

Gooey Interfaces: An Approach for Rapidly Repurposing
Digital Content

Les Nelson, Elizabeth F. Churchill, Laurent Denoue, Jonathan Helfman, Paul Murphy
FX Palo Alto Laboratory, 3400, Hillview Avenue, Bldg 4., Palo Alto, CA 94394, USA

{ nelson; churchill; denoue; helfman; murphy}@fxpal.com

ABSTRACT
With the acceleration of technological development we are
reaching the point where our systems and their user
interfaces become to some degree outdated 'legacy systems'
as soon as they are released. This raises the question of how
can we maintain, extend, override, and adapt these systems
while preserving what people depend on in them? In this
paper we describe an approach for dynamically
restructuring user interfaces into a set of communicating
processes that 1) provide methods for changing their
appearance, behavior, and state; and 2) report their
proposed state changes so that other processes may override
their actions in updating themselves to a new state. We do
this for both new and wrapped legacy user interface
components, thereby allowing us to repurpose user
interfaces for our evolving needs. We describe how this
approach has been successfully used in rapidly creating and
deploying interfaces that repurpose content for new
appearances and behaviors.

Author Keywords
Content repurposing; interactive public displays.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Commonly used interfaces such as Web browsers can
become entrenched in the practices and perceptions people
hold about computer use. For example, Web content
designers will at times depend on the many features of
existing browsers (e.g., the content types supported by a
browser, underlying data representations for specifying the
display properties - the tags and parameters). Browsers and
the supporting languages (e.g., HTML) were to some extent
designed to be device independent by allowing each

implementation to choose a layout for the content that suits
it. Many attempts have been made to get around layout
issues when the proposed device is too far outside the norm
for usable content viewing in HTML [e.g., 1]. Less effort
has gone into addressing issues of adapting behavior of
interactive content viewed in a new environment. One such
example is proxy servers, in which modifications are made
to content as it is accessed for viewing according to a set of
predefined rules [e.g.,3].

Environment dependency becomes a problem if we want to
create new applications that retain some or all of the
representational abilities of the older software, but have
new interaction requirements (e.g., defining new ways links
get followed while browsing content). This problem is
especially acute in our work on the Plasma Poster Network
[1]. The Plasma Posters (Figure 1) are large screen, digital,
interactive poster-boards designed for informal content
sharing within teams, groups, organizations and
communities. Through the Plasma Posters, people
encounter digital content (e.g., text, Web pages, free form
scribbles, images, movies) that have been posted by other
community members, and can choose to engage with that
content further, or not.

Figure 1. Plasma Posters being deployed in Japan and the U.S.

Copyright is held by the author/owner(s).
CHI 2004, April 24–29, 2004, Vienna, Austria.
ACM 1-58113-703-6/04/0004.

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1293

A CASE STUDY FOR THE DESIGN OF DIGITAL
BULLETIN BOARDS
In over a year of successful deployment in an office setting,
we have refined and evaluated display requirements for the
posters:

1. Main Capability. When posted content and associated
metadata (e.g., posting community member’s name and
picture, comments about the posting) is displayed on a
Plasma Poster it must presented in large a large format
where text is legible and textual hyperlinks are easy to
select by touch.

2. Navigation. Users must have simple one finger controls
for browsing and navigating postings. When no
interactions are occurring, content display automatically
advances after a customizable interval of time, which
should be extended each time a user touches or
otherwise interacts with the Poster.

3. Interaction with Content. Standard interactions with
content should be preserved, provided these interactions
do not disrupt the user’s reading and navigation
experience.

4. Appearance. To be attractive and attracting as a digital
bulletin board distinct from workplace computers, we
make the look and feel of the GUI as different as
possible from a typical computer desktop without
contradicting our users’ intuitions about how typical
interactions should occur.

5. Adaptation. We further require that the graphical user
interface (GUI) architecture be flexible enough to allow
us to change the look and feel rapidly, and if possible, to
allow customizations with little or no rebuilding of the
executable code.

We have implemented and evaluated a number of Plasma
Poster interfaces to address, explore, and refine our
approach.

A Web Only Implementation
The first prototype of the PlasmaPoster interface was
implemented in Java and JavaScript. A single Web page
was divided in HTML frames for posting title, main content
and metadata, and a Java applet, which advanced the other
frames to the next posting and accessed content using Java
Remote Method Invocation (RMI) to communicate with the
PlasmaPoster Network. This first prototype had some
problems in keeping control over the displayed content:

• Some web pages opened new windows, altering our
interface significantly.

• Some web pages detected they were being loaded into
an HTML frame and automatically reloaded
themselves in the top frame, completely removing our
interface.

• The Browser security model caused problems for
actions such as printing between frames hosted in
different domains.

• We could not easily implement our own event logging
for arbitrary user actions on Web page content.

An Ad Hoc, Standalone Display Application
In response to these issues, we developed a new prototype
using Visual Basic (VB) and the Internet Explorer Web
Browser Control to display the postings. Similar to what the
applet did before, selectable buttons were added to let users
navigate in the content. Printing was now easily introduced
because directly hosting the web browser control in our
application gave us full control of the interface actions (e.g.,
inhibiting the default print dialog boxes that cluttered up the
public display interface). More importantly, using the VB
web browser control allowed us to trap all events. We could
now handle new windows opened with Javascript by some
pages. As a consequence, any hypertext link followed
opened a new browser window, which indicated to users
that they are no longer navigating inside the posted content,
but are instead navigating the Web.

This implementation was still not right. The Visual Basic
prototype satisfied the display, sequencing, and operational
requirements, but it was still not flexible enough to quickly
experiment with new interfaces. For example, to change a
button’s location or style, we had to modify the Visual
Basic code, apply a new style, and repeat the same process
for all buttons to get a consistent look and feel. People’s
pictures were also displayed using the Visual Basic
PictureBox control. Unfortunately, the PictureBox does not
support animated Gifs. We were thus ‘re-inventing the
wheel’ already implemented in browsers and style sheets.

The Best of Both Worlds: A Layered Approach
On the one hand, a pure Web page solution would not allow
us to maintain control over the representation of pages
displayed in the main window, log user actions, or print
without a dialog box. On the other, a ‘proprietary’ solution
that gives greater control is less flexible and can not keep
up with the evolution of capabilities for showing new
content types.

We have thus implemented a layered architecture using two
nested Visual Basic Web browser controls (see Figure 2).
The first control displays the Plasma Poster brand, clocks,
background, poster metadata, and buttons to control the
slide show sequencing and poster operations. The second
control is layered on top of the first and displays the poster
content so it appears to be visually nested within the first
control. We used HTML and Javascript as much as
possible, but we used Visual Basic code to monitor and
control the actions of the display controls, facilitate
communication between them, and retrieve data from the
Plasma Poster network (as it is awkward doing this using
HTML and Javascript).

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1294

The layered approach provides the benefits of Web
implementations:

• Because the user interface is described in an HTML
file, non-programmers can quickly write new
interfaces.

• Using a single HTML file for the entire user interface
also allows us to use a single large background image
to implement a different “skin” for each Plasma Poster
display or, possibly for each author, or each poster. (i.e.
imagine a food background in the kitchen and a more
formal background in the visitor lounge).

• It is now much easier to experiment with different
styles because HTML stylesheets can be used to
specify the graphical attributes (e.g. font, size, color) of
classes of individual elements.

• Many image formats can be displayed without having
to add specific code as before.

New interface elements can be quickly implemented with
Javascript, such as scrolling content overview displays,
animating highlights to indicate that the current poster is
about to change.

The layered approach required that we implement a special
communication channel between the two web browser
controls and the Visual Basic code that supports interface
repurposing. Each component of the interface
communicates what is happening to it, and allows its
actions to be overridden. This is achieved through
extensive use of dynamic manipulation of the content
displayed in the browser controls and monitoring of their
input and output event streams. An application level
communication protocol has been defined to convey
relevant interface state information of a component and
allow others to control its actions. In effect we restructure
the existing interface into bi-directionally communicating
processes that would not normally be able to communicate.

Example Repurposing Using the Layered Approach
We illustrate the repurposing process with a specific
example from the Plasma Poster operation: redefining
content scrolling (Figure 2). We have replaced Web page
scroll bars by direct manipulation of the content with the
reader’s finger: put finger on content and drag to scroll.
Using an alternative scrolling mechanism allows a bigger
target for the finger to hit (e.g., the entire page), makes the
content look less like a desktop computer display, and
provides a compelling visual attraction to the Poster when
seen for the first time.

In Step 1 of Figure 2, a timer has expired in the Branding
control, indicating that a new posting is to be shown. This
event is communicated from the Branding Web Browser
component to the Visual Basic Controller application by
having the timer (encoded in Javascript) issue a Web page
navigation with a special URL (“next://”). This event is
trapped by the controller (Step 2), which access the Plasma

Poster database server for the new content and its
associated metadata.

Controller Branding Content

1

5

3

4

2

Figure 2. Layered Appraoch for Repurpurpspsoing in the
Plasma Poster Interface.

The Metadata is communicated to the Branding component
by calling routines in the Branding Web page that
represents this part of the Poster interface. This is
accomplished through accessing the Document Object
Model (DOM) of the Branding page from VB. Instead of
modifying the HTML elements directly through the DOM
interface, we instead call Javascript functions embedded in
the HTML page. For example, to set the title, the Visual
Basic code calls:

webbrowserinterface.document.parentWindow.
execScript = “setTitle(‘new title’)”

This is similar to an object-oriented approach in which the
HTML interface is modified through setter and getter
methods, allowing us to maintain a separation between the
code that supports the look and feel and the code that
supports the logic for controlling the sequencing and
display of content.

The content (e.g., a posted URL) is accessed from the
internet or local network by causing the Content Web
browser control to navigate (i.e., executing the VB
Navigate2 command). When the Content loading
completes, the Controller accesses the DOM of the Content
browser to include Javascript code that modifies how users
can scroll the document. We overwrite the default
OnMouseDown, OnMouseMove, and OnMouseUp events
to let users scroll the document by touching and dragging
anywhere on the web browser control that displays the
content – essentially converting the entire visual
representation of the document into a large invisible
scrollbar.

When a reader scrolls the poster (Step 4), the new scrolling
code executes the new behavior. This action also indicates
interest in the currently showing posting. We thus need to

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1295

reset the timers that automatically advance the display to its
next posting in the sequence. To do this the Content HTML
document has also been modified to trigger an operation in
the Visual Basic Controller. We use a special
communication protocol designed for this by having the
Content component issue a navigation to a special URL:

‘touch://x=100 &y=200 &callback=Pause’

This URL is not a valid Web address, but because the
Visual Basic application is notified before any navigation
occurs, it has an opportunity to cancel the navigation and
analyze the URL to determine what action needs to be
taken. The callback method, Pause, indicated in the
Branding control is thus invoked from the Controller. Note
that in this way, two Web pages that previously could not
communicate, may now know and trigger state changes in
the other, thereby collaborating in the overall repurposing
of each.

While simple, this mechanism has enabled us to implement
all communication from HTML to the Visual Basic code.
The general structure of the repurposing messages is,

action://command?parameter=value,

which we have found sufficiently expressive for all the
interface adaptations we have so far needed.

USE AND EVALUTION
We have used this technique to build, deploy, and further
evolve a network of the Plasma Posters in an office space.

We have found that a new poster instantiation can be
created in about 2 weeks of effort involving a graphic
designer. Testing and evolution of the design in place with
the intended users of the system usually lasts about another
two week. Changes are primarily made to the base Web
pages invoked by our controlling VB application. These
changes are adding buttons and graphical elements and
arranging elements. Changes to the VB code itself are
required when we define a new concept, such as a new kind
of thumbnail pane that requires new data storage and
retrieval methods. For example, we added the capability for
people to leave comments in the form of free form graffiti.
These are then saved for others to browse and display on
the main content display. This change involved changing
the VB code to invoke a new instantiation of our free form
scribble application and store the resulting bitmaps on disk.
Such changes are primarily copying and slightly modifying
code that already exists.

CONCLUSION
The presentation technology described here creates
malleable, easily manipulable interfaces, in effect “Gooey”
GUIs. These use a general strategy of encapsulating
previously developed user interface elements in the
following manner:

• We add new controlling processes that access and
modify existing interface components. This is
accomplished by ‘wrapping’ the other components as
in ActiveX controls, as illustrated above to Internet
Explorer. This may be generalized for use with other
forms of communication (e.g., remote procedure call,
Web services, or some other form of application
programming interfaces).

• We augment existing display interfaces by
instrumenting content viewed in an interface by
accessing the underlying data model of the content
being displayed . We have shown here how this may be
done with the Document Object Model of Web pages.
Augmentations may also take the form of new scripts,
macros, method overriding or other forms of state
change in the interface. The technique of
instrumentation is well known. What we introduce here
is the addition of application level communication
protocols into the content for the purposes of
redefining the presentation appearance and behavior.

• We use application level repurposing communication
protocols to create bi-directionally communicating
processes that redefine the original interface. In effect,
we create a Model-View-Controller structure that
allows components to be adapted and allows delegation
of selected interface actions to other components with
different capabilities (even when such communication
was not originally designed into the original
implementation).

We are now working on three new Plasma Poster systems:
an office space in Japan; a network between offices in
different time zones; and in a café/art gallery. We are in the
process of adapting our work to create a “Plasma OS”, a
development environment that others may use to create
repurposed content suitable for attractive and attracting
public displays. Although our motivation for developing
this repurposing technique was from public displays, our
method generalizes to other devices and display types (e.g.,
PDAs). We see the strength in our method as deriving from
a concern to give equal attention to interface aesthetics,
usability, and technical elegance.

REFERENCES
1. Bickmore, T., Girgensohn, A., and Sullivan S., Web

Page Filtering and Re-Authoring for Mobile Users, The
Computer Journal, 42 (6), pp. 534-546, 1999.

2. Churchill, E.F., Nelson, L. Denoue, L., Helfman, J., and
Murphy, P., Sharing Multimedia Content with
Interactive Public Displays: A Case Study, Proceedings
of DIS2004 Designing Interactive Systems, Cambridge,
MA, USA, 1-4 August 2004.

3. Knutsson, B., Lu, H., Mogul, J., Hopkins, B.,
Architecture and performance of server-directed
transcoding ACM Transactions on Internet Technology
(TOIT), Volume 3 Issue 4 , 2003

CHI 2004 ׀ Late Breaking Results Paper 24-29 April ׀ Vienna, Austria

1296

