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Abstract 
Accurate assessment of a user’s mental workload will be critical 
for developing systems that manage user attention 
(interruptions) in the user interface. Empirical evidence suggests 
that an interruption is much less disruptive when it occurs during 
a period of lower mental workload. To provide a measure of 
mental workload for interactive tasks, we investigated the use of 
task-evoked pupillary response. Results show that a more 
difficult task demands longer processing time, induces higher 
subjective ratings of mental workload, and reliably evokes 
greater pupillary response at salient subtasks. We discuss the 
findings and their implications for the design of an attention 
manager. 

Categories & Subject Descriptors: H.5.2 [Information 
Interfaces and Presentation]: User Interfaces – 
Evaluation and Methodology; H.1.2 [Models and 
Principles]: User/Machine Systems – Human Information 
Processing.  

General Terms: Design; Experimentation; Human Factors. 

Keywords: Attention; Interruption; Mental Workload; 
Pupil Size; Task Models; User Studies. 

INTRODUCTION 
Productive interaction between humans and computers 
requires that a user must effectively manage her attention 
among the applications that are competing for it. A poorly 
timed notification (interruption) due to instant messages, 
incoming email, or system alert can disrupt a user’s task 
performance [3, 6] and emotional state [1, 3, 13]. 

An attractive solution is to develop an attention manager 
that manages where in a user’s task sequence an 
application can gain user attention. Empirical studies 
show that a less disruptive moment for an interruption is 
during a period of low mental workload in a user’s task 
sequence [6, 7, 11]. Thus, a significant challenge in 
developing an attention manager is to develop a reliable 
measure of mental workload for a dynamic task 
environment such as the desktop interface. Although pupil 
size is known to correlate well with the mental workload 
for discrete, non-interactive tasks [10], we investigated 

how well pupil size correlates with the mental workload 
demanded by interactive tasks representative of daily 
computer-based tasks that users often perform. 

In our study, a user performed an easier and more difficult 
task from several task categories and we measured pupil 
size using a head-mounted eye-tracker. We used task 
completion time and subjective ratings of difficulty to 
validate the mental workload imposed by the tasks. Our 
results show that a more difficult task demands longer 
processing time, induces higher subjective ratings of 
mental workload, and reliably evokes greater pupillary 
response at corresponding subtasks than a less difficult 
task. We discuss our empirical findings and their 
implications for the design of an attention manager.   

RELATED WORK 

Mental Workload Assessment Techniques  
Mental workload can be assessed with a number of 
techniques, including task performance on primary and 
secondary tasks [11], subjective ratings, and physiological 
measures (pupil size, heart rate, EEG) [8]. We believe that 
pupil size is the most promising single measure of mental 
workload because it does not disrupt a user’s ongoing 
activities, provides real-time information about the user’s 
mental workload, and is less intrusive than other 
physiological measures such as heart rate or EEG.  

Task-Evoked Pupillary Response  
The correlation of pupil size with mental workload has 
long been supported [4, 9, 10]. Research has shown that 
pupil dilations occur at short latencies following the onset 
of a task and subside quickly once the task is completed. 
More importantly, the magnitude of the pupillary dilation 
appears to be a function of processing load, or the mental 
effort required to perform the cognitive task. Note that 
other than the task factor, some environmental factors 
(e.g. ambient illumination and the near reflex), or 
emotional states may also induce pupillary response, 
producing changes of pupil size. Nonetheless, Beatty [4] 
has shown that task-evoked pupillary response uniquely 
reflects the momentary level of processing load and is not 
an artifact of non-cognitive confounding factors. In fact, 
the task-evoked pupillary response has been widely used 
as a tool to investigate various aspects of human 
information processing, such as perception, memory, 
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reasoning and reading [4]. However, whether pupil size 
can provide a real-time measure of mental workload for 
more natural interactive tasks in human-computer 
interaction requires further investigation. 

USER STUDY 
We conducted a user study to answer two main questions: 

• How well does pupil size correlate with the mental 
workload that tasks from the same task category 
impose on a user? 

• Is this correlation pattern consistent across several 
categories of primary task? 

Experimental Design  
The study was a 4 Task Category (Object manipulation, 
Reading comprehension, Mathematical reasoning and 
Searching) x 2 Difficulty (Easy and Difficult) repeated 
measures within-subjects design. 

Equipment 
As a user performed tasks, we recorded his pupil data 
using a head-mounted SR Inc., Eyelink II eyetracker with 
a 250 HZ sample rate and 0.005 degree spatial resolution. 

User and Tasks 
Twelve users (6 female) volunteered in the user study. 
The average age of the users was 23.7 years (SD = 3.23). 

An important part of the study was to identity a 
meaningful set of task categories representative of daily 
work tasks. We determined task categories from a 
literature review, an informal questionnaire to several 
users, our own experience, and the consideration of user 
time for the study. Four task categories were developed, 
each with two difficulty levels (easy vs. difficult): 

• Reading Comprehension. A user read a given text and 
answered questions. The easier task belonged to grade 9 
level and the more difficult task belonged to grade 17.  

• Mathematical Reasoning. A user performed math 
calculations. For the easier task, a user had to mentally 
add two four digit numbers and select the correct 
answer from a list of three options. For the more 
difficult task, a user had to mentally add 4 five-digit 
numbers, retain the result in memory, and decide 
whether the result exceeded a given number.  

• Searching. A user searched for a product from a list of 
similar products according to specified constraints. For 
the easier task, a user had to find the product from a list 
of seven products according to one constraint, e.g., the 
cheapest camera. For the more difficult task, a user had 
to identify the product using three constraints, e.g., the 
cheapest 3MP camera with 3X digital zoom. 

• Object Manipulation. A user had to drag and drop email 
messages into appropriate folders. The user was given a 
list of emails, four folders, and classification rules. For 
the easier task, the rule was simple and specific, such as 

using the size of the email (1K, 2K, or 3K) in the list. 
For the more difficult task, the rules were less specific, 
such as the use of topics (travel, course related, fun and 
humor, announcements). The user had to make a 
judgment using the information provided in the email.  

Tasks are typically completed through patterns of goal 
formulation, execution and evaluation, where higher level 
goals are repeatedly decomposed into simpler, lower level 
goals [5]. Although each of our tasks had a single high 
level goal, we were unsure about the level down to which 
we could still detect changes in mental workload through 
the use of pupil size. Thus, we also wanted to explore 
how the goal formulation-execution-evaluation pattern 
relates to changes in mental workload.  

Procedure 
Upon arrival at the lab, the user filled out a background 
questionnaire and received general instructions for the 
study. Then, the user was set up with the eye-tracker and 
went through a calibration process. The user had to 
perform 8 tasks – one easy and one difficult for each of 
the 4 categories. At the beginning of each task category, 
the user was presented with specific instructions to that 
category and a practice trial to become familiar with the 
task. The baseline pupil size was collected by having the 
users fixate on a blank screen for 10 seconds. Then the 
user was presented with the actual task. After completing 
each task category, the user was asked to rate difficulty on 
a 1-5 scale (5 = very difficult, and 1= very easy). The 
presentation order of task category and tasks within each 
category were randomized. The users were instructed to 
perform the tasks as quickly and as accurately as possible. 
The system logged task performance and we video 
recorded the screen interaction for later analysis. 

Measurements 
A user’s subjective rating and task completion time for 
each task were collected to validate the mental workload 
associated with each task. The user’s pupil data (eye 
movement information) as well as the user’s on-screen 
activities were recorded separately. These two data sets 
were synchronized based on correlating timestamps.   

For each user, we computed the percentage change in 
pupil size (PCPS), which is the measured pupil size at 
each task instant minus the baseline size, divided by the 
baseline. The average PCPS from the beginning to end of 
each task was used as the task-evoked pupillary response. 

RESULTS 
A 4 (Category) x 2 (Difficulty) repeated ANOVA was 
performed on the collected data.   

Validation of Mental Workload  
We used task completion time (Figure 1) and users’ 
subjective ratings (Figure 2) to validate the mental 
workload imposed by the tasks. An ANOVA on task 
completion time showed that Category (F(3,33)=30.067, 
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p<0.0005) and Difficulty (F(1,11)=190.933, p<0.0005) 
had a significant main effect. Users spent more time on 
the difficult task than the easy task and post-hoc 
comparisons showed that this effect existed for all but the 
Reasoning tasks. The interaction between Category and 
Difficulty (F(3,33)=6.751, p<0.001) was significant, 
mainly due to the Reading category. 

An ANOVA on user ratings showed a significant main 
effect of Difficulty (F(1,11)=34.912, p<0.0005), with 
higher ratings for the more difficult task in each category. 
An interaction between Category and Difficulty was 
detected (F(3,33)=4.121, p<0.014), mainly due to the 
easier task in the object manipulation category. 

Analysis 1: Effects of Mental Workload on PCPS 
We performed an ANOVA on average PCPS from the 
beginning to the end of each task as the dependent 
variable. The results showed a main effect of Category 
(F(3,33)=4.743, p<0.007). Surprisingly, there was no 
significant effect of Difficulty (F(1,11)=3.12,p<0.105). 
See Figure 3. Even a planned t-test comparison between 
easy and difficulty level on different task categories only 
revealed a significant difference in the average PCPS 
between the easy and difficult search task (p<0.025). This 
is inconsistent with our expectations and with the task 
performance results and subjective ratings.  

We postulated that except for the search task, none of the 
other tasks had a sustained mental effort throughout the 
task. These tasks were more hierarchical in that each high 
level goal could be decomposed into salient lower level 
goals. This suggests that for hierarchical tasks of short 
duration, there are periods of lower mental workload and 
periods of higher mental workload. Averaging PCPS over 
the entire task negates periods of higher mental workload 
and therefore may not show a significant increase. 

However, if we can separate lower vs. higher periods of 
mental workload for tasks in the same category, e.g., 
motor movements such as drag and drop in the object 
manipulation task), then we can compare mental 
workload between similar subtasks and these finer 
comparisons may show differences in mental workload. 

To investigate this hypothesis, we performed a GOMS 
decomposition for the tasks with the most pronounced 
hierarchical structure – the object manipulation tasks. 

Analysis 2: Task Decomposition 
We performed a GOMS analysis and decomposed the 
object manipulation task into ten lower-level subtasks that 
we refer to as L1 subtasks, see Figure 4. Except for the 
first two L1 subtasks, the remaining eight L1 subtasks 
were the same and formed the core of the task. We 
validated the GOMS model by comparing the interaction 
sequences in the videos with the GOMS model. There 
was about 95% conformance between them.  

We further decomposed each L1 subtask into two more 
subtasks – a cognitive subtask and a motor subtask - that 
we refer to as L2 subtasks. In the cognitive subtask, a user 
was reasoning about the destination folder. In the motor 
subtask, the user dragged and dropped the object into the 
target folder. The workload to drag and drop an item 
should be similar across the easy and difficult tasks. The 
cognitive subtask, however, should differ in complexity 
across the easy and difficult task. Therefore we filtered 
out the motor subtasks and again compared the average 
PCPS between the easy and difficult tasks. Because of the 
filtering, only the cognitive subtasks were compared. 
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Figure 1. Average task completion time for each easy 
and difficult task. Error bars show 95% CI of mean. 

 

Figure 2. Average user rating for each task. Error bars 
show 95% CI of mean. Bars show means. 
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Figure 3. Average PCPS for each task. Error bars show 
95% CI of mean. 
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This time, however, an ANOVA showed that Difficulty 
had a main effect on PCPS (F(1,11)=0.058, p<0.046). 
This suggests that mental workload varies across subtasks 
in a hierarchical task and that pupil size correlates well 
with those changes. This implies that a user may 
experience changes in cognitive load at task boundaries 
and that the amount of change may differ among those 
boundaries. Although this was claimed in [12], our 
analysis has provided supporting empirical evidence. 

DISCUSSION 
From analysis of our empirical results, we learned that: 

• A hierarchical task imposes varying mental workloads. 
Although measures such as task completion time and 
user ratings provide an overall measure of workload for 
a task, they do not reflect the changes in workload that 
a user experiences throughout the task, and these 
changes are meaningfully different in task execution. 

• Pupil size correlates well with cognitive load for 
interactive tasks. As expected, a user’s pupil size 
increased at the onset of a task and decreased back to 
baseline levels at the end of a task. For a sustained 
effort task such as the search task, pupil size correlated 
well with the difficulty of the overall task. 

• A hierarchical task requires varying mental workloads 
and pupil size correlates well with those changes. Once 
we used just the cognitive subtasks to compare pupil 
size, we detected differences between the easier and 
more difficult tasks in each task category. Most 
striking, however, is that when users’ changes in pupil 
size are overlaid on the task model, the rise and fall of 
the pupillary response graph matches very well with the 
onset and completion of the subtasks. 

Our results suggest there may be meaningful periods of 
cognitive shift between subtasks where the user completes 
one subtask and begins activating goals for the next [2]. 
Mental workload is expected to be low at these transition 
periods and we plan to further investigate how significant 
these shifts are, how well pupil size can detect them, and 
how opportune they are for an interruption. 

The findings from this study have implications for the 
design of an attention manager, which must balance a 
user’s need for minimal disruption with an application’s 
need to effectively deliver information. Past research has 

shown that periods of lower mental workload provide 
better moments for an interruption than periods of higher 
mental workload. Based on our results, pupil size can 
provide a reliable measure of mental workload for 
interactive tasks required by the attention manager. 

Because there is strong evidence showing that a user’s 
mental workload changes among subtasks in a 
hierarchical task structure, an attention manager can 
perform fine-grained temporal reasoning (at the subtask 
level) about when to interrupt a user engaged in the task. 
Furthermore, if the attention manager can record 
observations of mental workload in a user task model, it 
could forecast a user’s mental workload, enabling the 
system to better reason about when to interrupt the user. 
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Figure 4. Partial GOMS analysis for object manipulation. 
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