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ABSTRACT 
User effect in terms of influencing the validity and reliability 
of results derived from standard usability tests has been 
studied with different approaches during the last decade, but 
inconsistent findings were obtained. User effect is further 
complicated by other confounding variables. With the use of 
various computational models, we analyze the extent of user 
effect in a relatively complex arrangement of international 
usability tests in which four different European countries 
were involved. We explore five aspects of user effect, 
including optimality of sample size, evaluator effect, effect of 
heterogeneous subgroups, performance of task variants, and 
efficiency of problem discovery. Some implications for 
future research are drawn. 

Categories and Subject Descriptors:  H.5.2 [Information 
Interfaces and Presentation]: User Interface – 
Evaluation/methodology 

General Terms:  Experimentation, Human Factors, 
Measurement 

Keywords: International usability test, user effect, evaluator 
effect, binomial model, Monte Carlo simulation 
 

INTRODUCTION 
Usability tests have been extensively applied in industry to 
evaluate a system’s prototypes of different levels of fidelity. 
Usability tests, in which the thinking aloud technique [14] is 
typically applied, have thus become a de facto standard 
usability evaluation method. The primary goal of a usability 
test is to derive a list of usability problems (UPs) from 
evaluators’ observations and analyses of users’ verbal as well 
as non-verbal behavior. Improvement requests are proposed 
to systems developers for correcting the UPs thus identified. 
Nonetheless, usability tests are costly in terms of time and 
manpower required. To enable the incorporation of usability 
tests into a product’s development lifecycle, strategies to 
minimize the costs involved in running them are deemed 

necessary. Amongst others, reducing the number of 
participants recruited for a usability test is a commonly 
deployed strategy.  The potential risk of such a strategy is the 
loss of significant data - severe UPs, which substantially 
undermine real end-users’ performance and thus a system’s 
acceptability. 

Individual differences are often regarded as a 
nuisance in psychological empirical studies, because they 
tend to threaten the generalizability of research findings. 
Hence, the number of participants employed for these studies 
is usually set to be large so as to mitigate the effects of the 
inherent sample heterogeneity with the help of appropriate 
statistical methods. However, this approach normally is not 
applied in usability tests, given the constraint of cost 
reduction. Practitioners are often confronted with the tradeoff 
between minimizing the number of participants and 
maximizing the scope of findings. The question “What is the 
optimal number of users to yield the best possible results 
from a usability test?” is especially challenging.  

We define ‘user effect’ as: The varied capacities of 
individual users as defined by their respective expertise and 
experiences to capture a subset of detectable usability 
problems of a system, given the particularities of the context 
of a usability test. Here the context refers to a cluster of 
interrelated factors such as fidelity of prototype, design of 
task scenarios, physical settings, rapport with experimenters, 
etc. Clearly, user effect has substantial impacts on the 
reliability and validity of results of usability tests. This 
problem has been investigated by a group of researchers [2, 
4, 11, 12, 15, 16, 17, 20, 22, 23, 25, 26, 27], though the 
number is dwarfed as compared with those engaged in 
studying other HCI issues. With the deployment of different 
mathematical models and analysis tools, these researchers 
have inferred some inconsistent and open claims. Besides, 
evaluator effect, which resembles user effect, can be 
observed in different usability evaluation methods such as 
user test and inspection (e.g., cognitive walkthrough) where 
no real users are involved [11].  

Subsequently, we are going to address six issues 
germane to user effect with reference to the data we have 
garnered in our international usability tests, in which 17 users 

four different European countries 
erland, UK) were involved.  
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LITERATURE REVIEW AND RESEARCH QUESTIONS 
In this section, we will investigate five aspects of user effect. 
We will first briefly delineate the previous works and then 
formulate six research questions (R). 

Optimality of Sample Size 
The binomial probability formula:  

1 – (1-p)n   (Formula 1) 
where n is the number of users or evaluators involved in a 
usability test and p is the probability of finding the average 
UP when running a single, average user (i.e., problem 
discovery/detection rate). Accordingly, five users are 
necessary to capture 80% of the known UPs of a system 
when p was around 0.3. Besides, additional users always 
increase the number of UPs, but with diminishing returns. 
Virzi [26] modeled the accumulation of UPs with increasing 
numbers of participants by Monte Carlo procedure and found 
that the resulting curve fitted well with that based on the 
binomial model. Some other studies supported the 
applicability of the binomial model to predict the proportion 
of UPs uncovered. However, the so-called “magic five” 
proposition was questioned [13]. Results of some field as 
well as experimental studies challenge the generalizability of 
this model to a variety of usability tests with diverse contexts 
[2]. In fact, the two basic assumptions underlying Formula 1 
are violated: individual task scenarios are not independent 
events and individual problems have unequal likelihood to be 
identified. According to Herztum and Jacobsen [11] and 
Lewis [16], p can be much inflated when a sample size is 
small. To deal with this overestimation bias, the former have 
developed “any-two agreement” as an alternative measure to 
estimate the between-evaluator reliability, whereas the latter 
has demonstrated that taking the average of a normalization 
procedure and Good Turing discounting  (i.e., hybrid 
adjustment approach) could best adjust p.  
R1:  How do the three methods, Monte Carlo simulation, 
any-two agreement and the hybrid adjustment approach 
relate to each other and differ in terms of predicting the 
proportion of detectable usability problems? 
 
Evaluator Effect 
Evaluator effect has increasingly attracted the attention of 
researchers [3, 9, 12, 24]. One of the salient issues addressed 
is the judgment of problem severity, which is primarily 
determined by evaluators’ competences to assess problem 
impact accurately and consistently. Scales of varied 
granularity (e.g., major vs. minor or seven-point rating) and 
definitions of varied levels of abstraction (e.g., severity in 
terms of impact and frequency or a list of usability criteria) 
are employed for characterizing severity of UPs. 
Nonetheless, exercising judgment is highly subjective. 
Regardless of which scale or definition is employed, 
evaluators tend to apply it in a personalized and 
contextualized manner. This phenomenon can be well 
explained with the situated-constructivist approach [10]. 
Between-evaluator discrepancy is a rule rather than an 
exception, but within-evaluator discrepancy is not 
uncommon. The studies on evaluator effect focus on the 

former but neglect the latter. However, within-evaluator 
inconsistency can intensify evaluator effect to an appreciable 
extent, which in turn aggravates user effect.  
R2: Are between-evaluator discrepancy and within-evaluator 
discrepancy of comparable magnitude?  
 
Effects of Heterogeneous Subgroups 
Whereas significant correlations between problem- discovery 
rate and problem-severity level were evident in some studies 
[19, 26], such results could not be verified in others [15]. 
Hence, we can say that not all severe problems have high p. 
The decoupling of these two parameters has a crucial 
implication for selecting sample size. Caulton [4] attempted 
to explain these inconsistent findings with the idea of 
heterogeneous subgroups. Specifically, he defined two types 
of UPs: shared UPs that can be detected by more than one 
group in the sample consisting of several subgroups, and 
unique UPs that can only be detected by one of these 
subgroups. By aggregating heterogeneous subgroups into a 
sample and treating them as a homogeneous one, the value of 
p of certain unique UPs can be diluted and the correlation 
between problem severity and problem frequency can be 
masked. Consequently, the power of a usability test will be 
assessed to be lower than it should be, where power is 
defined in terms of the number of users required to uncover a 
certain percentage of detectable UPs. Nonetheless, Caulton’s 
thesis entails more support from empirical data.  
R3: To what extent does the presence of heterogeneous 
groups mask the correlation between problem discovery rate 
and problem severity level? 
R4: How do the effects of different group characteristics in 
diluting the problem discovery rate differ?  
 
Performance of Task Variants 
 Selecting the core features rather than including all features 
of a system for testing may systematically favor one 
subgroup of participants, generating the heterogeneity effect 
described above [4]. Lewis [15] suggested that the likelihood 
of discovery of a specific problem could be increased if 
participants are required to perform the same task repeatedly 
or a task variant. In fact, repeating tasks can be a means to 
evaluate the learnability of a system, which is evident by the 
mitigation of the problems experienced in the initial attempt 
or by the reduction of time-on-task (cf. practice effect). 
R5: Does the performance of a task variant increase the 
likelihood of detecting specific problems? 
 
Efficiency of Problem Discovery 
Efficiency is one of three canonical usability metrics. In 
accord with Common Industry Format, efficiency of a task is 
computed through dividing its unassisted completion rate by 
its mean time-on-task. However, the resulting value is not of 
any particular significance unless it is used as a benchmark 
for comparing similar products. Furthermore, in ISO/IEC 
9216 Software Engineering – Product Quality Standard, 
metrics for different characteristics of usability are defined, 
but the problem discovery rate is not taken into account. In 
usability tests typically no time constraint is imposed on 
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performing a task. We assume that efficiency can 
alternatively be defined as the number of UPs that a 
participant can detect during the period of time when he or 
she is actively engaged in a certain task (i.e., time-on-task).  
R6: Is the efficiency of problem discovery a valid and 
objective criterion for assessing whether a participant is an 
experienced or a novice user? 
 
INTERNATIONAL USABILITY TESTS (IUT) 
The system on which we performed IUT was a platform 
designed for enabling the exchange of online educational 
content among academic and industrial institutions. The user 
interface of this brokerage platform has been translated from 
its original English version into different European 
languages. The primary goal of IUT is threefold: ensuring the 
acceptability of the translation, identifying UPs, and 
assessing culture-dependent usage behavior. Four versions 
were tested: English, German, Icelandic, and Slovenian.  
Design 
Standard user test procedures [8] were adopted. IUT were 
conducted indigenously with local testers interacting with 
native participants in native language in the local context. 
The IUT Coordinator, a usability specialist, developed testing 
materials and tester guidelines to ensure the highest possible 
uniformity and quality of the tests. Local Testers were 
responsible for implementing the tests, recording the data, 
transcribing and translating thinking aloud protocols of 
participants. The involvement of Local Testers was essential, 
given the language barrier between the test designer and the 
participants [18]. The qualifications of Local Testers were 
being native speaker, knowledgeable in HCI and fluent in 
written English. All the raw data were sent to the IUT 
Coordinator for further processing. 
 
Participants 
The minimum number of participants per site was set to 
three, considering the limited resources available. Altogether 
19 participants were involved: 4 English, 7 German, 5 
Icelandic, and 3 Slovene native speakers. There were 6 
researchers, 4 university professors, 3 teachers, 2 project 
managers, 2 administrators, 1 system developer, and 1 
librarian. Their heterogeneous levels of competence in 
information technology and e-Learning could account for the 
diversity of usage behaviors observed.  
 
Tasks  
Each participant was asked to perform ten task scenarios 
covering the core functionalities of the platform, including 
applying for a user account, providing and offering learning 
resources, modifying different attributes of the learning 
resource provided, updating offers, searching and browsing 
the catalogue, and accessing selected learning resources. 
 
Procedure  
Participants were escorted into a testing room and seated at a 
desk with a computer system. They were asked to maintain a 
running commentary as they interacted with the system. They 

were asked to complete a pre-test and a post-test 
questionnaires, and an “after-scenario questionnaire” for each 
of the ten tasks. The test sessions were videotaped. The 
average time-on-task over ten tasks was 46.3 minutes.  
 
Data Analysis 
Quantitative and qualitative performance data were collected. 
The former included time-on-task, number of different errors, 
frequency of help sought, and instance of expressed 
frustration. The latter included the participants’ thinking 
aloud protocols and the Local Testers’ observations. The data 
of two participants (1 Icelandic and 1 English) were 
discarded, because they attempted only a small subset of the 
ten given tasks. Two evaluators, who were knowledgeable in 
usability evaluation methods, were involved in extracting 
UPs from the qualitative data collected. For each of the four 
testing sites, a separate list of UPs was prepared. Then, the 
four lists of UPs were merged together to produce a master 
list of non-overlapping UPs. Duplicate UPs were eliminated 
with the procedures similar to those employed by Connell 
and Hammond [5], and problem instances rather than 
problem types were counted. Each of the UPs in the master 
list was rated as severe, moderate or minor according to the 
conventional definitions [1].  
 
RESULTS 
In view of the limited space, only the findings related to the 
above research questions, of which the codes are quoted in 
parentheses next to the section headings, will be reported. 
The equations below are used for computing different 
parameters: 
 
Detection rate p = Average of  |Pi| / |Pall| over all n users 
(Eq. 1), where Pi is the set of problems identified by user i 
and Pall is the set of problems identified collectively by all n 
users. 
 
Any-two agreement = Average of |Pi∩Pj| / |Pi∪ Pj| over all ½ 
n (n-1) pairs of users (Eq. 2), where Pi  and Pj  are the sets of 
UPs identified by useri and userj, and n is the number of users 
[11].  
 
Hybrid adjustment: 
    adjp = ½ [(estp-1/n)(1-1/n)] + ½[estp/(1+GTadj)] (Eq. 3) 
where adjp is the adjusted estimate of p (estp) calculated 
from (Eq. 1), n is the sample size, and (1-1/n) is the lower 
limit of the “true” p and GTadj is the Good Turing 
adjustment to probability space, which is the proportion of 
the number of problems that occurred once divided by the 
number of different problems [16]. 
 
Descriptive Statistics 
A total of 95 UPs were identified based on the data of 17 
participants. Seven of them were caused by inadequate 
translation and excluded from the ensuing analyses to avoid 
the possible diluting effect mentioned in the foregoing 
discussion. Table 1 shows the number of UPs identified in 
each of the four language versions. The column ‘unique UPs’ 
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indicates the number of UPs that were identified by only one 
specific group, but basically could have been detected by 
other groups if more participants were involved.  

 Total UPs Unique* UPs Shared UPs 
English (3) 21 6 15 
German (7) 68 36 32 
Icelandic (4) 25 7 18 
Slovenian (3) 21 6 15 

Table 1. Distribution of all UPs over four language versions. 

The mean problem detection rate p of 88 problems 
over 17 participants was 0.14 (SD = 0.07), ranging from 0.05 
(4 problems) to 0.32 (28 problems). The total number of 
unique problems, which were identified by a single user, was 
41. There was only one problem commonly identified by 9 
participants (see Figure 1). 
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Figure 1. Prevalence of usability problems 
 
Detection rate, Any-two agreement and Hybrid 
adjustment (R1) 
A Monte Carlo procedure was applied to the data of UPs to 
derive the general form of the curve relating the proportion of 
UPs identified to the number of participants involved in the 
usability test [6]. A computer program was developed to 
generate 500 permutations of the participant order and to 
calculate the mean number of unique problems identified at 
each sample size (1-17). The resultant curve is shown in 
Figure 2. Besides, a curve based on binomial model (Formula 
1) is plotted with p being equal to 0.14 - the mean probability 
of problem detection in the current sample. The two curves 
fit notably well.  

Language is the single factor distinguishing the four 
versions of the system (i.e., minimal localization). We 
computed within-group problem discovery rates and 
compared them with the corresponding rates based on the 
pooled 88 UPs (see Table 2). The pwithin/ poverall ratios (i.e., 
inflation rate) range from 1.39 (German group) to 5.0 
(English group). We applied Monte Carlo (MC) simulation to 
each of the four groups and plotted the curves, which were 
overlaid with the curves constructed based on the binomial 
model (BM) with the respective detection rates. Figure 3 
displays the results. Generally speaking, the fitness of the 
curve is inversely proportional to the group size. The 

variations in fitness can be attributed to the different inflation 
rates. 
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Figure 2. Monte Carlo simulation vs. binomial model for all 

participants. 

 No. of UPs 
within group 

pwithin poverall 

English (3) 21 0.40 0.08 
German (7) 71* 0.25 0.18 
Icelandic (4) 29* 0.34 0.11 
Slovenian (3) 21 0.56 0.12 
  Table 2. Within-group problem detection rates. 
(NB: * UPs caused by translation were included) 
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Figure 3. Monte Carlo (MC) simulation vs. binomial model 
(BM) for four different groups. 

(NB: The two unlabelled curves are English; the lower one is BM) 
Furthermore, we calculated any-two agreement (Eq. 

2) and the hybrid adjustment of p (Eq. 3) for the sample as a 
whole and also for each of the four groups (Table 3). Among 
the four subgroups, the English has the lowest value for any-
two agreement. In other words, the participants of this group 
tended to identify unique problems. Except for the English 
group, the higher the value of any-two agreement, the lower 
the number of participants was. Similarly, the higher the 
value of non-adjusted p, the lower the number of participants 
was. Generally speaking, any-two agreement and non-
adjusted p should be significantly correlated, because the 
more UPs two users identified independently, the higher the 
probability that they will identify the same ones. Hence, 
while p and any-two agreement cannot be equal, because 
they are calculated based on different mathematical models, 
there should be significant correlations between them. Note 
that the discrepancies between any-two agreements and non-
adjusted ps are substantially larger than those between any-
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two agreements and hybrid-adjusted ps. The Pearson 
correlation between the former two values is 0.683, whereas 
the Pearson correlation between the latter two is 0.916. 
 
(n) 

All 
(17) 

English 
(3) 

German 
(7) 

Iceland 
(4) 

Slovenian 
(3) 

Any-two 
Agreement 

0.09 0.09 0.16 0.18 0.32 

Hybrid- 
adjusted p 

0.09 
 

0.13 0.13 0.13 0.27 

Non-
adjusted p 

0.14 0.40 0.25 0.34 0.56 

Table 3: Any-two agreement and hybrid adjustment. 
(Note: non-adjusted ps are equal to pwithin of Table 2) 
 
Within- and Between-Evaluator Consistency (R2) 
The UP extraction task was particularly challenging in the 
current case because of the language barrier. First, the two 
evaluators, E1 and E2, read through the translated verbal 
protocols and the Local Testers’ observation reports, and 
then examined the videotapes. The two evaluators underwent 
two rounds of UP extraction. During the first round we 
initially worked on the German group independently, but 
found that the agreement was disappointingly low. Hence, for 
the sake of mutually understanding each other’s extraction 
methods, we collaboratively worked on the data of some 
selected participants. Then, we analyzed the remaining data 
independently. Table 4 shows the extraction results. 
 English German Icelandic Slovenian 
E1 13   58 15 18 
E2 20   64 25 21 
Table 4: Numbers of UPs identified by the two evaluators.  

E1 consistently identified fewer problems than E2 
did. It could be attributed to the fact that E2 was a more 
experienced evaluator and was more familiar with the system 
tested. Discrepancies were negotiated. Some UPs were 
further split and some were collapsed. After finalizing the 
four UP lists, E2 merged them into a master list with 87 non-
overlapping UPs. E1 and E2 then judged the severity of 
individual UPs independently. The Kappa measure for the 
inter-rater reliability in this judgment exercise was 0.64. 

About two months later, E1 and E2 repeated the 
extraction exercise to check the reliability. Some UPs that 
had not been identified in the previous attempt were 
uncovered. Interestingly enough, some UPs that had been 
identified previously were not “re-uncovered”. E1 and E2 
repeated the severity rating exercise of the updated master list 
of UPs independently. Any-two agreement for the problem 
extraction (within-evaluator) for E1 and E2 were 0.79 and 
0.83, respectively, and any-two agreement for the problem 
extraction (between-evaluator) was 0.71. The Kappa measure 
for the severity ratings for the overlapping UPs between the 
two attempts (within-evaluator) for E1 and E2 were 0.74 and 
0.82, whereas the Kappa measure for the severity ratings for 
the updated master list of UPs (between-evaluator) was 0.69. 
Though the extents of within-evaluator disagreements were 

Nevertheless, the two evaluators discussed the disagreements 
and drew the consensus. 

 
Problem Severity and Subgroup Effect (R3 & R4) 
88 UPs were categorized into three severity levels and the 
respective problem detection rate for each of the three UP 
severity groups was computed (Table 5). 
 Minor Moderate Severe 
Frequency 25 40 23 
p 0.1 0.13 0.21 
Table 5. Distribution of problem types. 
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Figure 4. Monte Carlo simulation vs. binomial model for three 
types of UPs. 

Five out of 23 severe problems were identified by only a 
single participant. The problem detection rate for the severe 
UPs was significantly higher than that of the less severe ones 
(i.e., moderate plus minor) (t=3.4794; p=0.0008). We applied 
Monte Carlo simulation to model the increment of the 
proportion of UPs detected as the function of the increasing 
number of participant for all the three types of UPs. The 
resulting curves (MC) were mapped against the curves 
derived from the binomial model (BM) with the respective 
ps. The BM curve for the severe problems is consistently 
above its MC counterpart till the number of participant is 14. 
This tendency of overestimation was explained as a Jensen’s 
Inequality artifact – the inherent feature of the mathematical 
modeling adopted [15, 26]. The BM curves for the moderate 
and the minor, however, do not reveal such a pattern. It 
seems that the fitness of the two types of curves is 
determined by the value of p. The lower the p, the lower the 
fitness will be. 

Correlation between the problem severity and 
problem detection rate was computed. In contrast to Virzi’s 
[26] but consistent with Lewis’ [15] findings, the resulting 
correlation (r = 0.0963, df = 381, p=0.03) is not significant.  
We then applied Caulton’s [4] approach to investigate 
whether the insignificance can be attributed to the effects of 
heterogeneous subgroups. First, we assumed the cultural 
background as the between-group variable. Nine of 23 severe 

identified by one of the four cultural 

Upper two lines 
are severe UPs 

Middle two lines are 
moderate UPs ;  Lower two 
lines are minor UPs
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lower than those of between-evaluator disagreements, the problems were uniquely 
fact that individual evaluators cannot reliably extract UPs or 
judge the severity of UPs is a concern to be addressed. 

subgroups and their corresponding ps were obviously 
“diluted”. For instance, for UP8 (i.e., the system accepted the 
request for retrieving a forgotten password even when the 
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username entered was invalid), only one of three English 
users identified it (pwithin = 0.33). When averaging this pwithin 
over 17 participants, the pall was shrunk to 0.06. Similarly, 
the ps of three other severe problems were diluted by the 
factor of 5. Table 6 displays the average severe problem 
detection rates of the four groups, which do not indicate any 
diluting effect. Certainly, when the size of individual 
subgroup is small, the diluting effect will be exaggerated.  

p(all) p(English) p(German) p(Iceland) p(Slovenian) 
0.21 0.17 0.25 0.14 0.22 

Table 6. Severe problem detection rates of four subgroups. 
 
Further, we assumed the self-reported expertise as 

another between-group variable. Two groups were thus 
identified – experienced and novice system users. The 
classification criterion was based on the average rate (5-point 
scale) that individual participants ascribed to their own 
competence in information technology, experience in 
operating database systems, and experience in e-learning. 
Those who scored three or less were categorized as novice. 
Five of the 23 severe problems were identified only by 
experienced users and another five severe problems were 
identified only by novice users. On average, the diluting 
effect observed in two-level expertise groups was apparently 
lower than that observed in the four cultural groups, with the 
highest ratio of pexperienced/pall and pnovice/pall being two. This 
finding is consistent with Caulton’s claim that the higher the 
number of subgroups, the more serious the diluting effect 
will be.  
 
Performance of Task Variants (R5) 
The brokerage platform tested supports the exchange of two 
major types of learning resources, namely educational 
material (EM) and educational activity (EA). Provisions of 
EM and EA involve basically describing a set of common 
core metadata attributes and some additional ones specific to 
EA. The participants were required to provide EM (Task 2) 
and EA (Task 4). The rationales of including both tasks were 
to investigate whether participants would have problems in 
describing specific metadata attributes and to evaluate the 
learnability of these tasks. To verify the claim that 
performing task variants can enhance problem discovery 
[15], we adopted a somewhat simplified case study approach 
and examined the data of the seven German participants. 
Table 7 shows the results of analyses. P3 identified ten 
additional UPs with two of them being severe. P4’s data 
showed a similar pattern. P5 and P7 experienced one UP that 
was already found in Task 2.  

The average time-on-task (in minutes) of Task 2 over the 
seven participants (M=14.74, SD=4.3) was higher than that of 
Task 4 (M=9.95, SD=2.6), though the participants were 
required to describe additional attributes for Task 4, and the 
difference was statistically significant (t=2.1344; df=6; 
p=0.0767).  This result suggests the learnability of the task. 

 

Participant P1 P2 P3 P4 P5 P6 P7 
Task 2 4 8 7 2 4 6 5 
Task 4  
-Add 
-Spec 
-Dup 
-Type 

 
1 
3 
0 
1Mo 

 
0 
0 
0 
-- 

 
10  
2 
0 
2S 
3Mo 
5 Mi 

 
8  
1 
0 
2S 
4Mo 
2Mi 

 
1 
1 
1* 
1Mi 
*1Mi 

 
0 
2 
0 

 
2 
0 
1* 
1S 
*1M 
 

Table 7. Results of performing task variants 
(NB: Add: additional UP; Spec = UP specific to Task 4 attributes; 
          Dup = Duplicate UP; Type = (S)evere)/ (Mo)derate/ (Mi)ld)  
 
Correlation between Time-on-Task & Number of UP (R6) 
To investigate the relationship between time-on-task and 
number of UPs identified, we examined the data for the two 
most complex and problematic tasks: Task 2 (Providing new 
educational material) and Task 4 (Providing new educational 
activity). All the participants experienced UPs in Task 2 and 
all except one participant experienced UPs in Task 4. The 
ranges of the total number of UPs identified are 1 to 8 and 1 
to 12 for Task 2 and Task 4, respectively. The Spearman 
correlation between the numbers of UPs and the times-on-
task of both tasks for all the participants is insignificant (r = 
0.0356).  

When time-on-task of a specific task is longer than 
the corresponding benchmarked value, it typically implies the 
existence of UP. But the current results seem to refute this 
assumption. In fact, a number of participants, when 
confronted with a UP that could not be circumvented, tended 
to repeat the same action sequence, resulting in longer time-
on-task. In some cases, the participants, when confronted 
with UPs, gave up prematurely without attempting to work 
around them. Some participants, who were so motivated to 
identify UPs, tended to check every detail of the system, 
resulting in longer time-on-task. Table 8 shows the average 
numbers of UPs per minute of time-on-task over all the 
participants for Task 2 and Task 4. 
 Average SD Min. Max. 
Task 2 0.42  0.28 0.15 1.23 
Task 4 0.36 0.31 0.00 1.22 
Table 8. Average number of UPs per minute for two tasks  

 
We computed the correlations between individual 

participants’ numbers of UPs per minute with their self-
reported expertise (see above). The Spearman correlations for 
Task 2  (r = 0.0677) and Task 4 (r = 0.0712) are 
insignificant. The findings suggest that time-on-task is an 
elusive variable, because the value is determined by a 
number of intertwined factors, such as expertise of 
participants, especially problem-solving behavior, and 
motivation of participants.  
 
GENERAL DISCUSSION 
The following discussion is indexed by the codes of the 
research questions posed above. 
R1: Our results clearly show that the so-called “magic five” 
assumption cannot be held. To obtain 80% of the detectable 
UPs of the system tested, 11 participants were required 
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(Figure 2), given the relatively low problem discovery rate 
(p) 0.14. However, this p, calculated with the use of the 
conventional model, is probably inaccurate, because the basic 
assumptions underlying the model are violated. Can the 
problem detection rate be better estimated by the parameter 
any-two agreement, which has been originally developed to 
counteract the overestimation bias inherent in p and 
presumably gives a more accurate value of inter-evaluator 
reliability?  Our findings (Table 3) indicated that any-two 
agreement tended to underestimate p. This observation was 
further verified by the results obtained from our simulation 
program, in which the values of three parameters (number of 
participants, number of UPs, and ‘true’ p) were input. 
Suppose that the true p is 0.5, two users or evaluators are 
involved, and altogether Z problems are identified. |Pi∩Pj| 
will be equal to ¼ Z problems and  |Pi∪ Pj| will be equal to ¾ 
Z problems on the average. The resulting any-two agreement 
will be 1/3, i.e., underestimating the true p by the factor of 
2/3. The relationship between any-two agreement (A) and p 
(estimated from the sample) can be approximately 
represented as: 
  p = (2* A) / (1+A)  (Eq. 4) 

In summary, while the estimated p computed with Eq.1 tends 
to overestimate the true p, any-two agreement (Eq. 2) tends 
to underestimate it. Furthermore, as demonstrated by Lewis 
[16] with the use of Monte Carlo simulation, the hybrid 
adjustment (Eq.3) can lead to a good estimate of true p when 
the number of users is less than or equal to ten. Our findings 
(Table 3) show that the non-adjusted ps are consistently 
higher than the corresponding hybrid-adjusted  ps by a factor 
of two or even three. Future research should be invested in 
verifying the applicability of this approach to the sample size 
much larger than ten. 

R2: Within-evaluator inconsistency, as evident by our 
findings, is a hitherto neglected issue that needs to be 
addressed. Between-evaluator agreement is difficult to reach 
if evaluators are not consistent in applying their strategies for 
extracting problem and rating problem severity. We propose 
that individual evaluators check the reliability of their own 
ratings with two rounds of evaluations that are separated by 
at least one-week gap. The between-evaluator agreement 
index should be adjusted by taking the within-evaluator 
agreement into account, resulting in so-called combinatorial 
evaluator-agreement index (Acombinatorial) (see Eq. 5): 

Acombinatorial = Abetween* Awithin             (Eq. 5) 

where Abetween and Awithin can be computed according to Eq. 2 
or a better method to be identified. Note, however, Eq. 5 is a 
simplified model to represent the interactive effect of 
between- and within-evaluator reliability. Future work is 
definitely required to improve the equation. Another 
evaluator effect, which is amplified in the context of 
international usability tests (IUT), is the two-tiered 
evaluation. In our studies, the four Local Testers performed 
the low-level data collection while the two evaluators 
performed the high-level problem extraction and severity 

rating. Inevitably, Local Testers might bias their observations 
or even translations of thinking aloud protocols because of 
their personal experiences and expertise. Consequently, the 
biased data would likely undermine the validity of the results. 
This so-called Local Tester or experimenter effect, to our 
knowledge, is not yet addressed systematically in the 
literature. UTs are costly, but IUTs cost even more. Expert 
evaluators are expensive resources. In principle, more 
accurate results will be produced if native evaluators are 
employed to extract UPs from the data presented in native 
language. However, the costs involved may outweigh the 
benefits. The issue of return on investment (ROI) is tricky 
and complex [15] and can probably be explored with in-
depth case studies. 

R3 & R4: There is no doubt that the heterogeneity of 
subgroups in a sample will dilute the problem discovery rate. 
As indicated by our results, not only the ps of severe 
problems but also those of the moderate and minor ones were 
shrunk due to the diluting effect, and the respective 
shrinkages were of similar degree. In fact, quite a number of 
minor and moderate UPs were detected only by the German 
group. Given that the numbers of participants were different 
in the four cultural subgroups, the diluting effects might have 
been exaggerated.  

The problem discovery rate (p) of the severe 
problems is significantly higher than that of the less severe 
problems. But the absolute value of p for the severe problems 
is not particularly high. As illustrated in Figure 4, between 
nine and ten participants were required to uncover 80% of the 
severe problems, whereas 15 participants were required to 
uncover 80% of the minor problems. In summary, it would 
be somewhat risky if we recruited only five participants in 
our IUT, because only 68% of the severe problems would be 
detected. Furthermore, there was no significant correlation 
between problem detection rate and problem severity level 
for the sample as a whole. Nor for the German group when 
we computed the correlation with somewhat “un-diluted” ps. 
Clearly, the decoupling of these two parameters is one of the 
reasons for usability practitioners to recruit more participants 
for usability tests. For IUTs, the recommended number of 
participants is six [7], however, the choice seems arbitrary 
because no explicit rationale is given.  
 
R5: To a certain extent, our results supported Lewis’ [15] 
claim that the opportunity to perform a task variant will 
enhance the likelihood of detecting additional UPs. As 
evident in our case analyses of seven participants performing 
two similar tasks, altogether 22 additional UPs were 
identified with 5 of them being severe problems. Intuitively, 
according to the practice effect, the persistence of UPs was 
low (only two instances across the seven participants) 
because the participants had found some means to work 
around them. These findings seem to suggest that it is 
desirable to include task variants in usability tests. However, 
as pointed out by Lewis there is a tradeoff between the 
increased duration of test sessions and the increase in the 
number of UPs detected.  
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R6: The time-on-task is such a multifarious variable that 
great caution should be taken when it is used to indicate 
efficiency, be it computed according to the standards such as 
Common Industry Format or related to the number of UPs 
detected. Nonetheless, we assume that investigating the 
relationship between the time-on-task that evaluators invest 
in inspecting a system (e.g., heuristic evaluation) and the 
number of UPs that they thus identify will yield significant 
results, considering that they normally do not attempt to 
solve UPs uncovered and thus do not unduly lengthen the 
time-on-inspection task. 
 
CONCLUDING REMARK 
Although the six research questions we addressed in this 
paper cannot be perfectly answered with our data, they are 
definitely the issues that necessitate attention and efforts of 
usability researchers and practitioners. Given that a host of 
interrelated factors can potentially affect the reliability and 
validity of results of usability tests, we need more robust 
mathematical and advanced statistical models to help us 
understand the related issues and to enable us make more 
accurate predictions. Furthermore, we re-emphasize our 
recommendation proposed elsewhere that when a sufficient 
number of systematic, well-designed and professionally 
performed empirical works on usability tests are available, 
meta-analysis can be conducted on them to infer a clear, 
holistic, and more conclusive picture about the issues 
addressed in this paper. 
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