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ABSTRACT 
We present a new modular, reconfigurable architecture for 
building and interacting with subsumption-based robot 
controllers. A set of modules – with embedded sensing, 
communication and processing capabilities – divide up the 
subsumption architecture into self-contained behavioral 
layers that subsume each other according to the way the 
modules are physically stacked. On-board indicators of the 
internal state of each module help in programming and 
understanding the behavior of the robot in real-time. This 
offers novices, in particular children, a new environment to 
learn about a powerful metaphor for programming robots 
and other interactive systems in a hands-on and exploratory 
manner. We will also discuss a prototype implementation of 
this architecture and the results of a preliminary user study 
using the prototype with a group of children.  
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INTRODUCTION AND OVERVIEW 
Subsumption architectures [1] have proved to be a powerful 
means of organizing simple computational elements in 
order to build complex functionality in a robot controller. In 
this software architecture, behavioral layers selectively 
override the outputs of lower levels to control a set of 
mechanical actuators. Designing and constructing robots is 
a popular hobby activity for adults and children, but the 
controllers built for these activities are generally either pre-
designed electronics or built with an embedded controller 
such as the LEGO Mindstorms™ RCX brick. Alternate 
representations are needed in order to leverage the benefits 
of subsumption architecture in controllers built by children 
and novice hobbyists. This paper presents a new tangible, 
modular, reconfigurable architecture for addressing this 
need.  

 
Figure 1: A prototype Implementation of a  

subsumption-based robot controller 

In order for a novice to understand the operation of a 
subsumption-based controller, the user must be able to 
construct new controllers in order to explore their behavior. 
However, the common representation of a subsumption 
architecture controller, a network of augmented finite state 
machines, is difficult to construct or manipulate in practice. 
We explore an alternate architecture obtained by dividing 
the subsumption architecture into behavioral layers – each 
represented as an intuitive tangible module with computing, 
sensing, communication, and display capabilities on-board 
for encapsulating the layer’s functionality – that subsume 
each other. These layers can be then added, removed, and 
reordered easily to build different controllers. 

Transparency is a crucial factor in the design of rich 
programming environments for novices. [5] For a modular 
robot controller, this implies that the operation of each layer 
must be easily understandable in isolation and in a full 
controller. Also, the link between a layer’s sensors and its 
outputs must be simple enough to be comprehensible while 
powerful for implementing sophisticated robot controllers. 
The relationship between the layers must also be clear, as 
well as how particular observed behaviors emerge from the 
interactions between layers. Our approach is to connect 
directly the modules used in constructing the controller with 
their outputs using an arrangement which makes it clear 
how the layers’ outputs lead to the observed behavior. 
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has demonstrated its success in creating robust robot control 
systems for a variety of robot types. [2] Though we have 
chosen a different means of implementation in our work, 
our approach still aims to take advantage of the robustness 
and incremental development described by Brooks. 

This work is inspired by Tim McNerney’s work on tangible 
programming [5] and an earlier implementation (by one of 
the authors) of the robot controller presented in this paper 
using McNerney’s tangible programming blocks. In that 
implementation, the order of the behavior blocks was read 
by a base unit, which contained all of the logic and sensors 
for the robot controller. It was not fully modular and lacked 
the transparency and extensibility of the current work. 

Peat Wyeth and Helen Purchase have reported success in 
building tangible programming elements appropriate for 
children less than eight years old, a target audience for this 
work. [8] Patten, Griffith, and Ishii have also explored other 
means of using tangible interfaces to program a robot 
controller, linking events to actions using physical strings. 
[7] The logic created through these connections was then 
downloaded onto a Lego Mindstorms™ brick, preventing 
real-time analysis of the robot controller. 

Lund and Pagliarini have developed an environment for 7 
to 14-year-olds to build autonomous robot controllers for a 
“RoboCup Junior” robotic soccer tournament. [3] Their on-
screen design environment allowed users to select from and 
order high-levels behaviors such as “find the ball” and 
“circle around the ball.” Lund and Pagliarini report that 
children were able to build successful controllers within 60 
minutes using these behaviors as building blocks. Like 
Patten’s work, the controller logic was downloaded onto a 
Lego Mindstorms™ brick for the competition.  

ARCHITECTURE OVERVIEW 
The architecture that we have created to address the design 
concerns described in the introduction consists of a base 
unit and a set of layers that can be stacked atop the base in 
any order. Each layer implements some simple behavioral 
primitive and contains or is attached to the appropriate 
sensors needed for this behavior. (Figure 2) The vertical 
ordering of the layers determines which layers inhibit which 
other layers; in particular, layers may inhibit the outputs of 
layers above them. For example, in the arrangement shown 
in Figure 2, the “Seek light” layer could inhibit the outputs 
of the “Move randomly” layer.  

 To allow arbitrary orderings of these layers, we have 
imposed constraints on the general form of subsumption 
architectures. Specifically, each layer must use the same set 
of outputs with a common set of tokens. (See Figure 3)  
Because the robot’s actuators are located on the base unit, 
we have also reversed the traditional ordering of the layers, 
so lower layers override the outputs of those above them.  

Move randomly

Foundation
(control for motors and other actuators,

communication with layers)

Avoid obstacles

Seek light

Interprocessor bus

Light sensors

Distance sensors

Motors

 
Figure 2: Architecture Concept 

Each output must also have a default, in case none of the 
layers outputs a token for a particular output.  (For example, 
see output 3 in Figure 3.) In the current version of our 
architecture, layers are unaware of the outputs of higher 
layers that are being inhibited. We will discuss the effects 
of this and other limitations to the subsumption architecture 
more fully elsewhere.  
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Motors &
actuators
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Figure 3: Subsumption Mechanism 

PROTOTYPE DESIGN 
The prototype for this system, shown in Figure 1, is a 
controller for a simple tracked LEGO robot chassis. The 
robot chassis has two motors, one for each track, and two 
touch sensors attached to bumpers in front of the robot. 
Figure 4 illustrates the possible motions of this robot. Each 
of the three illustrated motions can be reversed in order for 
the robot to move backwards or turn in the opposite 
direction. 

 
Figure 4: Prototype Robot Movements and Tokens 

The prototype controller built for this robot (Figure 5) uses 
the four tokens shown in Figure 4: Forward, Backward, 
Inhibit, and Pass. The difference between the Inhibit and 
Pass tokens is that the Inhibit token indicates that the layer 
wishes to stop the motor, while Pass indicates that the layer 
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has no preference. The system has only two outputs, one for 
each motor, which are made visible on each layer by two 
small lights called LED’s. Each LED can be lit red, green 
or amber, corresponding to the tokens above. 

Move forward

Foundation

Avoid obstacles

Seek light

Right Motor

Light sensors

Distance sensors

Motors

F F

Left Motor

F I

F I

 
Figure 5: Prototype Controller 

The base unit and layers were built using components of the 
Tower System. [4] Each subsumption layer is implemented 
as a circuit board with the necessary sensors and LED’s 
attached. We have built layers for moving forward, moving 
randomly, seeking light, avoiding obstacles, and recoiling 
when colliding with an obstacle. (Figure 6) These layers 
can be reconfigured arbitrarily and follow the subsumption 
rules described in the previous section. 

 
Figure 6: Prototype Behavior Layers 

Building Complex Behaviors 
The most interesting behaviors occur when a few layers are 
combined. For example, consider the arrangement shown in 
Figure 7. The robot moves forward, unless it sees a light or 
an obstacle. Avoiding an obstacle will inhibit the movement 
towards a light source. This leads to a behavior where the 
robot repeatedly turns towards the flashlight just enough to 
see the box underneath it and then turns away. Finally the 
robot no longer sees the light after turning away from the 
box and heads away in a straight line. (Figure 8) 

Move forward

Foundation

Avoid obstacles

Seek light

Right Motor

Light sensors

Distance sensors

Motors

F F

Left Motor

I F

F I

F I

BumpersTouch Switches

 
Figure 7: A complex controller 

 

 

Figure 8: Observed movement of a robot                                   
using the controller shown in Figure 7 

 

However, when the order of the Avoid Obstacles and Seek 
Light layers are reversed (Figure 9) the desire to seek light 
inhibits the higher layer’s desire to turn away from the box. 
This results in a movement, in which the robot avoids 
obstacles until it sees the flashlight, which it moves towards 
until it finally touches the box and turns away.  (Figure 10) 
 

Move forward

Foundation

Seek light

Right Motor

Light sensors

Motors

F F

Left Motor

I F

BumpersTouch Switches

Avoid obstacles
Distance sensors
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I F

 
Figure 9: Another complex controller 

 

 

Figure 10: Observed movement for a robot                          
using the controller shown in Figure 9 
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The behaviors observed by the controllers described in this 
section make it clear that it is possible to create interesting, 
complex behaviors by combining primitive behaviors in 
layers such as those created for this prototype. It is also 
clear that rearrangements of these layers can yield new 
behaviors. However, using a number of these layers makes 
it more difficult to examine the layers’ interactions by 
observing the LED’s on the controller.  

PRELIMINARY EVALUATIONS AND FUTURE WORK 
The preliminary user testing was performed at the 
Computer Clubhouse at the Boys and Girls Club in Chelsea, 
Massachusetts. A group of fifteen children between the 
ages of 8 and 11 interacted with our prototype robot over a 
forty-five minute period. We first let the robot roam with 
the Bumper and Avoid Obstacles layers, and a number of 
the children quickly became interested in the robot’s 
movements at their feet, and began trying to characterize its 
behavior, listing the individual behaviors of avoiding and 
recoiling from obstacles. We demonstrated to them how to 
change the robot’s functionality by removing and adding 
layers with a few children and they then began to examine 
the different functionalities. They were able to describe 
how the different behaviors they saw were contained in 
different layers, noting both that a behavior stopped after 
they removed the associated layer. They explained this by 
simply pointing to, for example, the distance sensors 
attached to the Avoid Obstacles layer and saying they were 
no longer on the robot. Though they were able to create and 
understand complex behavior like the ones discussed in the 
last section, they had difficulty with understanding the 
interactions of the layers and their combined effect on the 
observed behavior. Further study is required to see if this 
will prove to be important in their understanding of more 
general behavior. We suspect that it does and this issue 
needs to be investigated and addressed more fully. 

The architecture described in this paper places several 
severe constraints on how a layered, subsumption-based 
controller may be realized in physically distinct layers. 
Though the prototype controller demonstrated that an 
engaging set of behaviors could be built despite these 
constraints, the effects of these limitations on the types of 
controllers that can be built is certainly worth discussion 
and investigation. A natural next step in this research is 
addressing the following three limitations to a full-feature 
implementation of subsumption architecture. (1) Outputs of 
each controller are limited to a set of global tokens only.  
(2) The layers are unaware of the values that they may 
choose to inhibit, since no communication occurs directly 
between layers. (3) A single hardware stack requires a 
universal set of outputs and prevents us from exploring 
scenarios with two modules on the same “level” as each 
other. Addressing these limitation will likely require 
extensions to the communication protocol between layers 
and our on-board means for visualizing the internal state of 
each layer.  

CONCLUSION 
In this paper, taking advantage of modularity and means of 
controlling complexity in the subsumption architecture, we 
have presented a new tangible, modular, reconfigurable 
architecture for building robot controllers that is more 
accessible to novices and is particularly more engaging for 
children. Conceptually and physically, this new architecture 
splits a subsumption-based control system into behavioral 
layers, each of which is implemented on a microcontroller 
in a stack of circuit boards. 

The prototype implementation using the Tower system 
demonstrates that the architecture is both conceptually and 
technically promising. We reported our findings from a 
preliminary study with a group of children as young as 8 
years old. While finding that children in our group partially 
succeeded in deconstructing the robot’s observed behavior 
into outputs of individual layers, our study indicated that 
understanding the interactions of the layers and their 
combined effect on the observed behavior remains difficult. 
Growing out of this development and evaluation effort, we 
discussed three fruitful directions for further research:  
developing and testing new implementations, improving the 
transparency of these implementations, and extending the 
means for novices to expand the existing set of controller.   
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