain how tasks can be modeled but also help me to construct a number of tasks in cooperation with other drivers.

The idea behind this workshop was to use the experience and knowledge of different people with different driving skills to make the modeled tasks less subjective. modeling tasks is highly subjective

during workshop: construct tasks in cooperation

resulting tasks should be less subjective

language: german, time: 3 hours structure of the workshop	The workshop was held in german, scheduled for three hours, and structurized in the following way. First of all, I gave an overview what I wanted to do within the three hours with this group.
	 25 min. Presentation 60 min. Creating driving tasks + break 15 min. Design aids driving tasks 60 min. Creating secondary tasks + break 15 min. Design aids secondary tasks
structure of the presentation	During the presentation, I went through the following points:
	1. Motivation: Why am I doing this? Why is this topic interesting?
	2. Goal of this workshop: What do I want to achieve?
	3. How to model tasks?
	4. Creating a driving task in cooperation.
	5.1.3 Where did the Workshop took place
conference room P3 Ingenieurgesellschaft March 3rd	The workshop was held at the conference room of P3 In- genieurgesellschaft mbH, Dennewartstrafle 25-27, D-52068 Aachen at March 3rd 2011 from 13:00 till 16:00.
	5.1.4 Participants and Background
4 male participants between 24 and 38	We were four participants, including myself, at the age be- tween 24 and 38. Besides the necessarity of wearing glasses,

5.1.2 Content of the Workshop

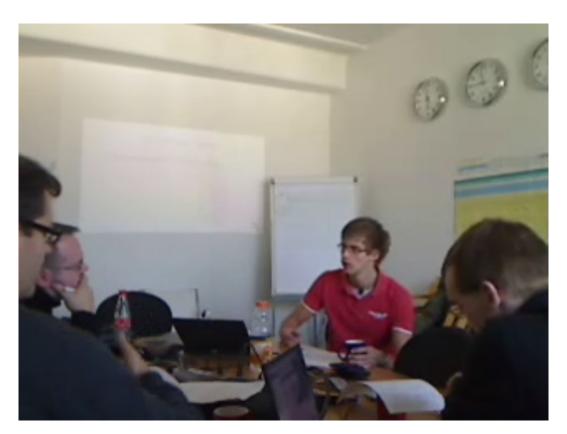


Figure 5.1: Workshop about Task Modeling

nobody had further restrictions to drive a vehicle. All participants were male and classified themselves as being safe drivers although their amount of driving varied between occasional and 30.000 km per annum.

While three of us had made their driving experience almost exclusively in Germany, one of us could look back at four years of driving a lot in differenct coutries, mainly in Western Europe and North America. This person was also used to drive different rental cars while the others always had access to their own car or to a familiar one.

The group covered totally different car sizes, ranging from Smart ForTwo to MB Vito/VW T5. At the time of the workshop, the participants had an aged Opel, an Audi A4, a Peugeot 206 and a Saab 900, all equipped with manual transmission. Some of these cars had a build in navigation system, radio/mp3 player and an air conditioning system. one participant with a lot of international experience

participants' experience with different cars Some of the participants also mentioned to use additional brought-in electronic devices from time to time.

driving in countries It is noteworthy that the person who was used to drive in other countries perceived driving in countries with speed with speed limits was limits on their highways as being more relaxed and easy perceived as more than in Germany, especially in the Netherlands, Switzerland and United States of America.

Results of the Workshop 5.2

following: resulting In this section I will analyze the results of the workshop. These include the resulting driving and secondary tasks, tasks, design aids, the outcomes of our design aids discussion, notes about real-time requirements, and real-time requirements, and a few words about situation awareness. situation awareness

5.2.1 Resulting Tasks

5 driving and 5 secondary tasks	During the workshop we created five driving tasks and five secondary tasks in cooperation.
from normal to complex driving tasks	The driving tasks included normal activities like driving through the city, on a rural road, or on the highway and more complex and challenging tasks like driving through a building suite on the highway or searching a parking lot in the city with a foreign car.
wide range of secondary tasks	The secondary tasks were very widespread, too, including searching a certain frequency on the radio, listen to the ra- dio, install an app on your mobile device, use a service like the BMW Assist to find the next hotel, and play Tetris on a touch screen in your vehicle's console.
overview: resulting demand vectors	The resulting demand vectors are listed in the following ta- ble.

relaxed

					Dem	and	Vecto	or				Sum of
Task			Perc	ceptu	al			Cog	nition	Res	ponse	Dem.
	Vsf	Vsa	Vv	As	Av	Ts	Tv	Cs	Cv	Rs	Rv	Res.
Driving Tasks												
City Driving	2	2	1	1	0	1	0	3	1	2	0	13
Rural Road	1	2	1	1	0	1	0	1	1	1	0	9
Highway Normal	2	2	1	1	1	1	0	2	1	2	0	13
w. Building Site	2	3	1	1	1	2	0	3	1	2	0	16
Parking Lot	3	2	2	1	1	2	1	3	1	2	0	18
				Seco	ndary	7 Tas	ks					
Search Radio Fr	2	0	2	0	1	2	1	0	1	1	0	10
Listen Radio	0	0	0	1	2	0	0	0	2	0	1	6
Install App	2	1	3	0	1	1	0	2	2	2	0	14
BMW Assist	1	0	0	0	2	1	0	1	3	0	2	10
Tetris Touchscr	3	1	3	0	1	2	0	3	1	3	0	17

Table 5.1: The resulting demand vectors from our workshop

5.2.2 Design Aids

While we had no big problems to develope and discuss tasks for different situations, we were not able to produce general design aids.

This could be due to the huge amount of variables influencing each modeled task. For example, the quantity of demanded resources varies, if the driving environment is unfamiliar or well known.

Furthermore, we discussed that the same varialble, in our case having a passenger, can hamper driving task A and be a benefit for driving task B.

5.2.3 Real-time Requirements

In terms of secondary tasks, we especially highlighted the aspect of real-time requirements. Driving tasks always contain this aspect whereas it is of high importance if the secondary task is interruptable and, in this case, how well this can be done. we could not generate design aids

possible reason: huge amount of variables

same variable can support one task while disturbing another

real-time requirements are crucial for secondary tasks by real-time requ. Situation Awareness 5.2.4 Additionally, we worked out that it is hard to compare the use of resources is different tasks because the more difficult a task is, the less a linked to task driver will notice his environment and thus will not make difficulty use of resources he would use in a less challenging situation. This corresponds to the situation awareness model in corresponds to which the situation awareness of a person depends on the situation awareness model state of the environment. A person's situation awareness then influences his decisions, which in turn affects his performance of actions, which again changes the state of the environment. For further information, see Endsley [1995].

What is still missing

no valid scientific	This thesis does not contain a valid evaluation and verifica-
evaluation	tion in terms of scientific demands.
this thesis should show a new approach	Instead it should show another approach to the topic of driver distraction and be the basis for further investigations in this topic.
why scientific	There are several reasons for this:
evaluation is missing	First of all, a validation of the model would be very com-
validtation of the	plex. I did not have the time, funds, instruments, etc. to do
model is very	this. Hints on how to validate the model are presented in
complex	6.2.
too much for this thesis	Secondly, it would by far go beyond the scope of this thesis and

difficulty of secondary task massively influenced Even the same secondary task could therefore be harmless, if it can be interrupted and continued easily every time or dangerous, if a long sequence of steps must be completed because otherwise the previous steps were useless.

5.3

thirdly, this work should not focused on statistical analysis but more on ideas and methods how to address such a complicated scientific question.

idea behind approach is more important

Chapter 6

Summary and future work

6.1 Summary and contributions

We have seen an interesting approach to the very complex problem of driver distraction. This topic is already highly contemporary and will become even more important in the near future. While most other approaches to driver distraction are often too complex, time-consuming or impracticable to be used in industry, Wickens' 4-d model offers fast estimations to judge multitasking scenarios.

The model is still a reference after all its years of existence. It is based upon neuroscientifically verified knowledge and thus, has high plausibility. Moreover it is relatively easy to derive design guidelines out of the model, which makes it a convenient aid to increase road safety. When conditions of multitasking resource overload already exist, the model can be used to recommend design changes.

However, one should be aware that the model has its primary value in predicting relative differences and not absolute predictions of performance (Wickens [2008], Tas [2003]).

In terms of driving tasks, we have seen that each task itself

quintessence: Wickens' 4-d model offers fast estimations to judge multitasking scenarios

models' advantages: still a reference, wellfounded by neuroscience, ...

primary value: predict relative differences

driving itself is already multitasking

is a composite of subtasks and can be very complex to be

captured entirely. While designers are not able to control driving situations, designers can influence input and they have influence on the input and output modalities of output modalities the HMI. At this point, the model can make its contribution to road safety. some expertise is Nevertheless some expertise is required to model tasks. required to model This may be the most difficult issue when using the model. While calculations of interference values can be automated tasks via software, the task modeling itself should be done with reasonable care. this thesis does not This thesis does make no claims of being complete. Incover all aspects stead it should lay the groundwork for further investigations. Since there are some points left to evaluate the work of this thesis, a complete assessment can only be done with restrictions. It is noteworthy that the calculations with our modeled tasks had satisfactory results but this fact does not proof universal validity. Moreover the workshop discovered the model's insuffireal-time requirements are not cient consideration of real-time requirements concerning secondary tasks. The possibility of preemptive multitasksufficiently considered ing heavily influences if a driver can or cannot engage in a secondary task without reaching the overload-level.

6.2 Future work

there is still a lot
work to be doneThere is still a lot to do in the area of research in driver
distraction.field study to validate
model's predictionsBased upon this thesis there should be a field study to val-
idate the model and its predictions. To achieve this the fol-
lowing steps are necessary:modelling of driving
tasks to a great
extent1. Create a fairly large quantity of modeled driving
tasks. There should be as many participants as possi-
ble to rule out subjective appraisals. With the help of

statistically methods fairly representative results can be achieved.

- 2. The modeled driving tasks have to be performed in reality and their resource demands have to be measured. At this point it is again important to rule out as many undesired influences as possible. E.g. neither the investigator nor the test person should know the modeling results of the driving tasks and the investigator should ensure that he/she really measures the resource demands, etc.
- 3. The same factors as in 1. and 2. have to be considered for secondary tasks. Not only a normalization of the results is important, but also the way of introducing the necessary information before participants can model a task. If this is done via a presentation or via a questionnaire, the result might rather concern the quality of the presentation/questionnaire and not, as intended, illustrate a high quality modulation.
- 4. Then, the model can be used to derive interference values between task combinations.
- 5. Again, further experiments need to be done, because the previous ones only concerned driving tasks or secondary tasks alone, but not combined in a multitasking scenario.
- 6. In the end, the results of the modeled tasks and the outcome of the experiments should be compared. Again statistical methods can help to proof if there exists real correlation between the values or just spurious correlation.

Even in terms of the 4-d model there are still some questions left to answer.

First of all: How can real-time requirements be integrated in this concept? On the one hand it seems to be inevitable to include this particular form of requirements since we want to create a model that can make realistic predictions. On the other hand if the integration of real-time requirements leads to an explosion of complexity, the model will lose its practicability and versatility. do 1. and 2. for

perform the modeled

driving tasks in

reality

secondary tasks as well

calculate interferences

perform experiences with task combinations

compare real values with calculated ones

challenging issues

integration of real-time requirements

what drives the allocation policy	Secondly researchers have to understand what drives the allocation policy. While this allocation can be controlled rel- atively well in the laboratory, the real world is much more complex. Phenomena such as unwanted diversion of at- tention to interruptions, cognitive tunneling, and auditory preemption often operate in ways that are clearly at odds with optimal allocation (Wickens [2008]).
balance between model parsimony and performance variance	Thirdly: What is the best balance between cost and bene- fit? Especially in the case of analyzing driver distraction, visual scanning plays a particular role, but future research must seek the balance between model parsimony and per- formance variance (Wickens [2002]).
close this thesis by quoting Wickens	To close this thesis, I would like to cite Wickens again:
	"These relative interference predictions may be useful for assessing the impact of various In-Vehicle Technologies in future automobiles and, in turn, may help validate the theoretical notions of multiple resources"
	—Tas [2003]

Appendix A

Workload Scales

Scale Val.	Descriptors	Resource	New Val.
Response			
1.0	Speech	Response-Verbal	0
2.2	Discrete Actuation (Button, Toggle, Trigger)	Response-Spatial	1
2.6	Continuous Adjustive	Response-Spatial	1
4.6	Manipulative	Response-Spatial	2
5.8	Discrete Adjustive	Response-Spatial	2
6.5	Symbolic Production (Writing)	Response-Spatial	3
		Response-Verbal	
7.0	Serial Discrete Manipulation	Response-Spatial	3
	(Keyboard Entries)	Response-Verbal	
Tactile			
1.0	Detect Discrete Activation of Switch	Tactile-Spatial	0
	(Toggle, Trigger, Button)	Tactile-Verbal	
4.0	Detect Preset Position or Status of Object	Tactile-Spatial	2
4.8	Detect Discrete Adjustment of Switch	Tactile-Spatial	2
	(Discrete Rotary or Discrete Lever Pos.)		
5.5	Detect Serial Movements	Tactile-Spatial	2
	(Keyboard Entries)	Tactile-Verbal	
6.1	Detect Kinesthetic Cues	Tactile-Spatial	3
	Conflicting with Visual Cues	Tactile-Verbal	
6.7	Detect Continuous Adjustment of Switches	Tactile-Spatial	3
	(Rotary Rheostat, Thumbwheel)		
7.0	Detect Continuous Adjustment of Controls	Tactile-Spatial	3
		Tactile-Verbal	

Table A.1: Workload Component Scales from Aldrich et al. part 1

Scale Val.	Descriptors	Resource	New Val.
Visual			
1.0	Visually Register/Detect	Visual-Verbal	0
	(Detect Occurrence of Image)		
3.7	Visually Discriminate	Visual-Spatial-Ambient	1
	(Detect Visual Differences)	-	
4.0	Visually Inspect/Check	Visual-Spatial-Focal	2
	(Discrete Inspection/Static Condition)	1	
5.0	Visually Locate/Align	Visual-Spatial-Focal	2
	(Selective Orientation)	-	
5.4	Visually Track/Follow	Visual-Spatial-Focal	2
	(Maintain Orientation)	Visual-Spatial-Ambient	
5.9	Visually Read (Symbol)	Visual-Verbal	3
7.0	Visually Scan/Search/Monitor	Visual-Spatial-Focal	3
	(Continuous/Seriel Inspection,	Visual-Verbal	
	Multiple Conditions)		
Cognitive		I	
1.0	Automatic (Simple Association)	Cognitive-Spacial	0
		Cognitive-Verbal	
1.2	Alternative Selection	Cognitive-Spacial	0
		Cognitive-Verbal	
3.7	Sign/Signal Recognition	Cognitive-Verbal	1
4.6	Evaluation/Judgment	Cognitive-Spacial	2
	(Consider Single Aspect)	Cognitive-Verbal	
5.3	Encoding/Decoding, Recall	Cognitive-Spatial	2
		Cognitive-Verbal	
6.8	Evaluation/Judgment	Cognitive-Spatial	3
	(Consider Several Aspects)	Cognitive-Verbal	
7.0	Estimation, Calculation, Conversion	Cognitive-Spacial	3
		Cognitive-Verbal	
Auditory		0	
1.0	Detect/Register Sound	Auditory-Spatial	0
	(Detect Occurence of Sound)		
2.0	Orient to Sound	Auditory-Spatial	1
	(General Orientation/Attention)		
4.2	Orient to Sound	Auditory-Spatial	2
	(Selective Orientation/Attention)	5 1	
4.3	Verify Auditory Feedback	Auditory-Verbal	2
	(Detect Occurrence of Anticipated Sound)		
4.9	Interpret Semantic Content (Speech)	Auditory-Verbal	2
6.6	Discriminate Sound Characteristics	Auditory-Spatial	3
	(Detect Auditory Differences)	Auditory-Verbal	
7.0	Interpret Sound Patterns	Auditory-Verbal	3
	(Pulse Rates, etc.)		

Bibliography

- European statement of priniciples on human machine interface for in-vehicle information and communication systems, 05 1998.
- Multiple resource modeling of task interference in vehicle control, hazard awareness and in-vehicle task performance, Proceedings of the Second International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, 2003. Aviation Human Factors Division.
- T.B. Aldrich, S.M. Szabo, and C.R. Bierbaum. *Applications* of Human Performance Models to System Design, volume 2 of Defense Research Series, chapter The development and application of models to predict operator workload during system design, pages 65 80. Grant R. McMillan and David Beevis and Eduardo Salas and MIchael H. Strub and Robert Sutton and Leo van Breda, 1989.
- J.R. Anderson. *Cognitive psychology and its implications*. Worth Publishers, 2004. ISBN 9780716701101.
- David B. Boles, Jonathan H. Bursk, Jeffrey B. Phillips, and Jason R. Perdelwitz. Predicting dual-task performance with the multiple resources questionnaire (mrq). *Human Factors*, 49:32 45, 2007.
- D. Broadbent. Decision and stress. Academic Press, 1971.
- Robert Desimone and John Duncan. Neural mechanisms of selective visual attention. *Annual Review Neuroscience*, 18: 193 – 222, 1995.
- Birsen Donmez, Linda Ng Boyle, and John D. Lee. The impact of distraction mitigation strategies on driving performance. *Human Factors*, 48:785 – 804, 2006.

- M.R. Endsley. Toward a theory of situation awareness in dynamic systems. *Human Factors*, 1:32ñ64, 1995.
- Paul Green. Driver distraction, telematics design, and workload managers: Safety issues and solutions. Technical report, University of Michigan Transportation Research Institute, 2004.
- John D. Lee & Joshua D. Hoffman and Elizabeth Hayes. Collision warning design to mitigate driver distraction. *CHI*, 6:?, 2004.
- William J. Horrey, Christopher D. Wickens, and Kyle P. Consalus. Modeling drivers' visual attention allocation while interacting with in-vehicle technologies. *Journal of Experimental Psychology*, 12:67 – 78, 2006.
- Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for rapid scene analysis. *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*, 20(11):1254 – 1259, November 1998.
- D. Kieras. *Control of cognition*, chapter Integrated models of cognitive systems, pages 327 355. New York: Oxford University Press, 2007.
- M.C. Polson and A. Friedman. Task-sharing within and between hemispheres: a multiple-resources approach. *Human Factors*, 30:633–643, 1988.
- Michael I. Posner. Orienting of attention. *Quarterly Journal* of *EJrperimental Psychology*, 32:3 25, 1980.
- Michael I. Posner and Steven E. Petersen. The attention system of the human brain. *Annual Review Neuroscience*, 13: 25 42, 1990.
- Michael I. Posner, Charles R. R. Snyder, and Brian J. Davidson. Attention and the detection of signals. *Journal of Experimental Psychology*, 109(2):160 – 174, 1980.
- Thomas A. Ranney, Joanne L. Harbluk, and Y. Ian Noy. Effects of voice technology on test track driving performance: Implications for driver distraction. *Human Factors*, 47:439 – 454, 2005.

- Dario D. Salvucci and Niels A. Taatgen. Threaded cognition: An integrated theory of concurrent multitasking. *Psychological Review*, 115:101–130, 2008.
- D.D. Salvucci. Modeling driver distraction from cognitive tasks. In *Proceedings of the 24th Annual Conference of the Cognitive Science Society*, 2002.
- J. C Stutts, D. W. Reinfurt, L. Staplin, and E. A. Rodgman. *The role of driver distraction in traffic crashes*. AAA Foundation for Traffic Safety, 2001.
- H. Summala, T. Nieminen, and M. Punto. Maintaining lane position with peripheral vision during in-vehicle tasks. *Human Factors*, 38:442 – 451, 1996.
- H. Summala, D. Lamble, and M. Laakso. Driving experience and perception of the lead car's braking when looking at in-car targets. *Accident Analysis and Prevention*, 30: 401 – 407, 1998.
- Anne M. Treisman and Garry Gelade. A feature-integration theory of attention. *Cognitive Psychology*, 12:97 136, 1980.
- A. T. Welford. Single channel operation in the brain. *Acta Psychologica*, 27:5–21, 1967.
- Christopher D. Wickens. Multiple resources and performance prediction. *Theor. Issues In Ergon. Sci.*, 2:159 – 177, 2002.
- Christopher D. Wickens. Multiple resources and mental workload. *Human Factors*, 50:449 455, 2008.
- M. Young, K. & Regan. Driver distraction: A review of the literature. *Distracted driving*, 1:379 405, 2007.

Index

4-d model, *see* 4-dimensional multiple resource model
4-d model: computations, 20–27
4-d model: contra, 29
4-d model: perceptual modalities, 18–19
4-d model: predictions, 45–55
4-d model: pro, 28–29
4-d model: processing codes, 17–18
4-d model: reference values, 46
4-d model: stages , 16–17
4-d model: visual channels, 19–20
4-dimensional multiple resource model, 15

Aldrich's scale, 36, 69 ambient vision, 20 atomar aspects of driving, *see* atomar driving components atomar driving components, 32–36 auditory perception, 18

basic components of driving, see atomar driving components

conflict component, 25 conflict matrix: conflict values, 22 conflict matrix: construction, 22 conflict matrix: with adjustments, 24 conflict matrix: without adjustments, 24 cube model, *see* 4-dimensional multiple resource model

demand component, 25 demand vector, *see* resource vector design aids, 61 driver attention studies, 9–11 driver distraction: definition, 31 driving task: city driving, 37 driving task: highway driving, 38 driving task: rural road driving, 38 driving task: worst driving task, 39 driving tasks: examples, 37–40

EPIC architecture, 7

ESoP, *see* European Statement of Principles European Statement of Principles, 13–14 evaluation, 57–63

focal vision, 19 future work, 66–68

HMI, *see* human machine interface human attention, 5 human attention models, 6–8 human machine interface, 1

industrial trends, 11–13 interference values: computation, 24–27 interference values: normalization, 27

multiple resource model, see 4-dimensional multiple resource model

overview: demand vectors for all modeled tasks, 60 overview: driver attention studies, 11 overview: possible resource demands and examples, 20

perception, cognition, responding, 16 predictions: context sensitive design, 53 predictions: influence of driving environment, 48 predictions: influence of secondary tasks, 51

real-time requirements, 61 related work, 5–14 resource vector, 22 resources: qualitative, 22 resources: quantitative, 22

secondary task: bmw assist, 45 secondary task: definition, 6 secondary task: install app, 45 secondary task: listen radio, 43 secondary task: play tetris, 44 secondary task: search radio frequency, 41 secondary task: worst secondary task, 44 secondary tasks: classification, 40 secondary tasks: examples, 40–45 SEEV model, 8 situation awareness, 62 software for driver distraction, 55–56 spatial processing, 17 special driving conditions, 36

tactile perception, 18 task analysis shell, 22

Index

verbal processing, 17 visual perception, 18

WDT, see worst driving task workshop, 57–62 WST, see worst secondary task

Typeset March 28, 2011