
Recent Developments in Text-Entry Error Rate Measurement

 R. William Soukoreff I. Scott MacKenzie
 Department of Computer Science Department of Computer Science
 York University York University
 Toronto, Ontario, Canada, M3J 1P3 Toronto, Ontario, Canada, M3J 1P3
 will@acm.org smackenzie@acm.org

ABSTRACT
Previously, we defined robust and easy-to-calculate error
metrics for text entry research. Herein, we announce a
software implementation of this error analysis technique.
We build on previous work, by introducing two new
metrics, and we extend error rate analyses to high key-
stroke-per-character entry techniques, such as Multi-Tap.
ACM Classification Keywords
H.1.2. User/Machine Systems (Human Factors)
Keywords
Text entry, error rate, minimum string distance
INTRODUCTION
Three great peaks of text entry research are evident in the
modern era. Yamada [14] provides an interesting and
enlightening review of the first, in the late 1800s and early
1900s. This coincides with the invention of the typewriter,
the development of touch-typing, and the eventual
dominance of the Qwerty keyboard arrangement.
MacKenzie [4] attributes the second peak to the arrival of
the computer and the associated revolution in office
automation throughout the world in the 1970s and 1980s.
We are currently in the midst of the third peak in text entry
research, which is precipitated by three trends. (1) The
cellular telephone is immensely popular, and consequently
more and more people around the world are sending SMS
(phone-to-phone text) messages.1 (2) Mobile computing is
now in the mainstream, with sales of Personal Digital
Assistants growing rapidly in recent years.2 (3) Large
corporations are seizing opportunities for growth in the
mobile area, and are bringing more powerful portable
devices to market, coupled with more convincing
marketing. Further, market trends suggest that we are only
at the beginning – the market penetration of these devices
will rise for the next few years at least. With the increased
use of mobile communications and computing devices
comes a need for efficient text-entry techniques that work
well on small devices, preferably supporting single-handed
text entry, and ideally ‘eyes-free’ operation as well.

This huge demand for a portable text entry method caught
the HCI research community unprepared. Not only is a
solution to the mobile text entry problem lacking, but, until

recently, there were significant weaknesses in our research
methodologies. This has not discouraged researchers from
proposing new text entry methods. A recent review of
mobile text entry methods [7]12describes 23 novel text
entry methods developed over the last decade, and 14 new
soft-keyboard arrangements. Clearly, text entry is an active
area of research. But, discerning which text entry method
is superior requires controlled experiments with dependant
variables that are comparable between studies. It was
precisely this inter-comparability that was lacking.

Evaluations of new text-entry methods must attend to both
speed and accuracy. Speed (in ‘words per minute’) is
relatively easy to measure, but the same is not true for
accuracy [10]. Typical text entry experiments generate
large amounts of data that, in the absence of an automated
means of analysis, are scanned for errors and tabulated by
hand. Because computerising error analysis proved
difficult and hand tabulation, tedious, many researchers
either ignored errors, discarded trials with errors, or
resorted to inferior experimental paradigms to avoid errors
altogether. But, one cannot make meaningful observations
about speed in the absence of accuracy. Further, error
correction comprises a large part of the text entry process.3

Two recent publications address the difficulties in
measuring accuracy in text entry studies [10, 11]. These
provide a means to automate error analyses and define a
family of useful performance metrics. The methodology is
well regarded, however, through conversations with other
researchers and from our own musings, some limitations
are apparent. Specifically,

• Inspection of experiment data gives rise to new and
potentially useful performance measures.

• Some clarification is needed on applying the
methodology to certain (‘constructive’) text input
methods.

1 GSM World, reports that 30 billion SMS messages were
transmitted in January, 2003. [3]
2 eTForecasts, reports that worldwide sales of PDAs topped 15
million units in 2002, with a 28% annual growth rate. [2]
3 Card et al. [1] report that up to one fourth of an expert’s time can
be spent correcting errors. MacKenzie et al. [7, 12] report that the
backspace key is the second most common keystroke (following
the space bar, but more common than the letter ‘e’) in typical
desktop computer keyboard text entry.

Copyright is held by the author/owner(s).
CHI 2004 , April 24–29, 2004, Vienna, Austria.
ACM 1-58113-703-6/04/0004.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1425

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1425

• Some researchers have suggested that these error analysis
techniques are prohibitively difficult to implement.

This paper addresses the three points above. We begin
with an overview of the measurement of accuracy in text
entry experiments. Two new error metrics are then
presented, and the application of the error analysis
methodology to constructive text entry methods is
discussed. Finally, a software package is announced and
released to the public that implements this error analysis
methodology.
Accuracy in Text Entry
Typically during a text-entry experiment, short phrases are
displayed one at a time to participants who enter each
phrase using the text entry method under study. Thus, the
data take the form of pairs of strings; there is the presented
text string, and the transcribed text string (produced by the
subject). These pairs of strings can be compared to
determine how many errors the subjects committed.
Pseudo-code for an algorithm that performs the comparison
between the two strings is published, and is used to define
the MSD Error Rate. [10]

A benefit in analysing errors in this manner is that
researchers may employ a correct as you go procedure.
This is preferred because it mimics text entry as it occurs in
typical usage. Participants are instructed to ‘enter the
presented text as quickly and accurately as possible’, and
they are allowed to correct mistakes as they go. However,
the ‘correct as you go’ approach introduces a subtle wrinkle
– it creates two classes of errors, those that the subject
commits and then corrects, and those that go unnoticed and
hence remain in the transcribed text. The latter
(uncorrected errors) are measurable by the MSD error rate.
The former (corrected errors) are not reflected in the final
text, yet are an important aspect of the accuracy problem.

In later work, a new approach to measuring errors was
described providing results consistent with the previous
work, yet with better dependent measures for both
corrected and uncorrected errors [11]. The new approach
considers the keystroke input stream as well as the
transcribed text. We delineate participants’ keystrokes into
four classes:

• Correct (C) keystrokes – alphanumeric keystrokes that
are not errors,

• Incorrect and Not Fixed (INF) keystrokes – errors that go
unnoticed and appear in the transcribed text,

• Incorrect but Fixed (IF) keystrokes – erroneous key-
strokes in the input stream that are later corrected, and,

• Fixes (F) – the keystrokes that perform the corrections
(i.e., delete, backspace, cursor movement).

A means to classify keystrokes is described and is readily
automated [11]. Note that keystrokes in the F and IF
classes do not appear in the transcribed text, because F
keystrokes annihilate IF keystrokes. Thus, this analysis

requires access to the input stream (the exact sequence of
keystrokes produced by the participant).

Several statistics are easily calculated once keystrokes are
sorted into the above four groups, for example:

%100×
++

+
=

IFINFC

IFINF
RateErrorTotal (1)

%100×
++

=
IFINFC

INF
RateErrorCorrectedNot (2)

%100×
++

=
IFINFC

IF
RateErrorCorrected (3)

NEW STATISTICS
Both ourselves and other researchers [13] have observed
that some participants engage in behaviour we term
pathologic error correction. This is marked by extensive
use of the backspace key instead of cursor keys when
correcting errors. For example, consider the following
input stream for entering “the quick brown”: (‘<’ represents
backspace)

thw quick<<<<<<<e quick brown

The participant committed an error but did not notice it
until several keystrokes afterward. The participant then
backspaced destructively to the error and re-entered the
correct text. There are two points demonstrated in the
example. Assuming the usual editing functions were
available, the participant could have used ‘Control + Cursor
Left’ to move to the beginning of ‘quick’ with only two
keystrokes. And once the error was corrected, one tap of
the ‘End’ key would return the cursor to the end of the line.
In other words, the edit could have been made more
efficiently (notwithstanding performance issues pertaining
to human perception, but these are not addressed here).
The second point is that we expect an increased error rate
because the participant inflated the number of keystrokes
required to complete the trial, and they might commit a
further error when entering ‘e quick’ the second time.

Analysis of this example {C = 15, F = 7, IF = 7, INF = 0}
reveals a Corrected Error Rate of 31.8%. On the other
hand, if the subject noticed the error right away and
corrected it immediately {C = 15, F = 1, IF = 1, INF = 0}
the resulting Corrected Error Rate is as low as 6.3%. This
difference arises because the IF keystrokes are defined as
the keystrokes obliterated by corrections (F keystrokes).
Yet in this example, IF contains many keystrokes that were
correct (IF = {‘w’, space, ‘q’, ‘u’, ‘i’, ‘c’, ‘k’}, and so
|IF| = 7) even though they were deleted by the participant.
Now, consider dividing the Incorrect Fixed keystrokes into
two sets4: IFc contains the fixed keystrokes that were
correct (IFc = {space, ‘q’, ‘u’, ‘i’, ‘c’, ‘k’}, and so

4 In practice, it is not too difficult to perform the separation of IF
into IFe and IFc – for a detailed explanation see the source code
for the ‘Analyse’ program described later in this paper.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1426

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1426

|IFc| = 6), and IFe contains the fixed keystrokes that were
in error (IFe = {‘w’}, and so |IFe| = 1). This distinction
allows us to break the Corrected Error Rate into two
components,

%100×
++

=
IFINFC

IFc
RateError

RightButCorrected (4)

%100×
++

=
IFINFC

IFe
RateError

WrongAndCorrected (5)

where these terms sum to the usual Corrected Error Rate
(as defined in [11]). So, the analysis for the example above
still yields a Corrected Error Rate of 31.8%, but the
Corrected And Wrong Error Rate would be 4.5%, and the
Corrected But Right Error Rate would be 27.3%.

These new statistics provide a little more insight into the
behaviour of subjects, and as such may be of interest to
researchers.
CONSTRUCTIVE TEXT ENTRY METHODS
Constructive text entry methods are those that require
several actions from the user to enter each letter. Examples
include high keystrokes per character (KSPC) text entry
methods like Multi-Tap on a cellular telephone, or
predictive technologies such as T9 (by Tegic
Communications, Inc. Seattle, WA; www.tegic.com).
Multi-Tap and T9 are the two most popular input methods
on mobile telephones, and as such many researchers seek to
compare a new method to these two. However, it is not
immediately clear how to apply this approach to error
analysis with these input techniques. For example, when
entering the four-letter word ‘FILE’ using Multi-Tap on a
cellular telephone, the user must enter 11 keystrokes, and
there is no one-to-one correspondence between keystrokes
and characters in the input stream.

33344455533 ← keystrokes
 F I L E ← entered letters

There are two ways to apply the error analyses. One can
perform the prescribed calculations on the low-level raw
keystrokes entered by the subject, or on the final resultant
characters (high-level analysis). The correct approach is
the high-level error analysis as the following examples
demonstrate. (In the following examples, the presented text
is the word ‘FILE’.)

a) A missing keystroke:
3344455533 ← keystrokes
 D I L E ← entered letters

With a low-level keystroke error analysis, one keystroke is
missing out of the 11, yielding an error rate of 9.1%,
however 25% of the final letters are wrong. The low-level
error analysis underestimates the error, but a high-level
analysis (1 character incorrect out of 4) yields the correct
result of 25%.

b) An extra keystroke:

333244455533 ← keystrokes
 FA I L E ← entered letters

Although 20% of the letters are incorrect, a low-level error
analysis yields (1 / 12 × 100% =) 8.3%. Because
constructive text entry methods have a high keystrokes per
character ratio, low-level analyses understate the effect of
incorrect keystrokes. Yet each keystroke carries the ability
to make a character incorrect, regardless of how high the
keystrokes per character ratio is.

A further argument for performing the error analysis at the
high-(character)-level, is that constructive methods
frequently provide multiple ways to enter the same text,
making error analysis difficult. For Multi-Tap, typically if
one presses the ‘2’-key repeatedly, the selection wraps
around to ‘A’ again.5 So, entering ‘22222’ is equivalent to
entering ‘2’ – both mean ‘A’. But this introduces extra
keystrokes into the input stream that could dilute the effect
of an error. For example:

c) An extra keystroke, and an inefficiently entered ‘F’:
3333333244455533 ← keystrokes
 FA I L E ← entered letters

Here the user used a circuitous method of entering ‘F’. In
this case, 1 incorrect keystroke out of 16 yields a
keystroke-level error rate of 6.3%. Yet this same error
committed in (b) above yielded a keystroke-level error rate
of 8.3%. The correct but inefficient means of entering the
‘F’ should not adversely affect the final error rate. The
character-level error rate is correct for this example at 20%,
as it was in (b) above.

The arguments presented above are not meant to dissuade
researchers from performing their own ad hoc keystroke-
level analyses. Keystrokes per character, calculated on a
character-by-character basis, and as an average, is useful
for comparing text entry methods [5, 7 section 3.4].
Additionally a character-by-character analysis using a
confusion matrix [6] may reveal where further ad hoc
analyses should be focused. For the particular case of
Multi-Tap, Pavlovych and Stuerzlinger [9] perform some
illuminating analyses in their evaluation of a new text entry
method similar to, but more efficient than, Multi-Tap.
ANNOUNCING A NEW SOFTWARE TOOL
We have heard from some researchers that the difficulty of
implementing this error rate analysis methodology has
discouraged some from using it. To make this
methodology easier to use, and with the goal of improving
the consistency of reported error rates, we have made our
text entry experiment and analysis software available to the
research community. The software has been released under
the GNU Public Licence, and is available from

5 For example, a ‘2’ keypress enters an ‘A’, ‘22’ – ‘B’, and ‘222’
– ‘C’, but ‘2222’ produces the numeral ‘2’, and ‘22222’ wraps
around to ‘A’ again.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1427

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1427

http://dynamicnetservices.com/~will/academic
/textinput. This software was written in Java, and has
been verified to execute correctly in Windows and Linux
environments (it should work on other Java platforms as
well). The two primary Java classes are Experiment and
Analyse. The Experiment class implements a fully-
featured text entry experiment. The experiment software is
flexible, yet easy to configure. The presented-text phrases
(supplied by the experimenter, or from [8]) are presented to
the subject one at a time, in a random order. As the
participant enters phrases, keystrokes are time-stamped and
logged for subsequent analysis. The presented text is
displayed throughout the trial, or is hidden once text entry
begins. Optionally, participants can be presented with their
error rates after each trial, after each block of trials, or not
at all. An easy-to-parse data file is produced.

The Analyse class reads the data file (or a collection of
data files) and calculates the various statistics described in
this paper and in [10, 11]. Care was taken in designing the
data file format. Our intention is that even if researchers
wish to create custom experiment software, the Analyse
should still be useful for analysing their data.
CONCLUSIONS
This paper extends previous work by introducing two new
performance metrics. The availability of a new software
package is announced, providing an implementation of this
text-entry error-rate analysis methodology that will be of
interest to researchers and students.
ACKNOWLEDGMENTS
We thank Jacob Wobbrock for his e-mail discussions
concerning the Corrected And Wrong and Corrected But
Right error rates. This research was funded by NSERC.
REFERENCES
1. Card, S. K., Moran, T. P., & Newell, A. The

keystroke-level model for user performance time with
interactive systems. Communications of the ACM.
ACM Press (1980). 23(7), 396-410.

2. eTForecasts, http://www.etforecasts.com/products/
ES_pdas2003.htm (June, 2003)

3. GSM World. http://www.gsmworld.com/news
/statistics/index.shtml (2003)

4. MacKenzie, I. S. Introduction to this special issue on
text entry for mobile computing. Human-Computer
Interaction. Lawrence Erlbaum Associates (2002). 17,
141-145.

5. MacKenzie, I. S. KSPC (keystrokes per character) as a
characteristic of text entry techniques. Proceedings of

the Fourth International Symposium on Human-
Computer Interaction with Mobile Devices. Springer-
Verlag (2002). 195-210.

6. MacKenzie, I. S., & Soukoreff, R. W. A character-
level error analysis technique for evaluating text entry
methods. Proceedings of the Second Nordic
Conference on Human-Computer Interaction –
NordiCHI 2002, ACM Press (2002). 241-244.

7. MacKenzie, I. S., & Soukoreff, R. W. Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction. Lawrence
Erlbaum Associates (2002). 17, 147-198.

8. MacKenzie, I. S., & Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. Extended Abstracts of
the ACM Conference on Human Factors in Computing
Systems – CHI 2003. ACM Press (2003). 754-755.

9. Pavlovych, A., & Stuerzlinger, W. Less-Tap: A fast
and easy-to-learn text input technique for phones,
Proceedings of Graphics Interface – GI 2003.
Canadian Information Processing Society (2003). 97-
104.

10. Soukoreff, R. W., & MacKenzie, I. S. Measuring
errors in text entry tasks: An application of the
Levenshtein string distance statistic. Extended
Abstracts of the ACM Conference on Human Factors
in Computing System – CHI 2001. ACM Press (2001).
319-320.

11. Soukoreff, R. W., & MacKenzie, I. S. Metrics for text
entry research: An evaluation of MSD and KSPC, and
a new unified error metric. Proceedings of the ACM
Conference on Human Factors in Computing Systems
– CHI 2003. ACM Press (2003). 113-120.

12. Soukoreff, R. W., & MacKenzie, I. S. Input-based
language modelling in the design of high performance
input systems. Proceedings of Graphics Interface – GI
2003. Canadian Information Processing Society
(2003). 89-96.

13. Wobbrock, Jacob O. Personal correspondence. (2003)

14. Yamada, H. A historical study of typewriters and
typing methods, from the position of planning
Japanese parallels. Journal of Information Processing.
Information Processing Society of Japan (1980).
2(4),175-202.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1428

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1428

