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ABSTRACT 
Wideband displays fill our field of view, creating new 
opportunities to develop effective visual interfaces. Although 
multiple monitors are becoming an affordable way to create 
wideband displays, the resulting seams create gaps in words and 
divide diagonal lines into nonaligned segments. We present 
several novel user interface techniques for creating seam-aware 
applications, showing that vendors need not wait for affordable 
seamless displays to exploit the potential of wideband displays. 

Categories & Subject Descriptors: H5.2 [Information 
interfaces and presentation (e.g., HCI)] User Interfaces – 
Graphical user interfaces (GUI), Screen design (e.g. text, 
graphics, color), Windowing systems.  

General Terms: Design, Human Factors. 

Keywords: Seam-aware interfaces, wideband displays, multiple 
monitors. 

INTRODUCTION 
Progress in information visualization and our understanding 
of human-information interaction provides opportunities to 
develop wideband visual interfaces that leverage displays 
that fill our field of view. These could radically improve 
productivity in many knowledge management tasks, 
analogous to the improved productivity of a craftsman who 
has the right tools and an ample workbench. 

Although multiple monitors are becoming a cost-effective 
way to create wideband displays, the seams between 
monitors divide diagonal lines into nonaligned segments 
and create gaps in words, as shown in Figure 1. The Gestalt 
Law of Continuity indicates that people do not tend to see 
nonaligned segments as part of the same line [7].  Words 
with gaps are also difficult to read. 

Even though multiple monitors create seams, they have 
proven to be effective in niche applications such as CAD 
and graphic design, particularly when the seams help to 
organize and align the work [1]. Multiple monitors are also 
effective when the information for a task fits in windows 
that are small enough to be placed on individual monitors 
and those windows do not end up being placed across 
seams. For example, a stockbroker might assign various 
windows showing different types of information to different 

monitors in the morning and not have to worry about the 
seams for the rest of the day. Grudin has found that multiple 
monitor use confers many benefits, including peripheral 
awareness and improved resource access [3]. Furthermore, 
Czerwinski et al review many related studies that also 
indicate benefits for increased display size. Their recent 
study found that a large research display had significant 
benefits over a standard LCD monitor for complex multi-
application computer tasks [1].   

However, tasks that involve the frequent creation of 
windows may require additional support to avoid the 
overhead of moving windows off seams. For example, 
nVidia, a major supplier of graphics cards that support 
multiple monitors, provides a driver for their card that 
automatically moves windows off seams onto the closest 
monitor. However, this automatic movement can obscure 
windows needed for the task or move windows that are not 
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Four score and seven en years ago, our fathers

Four score and seven years ago, our fathers brought
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Figure 1: Computer view (top) and human view 
(bottom).  The dotted line indicates a multiple 
monitor seam.  People see broken text and graphics. 
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Figure 2: Removing space fixes the break in the line 
but makes the text appear occluded. 
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Figure 3: Occlusion can be avoided by moving the 
text. 
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impacted by seams. Furthermore, some tasks require 
windows that do not fit in a single monitor, in which case 
simply moving windows will not be effective. 

MITIGATING SEAMS 
The basic insight about mitigating seams in wideband 
displays is to acknowledge that seams have a perceptual 
impact. The user sees the lower half of Figure 1 rather than 
the top half. Given this insight, we can develop techniques 
to create seam-aware applications. For example, Figure 2 
shows that a line will appear linear if it is drawn as if there 
were a display behind the seam. However, text becomes 
occluded by the seam. Figure 3 shows how text can be 
moved off of a seam, avoiding both the broken word in 
Figure 1 and the occlusion in Figure 2. 

Two Types of Seam Disruption 
A formal analysis of graphical presentations indicates that a 
seam can disrupt window space in two ways: when the 
application uses space as container to hold graphical 
objects, or when it uses it as a metric field to position 
objects meaningfully with respect to quantitative axes [6]. 
In fact, an application can use space simultaneously as a 
container and as a metric field. For example, charts can 
have a quantitative axis in one direction and an ordinal or 
nominal axis in the other direction [6]. Container spaces 
and metric spaces require different techniques for 
mitigating seams. 

Container spaces and seam-awareness 
When an application uses space as a container, it has the 
freedom to draw seam-aware graphics that compensate for 
the perceptual impact of the seams. Figure 4 is a screen shot 
of a node/link graph that is not seam aware. Links appear 
disjoint, and nodes are split across monitors. In contrast, 
Figure 5 shows the same graph drawn with seam-awareness 
turned on. Links appear to be drawn through the seams, and 
nodes are moved off of the seams. The implementation 
section describes how this can be done interactively. 

Metric spaces and City Lights indicators 
Metric spaces, on the other hand, must be drawn through a 
seam to maintain the metric from one monitor to the next, 
which may cause important information to be occluded. For 
example, the scatterplot shown in Figure 6 clearly shows 
the linear trend of the data. The distance between points is 
meaningful across the seam. Maps, which often need to be 
large, are another example of a metric space that should be 
maintained across seams. 

However, drawing metric spaces through seams can force 
graphics objects constrained by the metric to be obscured 
by the seam. For example, the seam obscures many points 
in the scatterplot shown in Figure 6. When this occurs, City 
Lights indicators can be used to help the user see that 
graphical objects are obscured [8]. The implementation 
section also describes how seam-awareness was added to 
the third party application that produced Figure 6. 

 

Figure 4: Seam-ignored graph layout. The circle 
indicates a line segment that does not appear to be part 
of a link between nodes. The oval indicates split nodes. 

Figure 5: Seam-aware graph layout.  Links are drawn 
under seams, and nodes are moved off of seams. 
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IMPLEMENTATION 
Our approach to mitigating seams is to regard the entire 
display configuration as one large display surface and treat 
each individual monitor as a viewport into this larger space 
(as in Figure 7). Physical separations such as seams are 
explicitly modeled as off-screen pixels in a virtual, seam-
aware coordinate space. Naïvely, user interface components 
can draw themselves onto a virtual canvas and then paint 
only the visible regions of this canvas to the screen. 
However, this can result in items being drawn “behind the 
seams.” To make better use of display resources we can 
make interface components seam-aware, structuring their 
content optimally in the face of possible occlusion by 
seams. Our technical solution consists of two parts: 
infrastructural support for computing the seam-aware 
coordinate spaces of interface components, and software 
methods for assisting application-specific aspects of seam-
awareness. We have implemented our solution in the Java 
programming language as a general library supporting 
seam-aware user interfaces built in the Java AWT and 
Swing user interface toolkits. 

 

Figure 7: The application is given a graphics object that 
includes space for the seam.  The visible regions are 
then drawn to the monitors. 

Infrastructural Support 
At the heart of our infrastructural support is a globally 
accessible class called the ScreenGraphFactory. Upon 
application launch, the ScreenGraphFactory queries the 
operating system for all the available displays and creates 
two models of the display set-up. The first model is merely 
the system of screen coordinates provided by the OS. This 
representation has no knowledge of the actual physical 
location of monitors, and assumes that adjacent screens 
form a continuous display. The second model is a seam-

aware coordinate system that models physical separations 
(such as seams) as distances measured in pixels. 

Successful creation of this seam-aware coordinate model 
depends on knowing the actual physical distances between 
display surfaces, represented in terms of display pixels. In 
initial studies, we manually measured these distances and 
included them as input parameters. A more general solution 
is to acquire the seam widths dynamically with a simple 
calibration application, depicted in Figure 8. For each 
display boundary, the user performs a simple line fitting 
task. The system can then use basic trigonometry to infer 
the correct distance in pixels between the displays. Such 
calibrations need only be performed once for a given 
display setup, as the results can be stored and reused. 

 

Figure 8: Example of seam width calibration. After the 
user fits the line on the right side, the seam width xS can 
be computed as xS = (h / tan θ) – (xL + xR). 

The ScreenGraphFactory assists user interface 
components in achieving seam-awareness by providing 
custom display information on a per component basis. 
Using the bounding box of the user interface component 
and the pre-computed seam-aware coordinate space, the 
ScreenGraphFactory constructs a custom seam-aware 
coordinate space local to the component. This information 
is encapsulated in a ScreenGraph, an object that keeps 
track of both screen and seam-aware coordinates and 
methods for mapping between the two. In particular, the 
ScreenGraph abstraction provides methods for retrieving 
the size of the virtual, seam-aware coordinate space; 
determining if a point or bounding box is contained within 
or intersects a seam; and providing the nearest visible 
display region in any given direction. Seam-aware interface 
components must query the ScreenGraphFactory for 
ScreenGraph instances, and should monitor move and 
resize events from their parent windows to request updated 
ScreenGraph instances as appropriate. 

Figure 6: Seam-aware third party scatterplot. Circles enclose City Lights indicators of obscured points [5]. 
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Application-specific seam management 
The ScreenGraph allows user interface components to be 
aware of seams and separations in the display. How the 
seams are dealt with, however, is left to application-specific 
code. For example, custom paint routines can draw the 
component into an offscreen buffer using the seam-aware 
coordinate space, and then paint only the visible regions to 
the actual display. Layout algorithms within the application 
can determine the spatial position of interface items to 
avoid seam crossings or occlusions. In the next sections we 
discuss the implementation of multiple classes of seam-
aware applications. 

Seam-aware Graphics for Container Spaces 
As an example of container spaces, we have incorporated 
seam-awareness into the prefuse graph visualization 
toolkit (http://guir.berkeley.edu/prefuse). To make the 
toolkit naively seam-aware, we simply modified the display 
component, which is responsible for drawing visualized 
graph elements (e.g., nodes and edges) to the screen. The 
component was modified such that it requests 
ScreenGraph objects from the ScreenGraphFactory, 
and adjusts its offscreen paint buffer to match the size of 
the virtual coordinate space. The paint routine draws all the 
graph elements into this buffer, but then only draws to the 
screen those portions of the buffer that correspond to visible 
display regions. While this causes all lines and shapes to be 
rendered correctly, it can cause items to be drawn “behind 
the seams.” 

To remedy this problem, we added custom layout 
procedures to our applications. The prefuse architecture 
employs a modular pipeline architecture, allowing custom 
processing components to be placed in the pipeline at will. 
This allowed us to completely avoid rewriting intricate 
graph layout algorithms, instead adding an additional layout 
module further down the pipeline that perturbs nodes so 
that they do not intersect any seam boundaries. Of course, 
custom layout algorithms for more specialized seam-aware 
layouts may also be desirable. 

Seam-aware Graphics for Metric Spaces 
The scatterplot in Figure 6 shows that our architecture can 
be added to third-party Java applications that require 
multiple-monitor metric spaces. The scatterplot was drawn 
after minimal modification to JFreeChart, an open source 
charting package (http://www.jfree.org/jfreechart). The top 
level paint method was modified to render into an offscreen 
buffer, which was then mapped to the monitors using a 
ScreenGraph instance. 
Adding City Lights indicators to an application requires 
information about the existence and location of the 
components in the interface, which can be difficult to 
determine in third party code. Luckily, JFreeChart 
generates an EntityCollection during rendering that 
contains all relevant components and their locations. The 
City Lights indicators were added to Figure 6 using a 

ScreenGraph to identify obscured components and find 
the closest visible point for the indicator. 

CONCLUSION 
Although researchers are currently developing seamless 
wideband displays [1,2,5], they are expensive. However, 
their cost will ultimately become affordable, driven down 
by computer gaming, entertainment, and teleconferencing. 
In the meantime, vendors can already explore the potential 
of wideband visual interfaces by mitigating the seams in 
multiple-monitor wideband solutions built with current 
commercial hardware. 

In this paper, we describe the differing requirements of 
container and metric spaces and the implementation of 
several novel user interface techniques for creating seam-
aware applications that target wideband displays based on 
multiple monitors. Given our practical methods for 
implementing wideband visual interfaces, the next step is to 
improve our applications by exploiting the power of the 
human visual system to work effectively in computational 
workspaces that are at least as large and high-resolution as 
the desks on which we work with paper.  
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