

WinCuts: Manipulating Arbitrary Window Regions for
More Effective Use of Screen Space

Desney S. Tan, Brian Meyers, Mary Czerwinski
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
desney@cs.cmu.edu, {brianme, marycz}@microsoft.com

ABSTRACT
Each window on our computer desktop provides a view into
some information. Although users can currently manipulate
multiple windows, we assert that being able to spatially
arrange smaller regions of these windows could help users
perform certain tasks more efficiently. In this paper, we
describe a novel interaction technique that allows users to
replicate arbitrary regions of existing windows into inde-
pendent windows called WinCuts. Each WinCut is a live
view of a region of the source window with which users can
interact. We also present an extension that allows users to
share WinCuts across multiple devices. Next, we classify
the set of tasks for which WinCuts may be useful, both in
single as well as multiple device scenarios. We present high
level implementation details so that other researchers can
replicate this work. And finally, we discuss future work that
we will pursue in extending these ideas.

Categories and Subject Descriptors: H.5.2 [Information Inter-
faces and Presentation]: User Interfaces - graphical user interfaces,
screen design, windowing systems; H.5.3 [Group and Organiza-
tional Interfaces]: Computer supported cooperative work.
General Terms: Human Factors, Performance.
Keywords: Windows, information management, spatial layout,
screen space, regions, interaction technique, collaboration.

INTRODUCTION
An increasing number of tasks require that users coordinate
and operate on information from multiple sources. Each
source of information is typically contained within a win-
dow, the fundamental unit at which users can currently eas-
ily manipulate information. Oftentimes, users benefit from
simultaneously viewing relevant information that exists
within different windows. Additionally, the spatial layout of
this information may be crucial to effective task perform-
ance as it helps users not only to establish spatial relation-
ships but also to visually compare contents.

Unfortunately, even with the emergence of large displays,
there is usually not enough screen space to view all win-
dows simultaneously. Even when this is possible, having
entire windows visible can introduce so much extraneous

space in between relevant information that spatial location
becomes less helpful. Alternatively, users can adjust win-
dows so that they contain only the relevant information, and
then lay them out. However, this is an extremely tedious
task as it involves multiple iterations of resizing windows
and scrolling content, especially in applications such as web
browsers that recalculate the layout of information based on
the size of the window.

Our work has focused on allowing users to easily specify
and organize relevant regions of information contained
within multiple windows so that they can make more effec-
tive use of screen space to perform their tasks more effi-
ciently. In this paper, we describe a novel interaction tech-
nique that allows users to replicate arbitrary regions of
existing windows into independent windows called Win-
Cuts. Each WinCut provides continuous visual updates of
the region as well as input redirection mechanisms that al-
low users to interact with content. We further describe how
the ability to share WinCuts across devices may extend the
utility of this system to multiple users engaged in co-

Copyright is held by the author/owner(s).
CHI 2004, April 24–29, 2004, Vienna, Austria.
ACM 1-58113-703-6/04/0004.

Source Window

WinCuts with
only relevant information

Figure 1: User makes two WinCuts to compare statistics be-
tween Seattle and Pittsburgh. The user could further WinCut

the menu to control the different charts in the existing two
WinCuts without using the source window. Using WinCuts for

the task requires less screen space and effort.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1525

located collaboration as well as single users working with
multiple devices. We provide a non-exhaustive classifica-
tion of the set of tasks that we believe might benefit from
the use of WinCuts. Next, we discuss high-level implemen-
tation details for our current prototype. Finally, we discuss
future directions that we will pursue with this work.

RELATED WORK
There exists a large body of research exploring window
management systems, which allow users to arrange multiple
windows on the screen (for history and review, see Myers
[5]). Within this body of work, many researchers have
compared the cost-benefit tradeoffs that such systems im-
pose. For example, Bly et al. compared tiled window sys-
tems, which automatically determine the size and location
of all windows such that each window is always completely
visible, to overlapping window systems, which allow the
user to control size, location, as well as the overlap or visi-
bility of windows [1]. They found that tiled systems were
optimal when the system picked arrangements that con-
formed to the relevant contents of windows. However when
it did not, overlapping systems were far superior, even
though the user had to exert additional effort to explicitly
manage windows. These results suggest that the ideal sys-
tem is one which requires users to exert the least amount of
effort but ensures that information is laid out in a manner
that best supports the task at hand. Wickens et al. further
augment these findings with their proximity compatibility
principle, which holds that the more two information
sources are used within the same task, the closer they
should be displayed on the screen [9].

More recent work such as the Adaptive Window Manager
[7], Elastic Windows [3], and Hutchings’ operations for
display space management [2] has explored different
mechanisms for more efficient windows management. Un-
fortunately, since these schemes continue to treat windows
as the fundamental unit of information, it is still difficult to
lay out smaller chunks of relevant information contained
within multiple windows.

In separate work, researchers have explored the benefits of
viewing and operating on information and applications
across multiple devices. This is useful both for individual
users working on multiple devices, as well as for groups of
users, each with personal devices, working together. Like
much of the work on window management systems, most of
this work allows users to share entire screens or regions of
the screen [6] or, more recently, entire windows and appli-
cations (for review, see Li & Li [4]). To our knowledge,
WinCuts is the first piece of work that allows users to ex-
plicitly manage and share smaller regions of windows.

WINCUTS INTERACTION TECHNIQUE
To create a new WinCut, users hold down a keyboard
modifier combination, control-“accent grave”, which brings
up a semi-transparent tint over the entire desktop. They then
click and drag the mouse over a region of a window to

specify a rectangular region of interest (ROI). They can
redefine this region as many times as they like. When they
are satisfied with the ROI, they release the keyboard keys.
The tint disappears and a new WinCut appears on top of the
source window, slightly offset from the location of the ROI.
The source window is unaffected. The WinCut is differenti-
ated from regular windows by a green dotted line around
the content region of the WinCut (see Figure 1). Users may
make as many WinCuts as they wish, either from a single
source window, or from multiple windows.

Each WinCut is a separate window and can be managed
much like a regular window. It shows up in the Windows
taskbar and can be minimized, restored, moved, and closed.
Unlike other windows, however, maximizing or resizing a
WinCut preserves the relevant information that is shown
and instead rescales the content within the WinCut. This
allows the user to make the information fill as little or as
much space as they would like. For convenience, we have
provided menu functions that allow a user to return the con-
tent to its original size or to constrain its aspect ratio.

WinCuts contain live representations of the content that
appears within the ROI on the source window. In other
words, the user can not only view updating content from the
source window through the WinCut, but can also directly
interact with content in it, just as they would in the original
window. Since this view is tethered to the source window
and not a region of the screen, users can move and even
hide the source window without affecting the WinCut.

We have augmented this basic interaction with the ability to
share WinCuts across multiple machines. Running the Win-
Cuts system allows a user to send and receive WinCuts
from other machines running the system. After creating a
WinCut, a user can click on the “Share” button in the menu
bar of a WinCut. A dialog box pops up for the user to spec-
ify the machine with which the WinCut should be shared.
Doing this causes the current WinCut to appear on the des-
tination machine. Once this is done, the user can interact
with any local window and have the relevant WinCut up-
date on the destination machine. However, aside from
minimizing, restoring, resizing, moving, and closing the
WinCut, users cannot interact directly with content on the
remote WinCut. We do not perform input redirection on
remote WinCuts because of the complication it introduces
when multiple input streams collide. A red dotted line
around the content indicates that the WinCut is read-only
on the remote machine. This system works with multiple
machines simultaneously sending and receiving WinCuts.

In order to provide a simple mechanism to manage Win-
Cuts on remote machines, we couple WinCuts with a sepa-
rate program we call Visitor. Visitor redirects the input
stream over the network so that a user can use a mouse and
keyboard connected to one computer to control the input on
another computer. When running Visitor, a user simply
moves the cursor off an edge of the local screen to take
control of the cursor on a remote screen. In this way, users

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1526

can easily use the mouse connected to the local computer to
manage WinCuts on the remote screen. Multiple users can
take turns doing this.

WINCUTS FOR SINGLE MACHINE TASKS
Our main motivation for initially creating WinCuts was to
provide users with tools necessary for effective spatial or-
ganization of information with limited screen space. At
its core, WinCuts provides a lightweight mechanism for a
user to specify relevant regions of information contained in
various windows and then use standard windows manage-
ment techniques to organize and lay these out.

However, in addition to content layout, we quickly found
that WinCuts were also very useful for monitoring or pe-
ripheral awareness tasks. In these tasks, users are trying to
keep abreast of updating information using the least amount
of screen space possible. Using WinCuts, users can now
specify the ROI, scale it to an appropriate size, and move it
to an appropriate location on the screen.

Perhaps the most unexpected use of the system has been as
a rapid interface prototyping tool. In fact, we can recreate
entire interfaces by making WinCuts of various regions and
scaling or rearranging them appropriately. Using this tech-
nique, we have explored how various interfaces would
function if laid out differently. We have also explored sev-
eral focus-in-context and fisheye view ideas by creating
multiple adjacent WinCuts and scaling them to different
degrees. Without WinCuts, most of these ideas would have
taken much longer to build and explore.

Figure 2 illustrates one scenario in which WinCuts is use-
ful. In the inset, the user has spatially reorganized regions
of the original e-mail client window shown behind to re-
duce the screen space used by this task. The user has recon-
structed relevant interface components, including parts of a
toolbar and the “find a contact” combo box. They have also
chosen to display only two columns of the inbox, the sender
and the subject. Finally, they have scaled the message pane

down to get an idea of what is contained within messages.
The user can interact with the inbox to change the message
in the message pane as well as with the various interface
components. They can also hit the 100% button on the mes-
sage WinCut to read it at full size.

REMOTE WINCUTS FOR MULTIPLE MACHINE TASKS
In small informal groups, users often come together with
various pieces of information contained on their personal
devices, such as their laptops. In current co-located col-
laboration scenarios, users have to view the contents of
one machine at a time, for example when sharing a com-
mon projector. Alternatively, to view all the material to-
gether, users could either print out relevant material or com-
bine it on a single machine. This is not optimal, especially
when the material is dynamic and cannot be determined
beforehand, requires live editing, or is interspersed within
private information that the author does not wish to share.

Using WinCuts, users can easily exchange updating views
of relevant information, which owners can continue to edit
on their respective source machines. Furthermore, if there is
a shared display available, such as a projector, multiple
users can send their WinCuts to this shared visual space so
that everyone has a consistent view of the shared informa-
tion (see Figure 3). Using Visitor, users can manage Win-
Cuts on the shared machine.

As currently implemented, WinCuts allows users to annex
display space offered by various devices on their desktops.
For example, users can send WinCuts of peripheral tasks
onto the screen of their laptop rather than taking up valu-
able screen space on their main machine. As we explore
input redirection on remote machines, we expect that this
will become an even more compelling scenario, as users
can use WinCuts to take advantage of specialized input
capabilities on various devices, such as pen input on the
tablet PC. Also, this might be useful in placing particular
parts of interfaces on a remote machine and interacting
from afar, for example, using the laptop as a remote con-
trol for the media player running on the desktop machine.

HIGH-LEVEL IMPLEMENTATION DETAILS
We have implemented WinCuts as a standalone application
in Windows XP using Microsoft Visual C++ .NET and util-

Figure 3: Users share information from their respective
laptops by sending WinCuts to the projected display.

Figure 2: (Behind) Original full-sized E-mail client window.
(Front inset) WinCuts used to construct a functional e-mail

interface that takes up less than one third of the screen space.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1527

izing the Win32 Graphics Device Interface (GDI) API.
When a user specifies a desired WinCut, we first calculate
the coordinates of the ROI within the source window. Next,
we create a device context, into which we periodically force
the entire source window to render, using the printwin-
dow API call. From this device context, we perform a
stretchblt to scale and copy the ROI into our WinCut.
The reason we first do the printwindow is to ensure that
occluded parts of the window that do not normally render
are properly captured. In order to ensure that content re-
mains relatively fresh, we refresh the image once every
second for each WinCut. We are exploring schemes that
dynamically update when necessary rather than being based
on a timer. This would allow us to work at more interactive
rates, but is technically difficult as it requires knowing
when each individual application has repainted any part of
its window. To improve performance, subsequent WinCuts
that depend upon the same source window reuse the appro-
priate device context that we have already created.

In order to redirect input, we currently activate the source
window and bring it to the front when the cursor first
moves into the WinCut content region. We then program-
matically move the actual cursor to the corresponding spot
on the source window. In order to simulate interaction with
the WinCut, we draw a copy of the cursor on the corre-
sponding piece of content in the WinCut. Hence, while all
interaction actually happens directly on the source window,
the user has all the feedback of interacting on the WinCut.
One caveat to this approach is that source windows coming
to the front can sometimes occlude information that is rele-
vant to the task. We currently get around this by sending the
source window to an extra display device that is not visible
to the user. Another caveat is that since we do not explicitly
handle them, popup menus and other windows that appear
based on the location of the actual cursor appear on the
source window and may not be seen on the WinCut. Solv-
ing these problems remains future work.

For remote WinCuts, we currently open peer-to-peer socket
connections and send images of the printwindow device
context, compressed as Portable Network Graphics (PNG),
to the destination machine. We also send the corresponding
coordinates so that appropriate WinCuts can be made on the
destination machine. Sending subsequent WinCuts then, is
as easy as sending additional coordinates along with the
name of the device context.

FUTURE WORK
Because of how easy and useful it is to create WinCuts,
users usually end up with many more WinCuts than they
had windows. Unfortunately, most windows management
systems do not scale well to a large number of windows,
some of which might be logically associated with others.
This has motivated us to explore methods that allow users
to easily manage groups of windows as well as to perform
simple operations on these groups [7]. We hope that these

systems will prove useful even when the user is not using
WinCuts, but just has a large number of windows open.

Another area we are exploring is the utility of tying the ROI
to the underlying information rather than window regions.
In the current system, when a user scrolls the source win-
dow, multiple WinCuts may be affected since they are de-
fined only by the geometric region of the window and not
the semantic content. While this is useful in many scenar-
ios, we realize that tethering WinCuts to actual content
might provide additional utility.

Finally, we plan to conduct formal evaluations to measure
the usability of the interaction model surrounding WinCuts.
We will also perform field studies deploying WinCuts to
users involved in information work and group meetings as
well as controlled studies to closely examine the usefulness
of WinCuts in particular settings. We are especially inter-
ested in how WinCuts might affect productivity as well as
social interaction in co-located collaborative work.

ACKNOWLEDGEMENTS
We are grateful to George Robertson, Patrick Baudisch,
Greg Smith, Duke Hutchings, and Judy Olson for their in-
sightful comments and discussion of this work.

REFERENCES
1. Bly, S.A., Rosenberg, J.K. (1986). A comparison of

tiled and overlapping windows. CHI 1986, 101-106.
2. Hutchings, D.G., Stasko, J. (2002). New operations for

display space management and window management.
Georgia Institute of Technology Technical Report GIT-
GVU-02-18.

3. Kandogan, E., Schneiderman, B. (1997). Elastic win-
dows: Evaluation of multi-window operations. CHI
1997, 250-257.

4. Li, D., Li, R. (2002). Transparent sharing and interop-
eration of heterogeneous single-user applications.
CSCW 2002, 246-255.

5. Myers, B.A. (1988). A taxonomy of window manager
user interfaces. IEEE Computer Graphics & Applica-
tions, 8(5), 65-84.

6. Richardson, T., Quentin, S., Wood, K.R., Hopper, A.
(1998). Virtual Network Computing. IEEE Internet
Computing, 2(1), 33-38.

7. Smith, G., Baudisch, P., Robertson, G.G., Czerwinski,
M., Meyers, B., Robbins, D., Horvitz, E., Andrews, D.
(2003). Groupbar: The taskbar evolved. OZCHI 2003.

8. Stille, S., Minocha, S., Ernst, R. (1997). An adaptive
window management system. INTERACT 1997, 67-68.

9. Wickens, C.D., Carswell, C.M. (1995). The proximity
compatibility principle: Its psychological foundation
and relevance to display design. Human Factors, 37,
473-494.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1528

