

Wideband Displays: Mitigating Multiple Monitor Seams
Jock D. Mackinlay1

1Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

{mackinlay, jheer}@parc.com

Jeffrey Heer1,2
2Group for User Interface Research

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720-1776

ABSTRACT
Wideband displays fill our field of view, creating new
opportunities to develop effective visual interfaces. Although
multiple monitors are becoming an affordable way to create
wideband displays, the resulting seams create gaps in words and
divide diagonal lines into nonaligned segments. We present
several novel user interface techniques for creating seam-aware
applications, showing that vendors need not wait for affordable
seamless displays to exploit the potential of wideband displays.

Categories & Subject Descriptors: H5.2 [Information
interfaces and presentation (e.g., HCI)] User Interfaces –
Graphical user interfaces (GUI), Screen design (e.g. text,
graphics, color), Windowing systems.

General Terms: Design, Human Factors.

Keywords: Seam-aware interfaces, wideband displays, multiple
monitors.

INTRODUCTION
Progress in information visualization and our understanding
of human-information interaction provides opportunities to
develop wideband visual interfaces that leverage displays
that fill our field of view. These could radically improve
productivity in many knowledge management tasks,
analogous to the improved productivity of a craftsman who
has the right tools and an ample workbench.

Although multiple monitors are becoming a cost-effective
way to create wideband displays, the seams between
monitors divide diagonal lines into nonaligned segments
and create gaps in words, as shown in Figure 1. The Gestalt
Law of Continuity indicates that people do not tend to see
nonaligned segments as part of the same line [7]. Words
with gaps are also difficult to read.

Even though multiple monitors create seams, they have
proven to be effective in niche applications such as CAD
and graphic design, particularly when the seams help to
organize and align the work [1]. Multiple monitors are also
effective when the information for a task fits in windows
that are small enough to be placed on individual monitors
and those windows do not end up being placed across
seams. For example, a stockbroker might assign various
windows showing different types of information to different

monitors in the morning and not have to worry about the
seams for the rest of the day. Grudin has found that multiple
monitor use confers many benefits, including peripheral
awareness and improved resource access [3]. Furthermore,
Czerwinski et al review many related studies that also
indicate benefits for increased display size. Their recent
study found that a large research display had significant
benefits over a standard LCD monitor for complex multi-
application computer tasks [1].

However, tasks that involve the frequent creation of
windows may require additional support to avoid the
overhead of moving windows off seams. For example,
nVidia, a major supplier of graphics cards that support
multiple monitors, provides a driver for their card that
automatically moves windows off seams onto the closest
monitor. However, this automatic movement can obscure
windows needed for the task or move windows that are not

Copyright is held by the author/owner(s).
CHI 2004, April 24–29, 2004, Vienna, Austria.
ACM 1-58113-703-6/04/0004.

Four score and seven en years ago, our fathers

Four score and seven years ago, our fathers brought

Four score and seven en years ago, our fathers

Four score and seven years ago, our fathers brought

Figure 1: Computer view (top) and human view
(bottom). The dotted line indicates a multiple
monitor seam. People see broken text and graphics.

Four score and seven years ago, our fathers brought

Four score and seveago, our fathers brought

Four score and seven years ago, our fathers brought

Four score and seveago, our fathers brought

Figure 2: Removing space fixes the break in the line
but makes the text appear occluded.

Four score and seven years ago, our

Four score and seven years ago, our

Four score and seven years ago, our

Four score and seven years ago, our

Figure 3: Occlusion can be avoided by moving the
text.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1521

impacted by seams. Furthermore, some tasks require
windows that do not fit in a single monitor, in which case
simply moving windows will not be effective.

MITIGATING SEAMS
The basic insight about mitigating seams in wideband
displays is to acknowledge that seams have a perceptual
impact. The user sees the lower half of Figure 1 rather than
the top half. Given this insight, we can develop techniques
to create seam-aware applications. For example, Figure 2
shows that a line will appear linear if it is drawn as if there
were a display behind the seam. However, text becomes
occluded by the seam. Figure 3 shows how text can be
moved off of a seam, avoiding both the broken word in
Figure 1 and the occlusion in Figure 2.

Two Types of Seam Disruption
A formal analysis of graphical presentations indicates that a
seam can disrupt window space in two ways: when the
application uses space as container to hold graphical
objects, or when it uses it as a metric field to position
objects meaningfully with respect to quantitative axes [6].
In fact, an application can use space simultaneously as a
container and as a metric field. For example, charts can
have a quantitative axis in one direction and an ordinal or
nominal axis in the other direction [6]. Container spaces
and metric spaces require different techniques for
mitigating seams.

Container spaces and seam-awareness
When an application uses space as a container, it has the
freedom to draw seam-aware graphics that compensate for
the perceptual impact of the seams. Figure 4 is a screen shot
of a node/link graph that is not seam aware. Links appear
disjoint, and nodes are split across monitors. In contrast,
Figure 5 shows the same graph drawn with seam-awareness
turned on. Links appear to be drawn through the seams, and
nodes are moved off of the seams. The implementation
section describes how this can be done interactively.

Metric spaces and City Lights indicators
Metric spaces, on the other hand, must be drawn through a
seam to maintain the metric from one monitor to the next,
which may cause important information to be occluded. For
example, the scatterplot shown in Figure 6 clearly shows
the linear trend of the data. The distance between points is
meaningful across the seam. Maps, which often need to be
large, are another example of a metric space that should be
maintained across seams.

However, drawing metric spaces through seams can force
graphics objects constrained by the metric to be obscured
by the seam. For example, the seam obscures many points
in the scatterplot shown in Figure 6. When this occurs, City
Lights indicators can be used to help the user see that
graphical objects are obscured [8]. The implementation
section also describes how seam-awareness was added to
the third party application that produced Figure 6.

Figure 4: Seam-ignored graph layout. The circle
indicates a line segment that does not appear to be part
of a link between nodes. The oval indicates split nodes.

Figure 5: Seam-aware graph layout. Links are drawn
under seams, and nodes are moved off of seams.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1522

IMPLEMENTATION
Our approach to mitigating seams is to regard the entire
display configuration as one large display surface and treat
each individual monitor as a viewport into this larger space
(as in Figure 7). Physical separations such as seams are
explicitly modeled as off-screen pixels in a virtual, seam-
aware coordinate space. Naïvely, user interface components
can draw themselves onto a virtual canvas and then paint
only the visible regions of this canvas to the screen.
However, this can result in items being drawn “behind the
seams.” To make better use of display resources we can
make interface components seam-aware, structuring their
content optimally in the face of possible occlusion by
seams. Our technical solution consists of two parts:
infrastructural support for computing the seam-aware
coordinate spaces of interface components, and software
methods for assisting application-specific aspects of seam-
awareness. We have implemented our solution in the Java
programming language as a general library supporting
seam-aware user interfaces built in the Java AWT and
Swing user interface toolkits.

Figure 7: The application is given a graphics object that
includes space for the seam. The visible regions are
then drawn to the monitors.

Infrastructural Support
At the heart of our infrastructural support is a globally
accessible class called the ScreenGraphFactory. Upon
application launch, the ScreenGraphFactory queries the
operating system for all the available displays and creates
two models of the display set-up. The first model is merely
the system of screen coordinates provided by the OS. This
representation has no knowledge of the actual physical
location of monitors, and assumes that adjacent screens
form a continuous display. The second model is a seam-

aware coordinate system that models physical separations
(such as seams) as distances measured in pixels.

Successful creation of this seam-aware coordinate model
depends on knowing the actual physical distances between
display surfaces, represented in terms of display pixels. In
initial studies, we manually measured these distances and
included them as input parameters. A more general solution
is to acquire the seam widths dynamically with a simple
calibration application, depicted in Figure 8. For each
display boundary, the user performs a simple line fitting
task. The system can then use basic trigonometry to infer
the correct distance in pixels between the displays. Such
calibrations need only be performed once for a given
display setup, as the results can be stored and reused.

Figure 8: Example of seam width calibration. After the
user fits the line on the right side, the seam width xS can
be computed as xS = (h / tan θ) – (xL + xR).

The ScreenGraphFactory assists user interface
components in achieving seam-awareness by providing
custom display information on a per component basis.
Using the bounding box of the user interface component
and the pre-computed seam-aware coordinate space, the
ScreenGraphFactory constructs a custom seam-aware
coordinate space local to the component. This information
is encapsulated in a ScreenGraph, an object that keeps
track of both screen and seam-aware coordinates and
methods for mapping between the two. In particular, the
ScreenGraph abstraction provides methods for retrieving
the size of the virtual, seam-aware coordinate space;
determining if a point or bounding box is contained within
or intersects a seam; and providing the nearest visible
display region in any given direction. Seam-aware interface
components must query the ScreenGraphFactory for
ScreenGraph instances, and should monitor move and
resize events from their parent windows to request updated
ScreenGraph instances as appropriate.

Figure 6: Seam-aware third party scatterplot. Circles enclose City Lights indicators of obscured points [5].

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1523

Application-specific seam management
The ScreenGraph allows user interface components to be
aware of seams and separations in the display. How the
seams are dealt with, however, is left to application-specific
code. For example, custom paint routines can draw the
component into an offscreen buffer using the seam-aware
coordinate space, and then paint only the visible regions to
the actual display. Layout algorithms within the application
can determine the spatial position of interface items to
avoid seam crossings or occlusions. In the next sections we
discuss the implementation of multiple classes of seam-
aware applications.

Seam-aware Graphics for Container Spaces
As an example of container spaces, we have incorporated
seam-awareness into the prefuse graph visualization
toolkit (http://guir.berkeley.edu/prefuse). To make the
toolkit naively seam-aware, we simply modified the display
component, which is responsible for drawing visualized
graph elements (e.g., nodes and edges) to the screen. The
component was modified such that it requests
ScreenGraph objects from the ScreenGraphFactory,
and adjusts its offscreen paint buffer to match the size of
the virtual coordinate space. The paint routine draws all the
graph elements into this buffer, but then only draws to the
screen those portions of the buffer that correspond to visible
display regions. While this causes all lines and shapes to be
rendered correctly, it can cause items to be drawn “behind
the seams.”

To remedy this problem, we added custom layout
procedures to our applications. The prefuse architecture
employs a modular pipeline architecture, allowing custom
processing components to be placed in the pipeline at will.
This allowed us to completely avoid rewriting intricate
graph layout algorithms, instead adding an additional layout
module further down the pipeline that perturbs nodes so
that they do not intersect any seam boundaries. Of course,
custom layout algorithms for more specialized seam-aware
layouts may also be desirable.

Seam-aware Graphics for Metric Spaces
The scatterplot in Figure 6 shows that our architecture can
be added to third-party Java applications that require
multiple-monitor metric spaces. The scatterplot was drawn
after minimal modification to JFreeChart, an open source
charting package (http://www.jfree.org/jfreechart). The top
level paint method was modified to render into an offscreen
buffer, which was then mapped to the monitors using a
ScreenGraph instance.
Adding City Lights indicators to an application requires
information about the existence and location of the
components in the interface, which can be difficult to
determine in third party code. Luckily, JFreeChart
generates an EntityCollection during rendering that
contains all relevant components and their locations. The
City Lights indicators were added to Figure 6 using a

ScreenGraph to identify obscured components and find
the closest visible point for the indicator.

CONCLUSION
Although researchers are currently developing seamless
wideband displays [1,2,5], they are expensive. However,
their cost will ultimately become affordable, driven down
by computer gaming, entertainment, and teleconferencing.
In the meantime, vendors can already explore the potential
of wideband visual interfaces by mitigating the seams in
multiple-monitor wideband solutions built with current
commercial hardware.

In this paper, we describe the differing requirements of
container and metric spaces and the implementation of
several novel user interface techniques for creating seam-
aware applications that target wideband displays based on
multiple monitors. Given our practical methods for
implementing wideband visual interfaces, the next step is to
improve our applications by exploiting the power of the
human visual system to work effectively in computational
workspaces that are at least as large and high-resolution as
the desks on which we work with paper.

ACKNOWLEDGMENTS
This research has been funded in part by contract #MDA904-03-
C-0404 awarded to Stuart K. Card and Peter Pirolli from the
ARDA Novel Intelligence from Massive Data program. We thank
Stuart K. Card for many discussions about window paradigms and
Polle T. Zellweger for her skilled suggestions about multiple
drafts.

REFERENCES
1. Czerwinski, M., Smith, G., Regan, T., Meyers, B., Robertson,

G., Starkweather, G. Toward characterizing the productivity
benefits of very large displays. Proc. Interact 2003.

2. Baudisch, P., Good, N., Bellotti, V., Schraedley, P. Keeping
things in context. Proc CHI 2002. 259-266.

3. Grudin, J. Partitioning digital worlds: Focal and peripheral
awareness in multiple monitor use. Proc. CHI 2001, CHI
Letters 3 (1) 458-465.

4. Henderson, D. A., and Card, S. K. Rooms: The use of multiple
virtual workspaces to reduce space contention in a window-
based graphical user interface. ACM Transactions on
Graphics, 5, (1986) 211-243.

5. Li. K. et. al. Early experiences and challenges in building and
using scalable display wall system. IEEE CG&A 20(4) (2000)
671-680.

6. Mackinlay, J. Automating the design of graphical presentation
of relational information, ACM TOG 5 (2) ACM Press (1986)
110-141.

7. Ware, C. Information Visualization: Perception for Design.
Morgan Kaugman (200) 203-213.

8. Zellweger, P., Mackinlay, J., Good, L., Stefik, M., and
Baudisch, P. City Lights: Contextual views in minimal space.
Ext. Abstracts CHI2003, ACM Press (2003) 838-839.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1524

