

A Tangible Architecture for Creating Modular,
Subsumption-Based Robot Control Systems

Tim Gorton and Bakhtiar Mikhak
MIT Media Laboratory, 20 Ames Street E15-354, Cambridge MA 02139 USA

{tgorton, mikhak} @ media.mit.edu

ABSTRACT
We present a new modular, reconfigurable architecture for
building and interacting with subsumption-based robot
controllers. A set of modules – with embedded sensing,
communication and processing capabilities – divide up the
subsumption architecture into self-contained behavioral
layers that subsume each other according to the way the
modules are physically stacked. On-board indicators of the
internal state of each module help in programming and
understanding the behavior of the robot in real-time. This
offers novices, in particular children, a new environment to
learn about a powerful metaphor for programming robots
and other interactive systems in a hands-on and exploratory
manner. We will also discuss a prototype implementation of
this architecture and the results of a preliminary user study
using the prototype with a group of children.

Author Keywords
Subsumption architecture, tangible programming, modular
robot controllers, interactive system for children, toy

ACM Classification Keywords
C.3: Special Purpose and Application-based System, I.2.9.
Artificial Intelligence: Robotics. K.3. Computers and Education.

INTRODUCTION AND OVERVIEW
Subsumption architectures [1] have proved to be a powerful
means of organizing simple computational elements in
order to build complex functionality in a robot controller. In
this software architecture, behavioral layers selectively
override the outputs of lower levels to control a set of
mechanical actuators. Designing and constructing robots is
a popular hobby activity for adults and children, but the
controllers built for these activities are generally either pre-
designed electronics or built with an embedded controller
such as the LEGO Mindstorms™ RCX brick. Alternate
representations are needed in order to leverage the benefits
of subsumption architecture in controllers built by children
and novice hobbyists. This paper presents a new tangible,
modular, reconfigurable architecture for addressing this
need.

Figure 1: A prototype Implementation of a

subsumption-based robot controller

In order for a novice to understand the operation of a
subsumption-based controller, the user must be able to
construct new controllers in order to explore their behavior.
However, the common representation of a subsumption
architecture controller, a network of augmented finite state
machines, is difficult to construct or manipulate in practice.
We explore an alternate architecture obtained by dividing
the subsumption architecture into behavioral layers – each
represented as an intuitive tangible module with computing,
sensing, communication, and display capabilities on-board
for encapsulating the layer’s functionality – that subsume
each other. These layers can be then added, removed, and
reordered easily to build different controllers.

Transparency is a crucial factor in the design of rich
programming environments for novices. [5] For a modular
robot controller, this implies that the operation of each layer
must be easily understandable in isolation and in a full
controller. Also, the link between a layer’s sensors and its
outputs must be simple enough to be comprehensible while
powerful for implementing sophisticated robot controllers.
The relationship between the layers must also be clear, as
well as how particular observed behaviors emerge from the
interactions between layers. Our approach is to connect
directly the modules used in constructing the controller with
their outputs using an arrangement which makes it clear
how the layers’ outputs lead to the observed behavior.

RELATED WORK

C
C
A

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

opyright is held by the author/owner(s).
HI 2004, April 24–29, 2004, Vienna, Austria.
CM 1-58113-703-6/04/0004.
The Mobile Robot Group at MIT AI Lab headed by Rodney
Brooks both invented the subsumption architecture [1] and

1469

has demonstrated its success in creating robust robot control
systems for a variety of robot types. [2] Though we have
chosen a different means of implementation in our work,
our approach still aims to take advantage of the robustness
and incremental development described by Brooks.

This work is inspired by Tim McNerney’s work on tangible
programming [5] and an earlier implementation (by one of
the authors) of the robot controller presented in this paper
using McNerney’s tangible programming blocks. In that
implementation, the order of the behavior blocks was read
by a base unit, which contained all of the logic and sensors
for the robot controller. It was not fully modular and lacked
the transparency and extensibility of the current work.

Peat Wyeth and Helen Purchase have reported success in
building tangible programming elements appropriate for
children less than eight years old, a target audience for this
work. [8] Patten, Griffith, and Ishii have also explored other
means of using tangible interfaces to program a robot
controller, linking events to actions using physical strings.
[7] The logic created through these connections was then
downloaded onto a Lego Mindstorms™ brick, preventing
real-time analysis of the robot controller.

Lund and Pagliarini have developed an environment for 7
to 14-year-olds to build autonomous robot controllers for a
“RoboCup Junior” robotic soccer tournament. [3] Their on-
screen design environment allowed users to select from and
order high-levels behaviors such as “find the ball” and
“circle around the ball.” Lund and Pagliarini report that
children were able to build successful controllers within 60
minutes using these behaviors as building blocks. Like
Patten’s work, the controller logic was downloaded onto a
Lego Mindstorms™ brick for the competition.

ARCHITECTURE OVERVIEW
The architecture that we have created to address the design
concerns described in the introduction consists of a base
unit and a set of layers that can be stacked atop the base in
any order. Each layer implements some simple behavioral
primitive and contains or is attached to the appropriate
sensors needed for this behavior. (Figure 2) The vertical
ordering of the layers determines which layers inhibit which
other layers; in particular, layers may inhibit the outputs of
layers above them. For example, in the arrangement shown
in Figure 2, the “Seek light” layer could inhibit the outputs
of the “Move randomly” layer.

 To allow arbitrary orderings of these layers, we have
imposed constraints on the general form of subsumption
architectures. Specifically, each layer must use the same set
of outputs with a common set of tokens. (See Figure 3)
Because the robot’s actuators are located on the base unit,
we have also reversed the traditional ordering of the layers,
so lower layers override the outputs of those above them.

Move randomly

Foundation
(control for motors and other actuators,

communication with layers)

Avoid obstacles

Seek light

Interprocessor bus

Light sensors

Distance sensors

Motors

Figure 2: Architecture Concept

Each output must also have a default, in case none of the
layers outputs a token for a particular output. (For example,
see output 3 in Figure 3.) In the current version of our
architecture, layers are unaware of the outputs of higher
layers that are being inhibited. We will discuss the effects
of this and other limitations to the subsumption architecture
more fully elsewhere.

A R B B

L

A L A R B

Motors &
actuators

A R B

Figure 3: Subsumption Mechanism

PROTOTYPE DESIGN
The prototype for this system, shown in Figure 1, is a
controller for a simple tracked LEGO robot chassis. The
robot chassis has two motors, one for each track, and two
touch sensors attached to bumpers in front of the robot.
Figure 4 illustrates the possible motions of this robot. Each
of the three illustrated motions can be reversed in order for
the robot to move backwards or turn in the opposite
direction.

Figure 4: Prototype Robot Movements and Tokens

The prototype controller built for this robot (Figure 5) uses
the four tokens shown in Figure 4: Forward, Backward,
Inhibit, and Pass. The difference between the Inhibit and
Pass tokens is that the Inhibit token indicates that the layer
wishes to stop the motor, while Pass indicates that the layer

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1470

has no preference. The system has only two outputs, one for
each motor, which are made visible on each layer by two
small lights called LED’s. Each LED can be lit red, green
or amber, corresponding to the tokens above.

Move forward

Foundation

Avoid obstacles

Seek light

Right Motor

Light sensors

Distance sensors

Motors

F F

Left Motor

F I

F I

Figure 5: Prototype Controller

The base unit and layers were built using components of the
Tower System. [4] Each subsumption layer is implemented
as a circuit board with the necessary sensors and LED’s
attached. We have built layers for moving forward, moving
randomly, seeking light, avoiding obstacles, and recoiling
when colliding with an obstacle. (Figure 6) These layers
can be reconfigured arbitrarily and follow the subsumption
rules described in the previous section.

Figure 6: Prototype Behavior Layers

Building Complex Behaviors
The most interesting behaviors occur when a few layers are
combined. For example, consider the arrangement shown in
Figure 7. The robot moves forward, unless it sees a light or
an obstacle. Avoiding an obstacle will inhibit the movement
towards a light source. This leads to a behavior where the
robot repeatedly turns towards the flashlight just enough to
see the box underneath it and then turns away. Finally the
robot no longer sees the light after turning away from the
box and heads away in a straight line. (Figure 8)

Move forward

Foundation

Avoid obstacles

Seek light

Right Motor

Light sensors

Distance sensors

Motors

F F

Left Motor

I F

F I

F I

BumpersTouch Switches

Figure 7: A complex controller

Figure 8: Observed movement of a robot
using the controller shown in Figure 7

However, when the order of the Avoid Obstacles and Seek
Light layers are reversed (Figure 9) the desire to seek light
inhibits the higher layer’s desire to turn away from the box.
This results in a movement, in which the robot avoids
obstacles until it sees the flashlight, which it moves towards
until it finally touches the box and turns away. (Figure 10)

Move forward

Foundation

Seek light

Right Motor

Light sensors

Motors

F F

Left Motor

I F

BumpersTouch Switches

Avoid obstacles
Distance sensors

F I

I F

Figure 9: Another complex controller

Figure 10: Observed movement for a robot
using the controller shown in Figure 9

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1471

The behaviors observed by the controllers described in this
section make it clear that it is possible to create interesting,
complex behaviors by combining primitive behaviors in
layers such as those created for this prototype. It is also
clear that rearrangements of these layers can yield new
behaviors. However, using a number of these layers makes
it more difficult to examine the layers’ interactions by
observing the LED’s on the controller.

PRELIMINARY EVALUATIONS AND FUTURE WORK
The preliminary user testing was performed at the
Computer Clubhouse at the Boys and Girls Club in Chelsea,
Massachusetts. A group of fifteen children between the
ages of 8 and 11 interacted with our prototype robot over a
forty-five minute period. We first let the robot roam with
the Bumper and Avoid Obstacles layers, and a number of
the children quickly became interested in the robot’s
movements at their feet, and began trying to characterize its
behavior, listing the individual behaviors of avoiding and
recoiling from obstacles. We demonstrated to them how to
change the robot’s functionality by removing and adding
layers with a few children and they then began to examine
the different functionalities. They were able to describe
how the different behaviors they saw were contained in
different layers, noting both that a behavior stopped after
they removed the associated layer. They explained this by
simply pointing to, for example, the distance sensors
attached to the Avoid Obstacles layer and saying they were
no longer on the robot. Though they were able to create and
understand complex behavior like the ones discussed in the
last section, they had difficulty with understanding the
interactions of the layers and their combined effect on the
observed behavior. Further study is required to see if this
will prove to be important in their understanding of more
general behavior. We suspect that it does and this issue
needs to be investigated and addressed more fully.

The architecture described in this paper places several
severe constraints on how a layered, subsumption-based
controller may be realized in physically distinct layers.
Though the prototype controller demonstrated that an
engaging set of behaviors could be built despite these
constraints, the effects of these limitations on the types of
controllers that can be built is certainly worth discussion
and investigation. A natural next step in this research is
addressing the following three limitations to a full-feature
implementation of subsumption architecture. (1) Outputs of
each controller are limited to a set of global tokens only.
(2) The layers are unaware of the values that they may
choose to inhibit, since no communication occurs directly
between layers. (3) A single hardware stack requires a
universal set of outputs and prevents us from exploring
scenarios with two modules on the same “level” as each
other. Addressing these limitation will likely require
extensions to the communication protocol between layers
and our on-board means for visualizing the internal state of
each layer.

CONCLUSION
In this paper, taking advantage of modularity and means of
controlling complexity in the subsumption architecture, we
have presented a new tangible, modular, reconfigurable
architecture for building robot controllers that is more
accessible to novices and is particularly more engaging for
children. Conceptually and physically, this new architecture
splits a subsumption-based control system into behavioral
layers, each of which is implemented on a microcontroller
in a stack of circuit boards.

The prototype implementation using the Tower system
demonstrates that the architecture is both conceptually and
technically promising. We reported our findings from a
preliminary study with a group of children as young as 8
years old. While finding that children in our group partially
succeeded in deconstructing the robot’s observed behavior
into outputs of individual layers, our study indicated that
understanding the interactions of the layers and their
combined effect on the observed behavior remains difficult.
Growing out of this development and evaluation effort, we
discussed three fruitful directions for further research:
developing and testing new implementations, improving the
transparency of these implementations, and extending the
means for novices to expand the existing set of controller.

REFERENCES
1. Brooks, R. A Robust Layered Control System for a

Mobile Robot. IEEE Journal of Robotics and
Automation, Vol. 2, No. 1 (1986), 14–23.

2. Brooks, R., Flynn, A. Fast, Cheap, and Out of Control:
A Robot Invasion of the Solar System. Journal of the
British Interplanetary Society, (1989), 478–485.

3. Lund, H., Pagliarini, L. Edutainment Robotics:
Applying Modern AI Techniques. Proceedings of
International Conference on Autonomous Minirobots for
Research and Edutainment (AMIRE-2001).

4. Lyon, C. Encouraging Innovation by Engineering the
Learning Curve. Master of Engineering Thesis,
Massachusetts Institute of Technology, Cambridge, MA.
(2003).

5. McNerney, T. Tangible programming bricks: An
approach to making programming accessible to
everyone. Masters Thesis, Media Lab, Massachusetts
Institute of Technology, Cambridge, MA. (1999).

6. Papert, S. Mindstorms: Children, computers and
powerful ideas. New York: Basic Books, 1980.

7. Patten, J., Griffith, L., and Ishii, H., A Tangible
Interface for Controlling Robotic Toys. In Summary of
Conference on Human Factors in Computing Systems
(CHI2000), ACM Press (2000) 277-278.

8. Wyeth, P.A. and Purchase, H.C. Tangible Programming
Elements for Young Children, Proceedings of the CHI
conference, ACM (2002), 774-755.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1472

