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ABSTRACT further. Worse, some errors due to confirmation boredom

In current text editors, the find & replace command offers may never be noticed at all.

only two options: replace one match at a time prompting for the gther choice, replacing all matches without confirma-
confirmation, or replace all matches at once without any con-jon may be faster but no less error-prone. Replacing all
firmation. Bqth approaches are prone to errors. Thl_s Pap€imatches requires the user to trust the precision of the search
explores a third waycluster-based find & replacen which  hatern, that it matches only text that should be replaced and
the matches are clustered by similarity and whole clustersnothing more. Bysearch patternwe mean not only the string
can be replaced at once. We hypothesized that cluster-baseg; characters to be replaced, but also constraints like word
find & replace would make find & replace tasks both faster o ndaries, case sensitivity, and pattern matching operators.
and more accurate, but initial user studies suggest that CI“SDesigning a precise search pattern is a challenging task. It

tering may improve speed on some tasks but not accuracyrequires an understanding of the pattern constraints that are
Users also prefer using a perfect-selection strategy for find & 4yajlaple and how they interact. It requires a familiarity with

replace, rather than an interleaved decision-action strategy. he document being edited, knowing which different variants

Categories & Subject Descriptors: H.5.2 [Information Inter- of the pattern may appear and predict?ng t_he ”k,e”hOOd of
faces and Presentation]: User Interfaces — evaluation/methodologyf@lse matches to a pattern. It may require tricks like search-
prototyping, user-centered design; H.1.2 [Models and Principles]: INg for a longer pattern than you actually need to replace,
User/Machine Systems — human factors, human information pro-or breaking a find & replace task down into several subtasks
cessing; H.4.1 [Information Systems Applications]: Office Au- with different search patterns, or learning how to use regular
tomation — word processing expressions, in order to constrain context and eliminate false
General Terms: Design, Human Factors matches. In fact, precise global find & replace requires a pro-
Keywords: find & replace, text editing, error prevention, clustering  cess of abstraction and testing not unlike programming. Un-
fortunately, the traditional find & replace interface offers no
INTRODUCTION support for this process — just a Replace All button, which
The find & replace command in a typical text editor forces s enough rope for users to hang themselves.
users to choose between two alternatives: replace one match )
at a time with confirmation, or replace all matches at once. E'TOrS apparently caused by find & replace have been found

When the document is long and the number of matches large!n Published documents [6], among them:

neither choice is ideal. e arjpgicial turf, on a web site that evidently switched from
o ) ) TIFF images to JPEG;

Confirming each match is slow and tedious. User thought, o ahouratedfound in a Wall Street Journal article which

and action is required for every replacement, which doesn't

s g also contained references to the British Labour Party;
scale to large, complicated tasks. Worse, the tedium of the, amriczar in a Reuters wire bulletin about Amritsar, a city

task leads the user to make errors. When most answers are i, |ndia:
Yes, a bored or impatient user eventually starts to press Yeg stogard instead ofstandard in the Danish users’ guide

without thinking, which makes confirmation pointless. Al- ¢4 \\indows for Workgroups 3.11. The English waadd
though some of these errors may be noticed, few find & re- (.o 1slates tag in Danish, which suggests that find & re-
place interfaces provide an obvious Undo command, so fix- place by a translator was to blame.

ing the error disrupts the user’s task and reduces efficiency ,
Itisn’t clear whether these errors were due to tedious replace-
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the advantages of replace-all and replace-with-confirmation.tures are the terms it contains (plus, for web pages, the in-
Large, identical clusters can be selected and replaced all atoming and outgoing links). Clustering is used in several
once, while unclusterable matches can be judged one by oneweb search engines, including Vivisimo, WiseNut, Northern

L . _ .. Light, AllTheWeb, and Grouper [9], to organize search re-
One complication of this new approach is that reorganizing sults and give the user an easy way to constrain searches.

matches into clu_sters_necessanly breaks the association beC’:Iustering in search engines is particularly helpful for deal-
tween the order in which matches are presented for replace-

. . : ing with homonyms, words with diverse meanings. For ex-
ment and the order in which they occur in the document. Tra- 9 y ¢

ditional | ith firmai I ¢ ich ample,jaguar refers to an animal, a car maker, an operating
ditional repiace-with-confirmation aiways presents maic e_ssystem from Apple, and a game platform from Atari. A clus-
in document order, which makes it easy for the user to limit

. tering search engine like Vivisimo can separate the different
replacements to a certain part of the document. Cluster-

in. on the other hand. mav bring toaether widely se aratedsenses of a search term into different clusters. Clustering can
mg:[ches into the samé cIuZter glusgt]er-based fir¥d &preplacealsO suggest additional search terms, as when a search for
: . o . Javaproduces clusters faervlets applets andgames

is therefore global in nature. This paper describes a novel

user interface that uses multiple text selections to reflect theCluster-based find & replace differs from document cluster-

global nature of cluster-based find & replace. ing in two important ways. First, the user’s goal is not to sat-

The effectiveness of clustering depends on the ability of the isfy an information need, as it is in information retrieval. In-

. ; g dep ity stead, the goal is a manipulation task, to modify the matches
clustering algorithm to segregate true matches (which shouldu_J the querv. Find & replace therefore places more stringent
be replaced) from false matches (which shouldn't). Ideally, query. P P 9

the clustering should produce just two clusters, one contain—d.emanOIS on both precision and _recall than information re-
' . trieval. Second, the matches to afind & replace query are tiny

this is impossible without understanding the user’s intent, we 'Fragments of a document, not completg documents. The fea-
'’ 7 tures used for whole-document clustering — terms — are not

iggoggng%ﬁ pzra?tcr:::raelxllgt?jg nﬁ'{;if; srgllljlf:mgteches as useful for clustering fragments. Freitag confirmed this in
v 9 " his study of inductive learning for information extraction [2],

and large, containing as many matches as possible. Homoge-

neous clusters can be quickly and safely replaced or ski edwhich showed that a relational learner using features simi-
q y yrep PPEYar to ours was much more effective at extracting fragments

Clusters are formed by comparifigaturesof matches, de-  from documents than a term- based learner.
termined from content and context. Clusters will be homo-
geneous only if the features available to the clustering algo-

. - o ing [4], a technique for highlighting unusual instances in a
rithm are sufficient to discriminate true matches from false . . .

. ; o pattern match or selection, on the expectation that outliers
matches. In general, this may be impossible; without a deep

; : ; re likely to be errors. We use substantially the same algo-
semantic understanding of the document, it may be very hard . ; S
R rithm to build clusters that outlier finding uses to detect out-
to discriminate between, say, uses of the woragramthat

liers, although the output of the algorithm is applied to the
refer to software and uses pfogramthat refer to an event . o AP
. . . . user interface in different ways. Whereas outlier finding ig-
schedule. In practice, however, lexical, syntactic, and stylis- ; N
. . L nores large clusters in order to focus on unusual individuals,
tic features can substantially discriminate between true and . :
; ) : Poth large and small clusters are useful in cluster-based find
false matches. Our clustering engine uses a wide range o :
: . TR . & replace, so the interface presents both.
such features, including capitalization, word boundaries, part
of speech, style, location in page layout, and adjacent text. Techniques related to outlier finding can be found in other

The rest of this paper describes our experience with design—SyStemS as well. For example, Microsoft Excel detects

. ! . : spreadsheet formulas that are inconsistent with the formu-
ing and evaluating a user interface for cluster-based find & ;- . . S .

: las in neighboring cells, highlighting them as possible errors.
replace. After surveying related work, we present the user

: A S Morris and Cherry built an outlier-finding spell-checker [5]
interface, highlighting a number of design issues that were . .
. . . that computes trigram frequencies for a document and then

exposed and resolved by prototyping and pilot evaluations. ; L .

. 5 sorts the document’s words by their trigram probability, and
Next, we describe a formal usability study we conducted to ) .

o ' . . found that it worked well on technical documents.

compare traditional find & replace with cluster-based find &
replace. We then present the details of the clustering algo-Find & replace itself has a hoary legacy, dating back to tele-
rithm we used. Finally, we discuss some of the conclusionstype text editors such as Unied in which the substitute
that can be drawn from our experience. command was the primary way to change existing text. Al-
though the importance of find & replace has faded somewhat
with the rise of direct-manipulation text editing, virtually ev-
ery text editor still includes a find & replace command.

Cluster-based find & replace is closely related to outlier find-

RELATED WORK

Clustering, also calledinsupervised learninghas a long
history of research in machine learning and information
retrieval [1]. In traditional information retrieval, cluster- In programming and web site maintenanewyltiple filefind

ing is applied at the document level. A document’s fea- & replace is often essential. A search of the shareware web

<8
2 58 Volume 6, Number 1



CHI 2004 | Paper 24-29 April | Vienna, Austria

L LAPIS - labor ggl

File Edit Go Selection Scripts Tools Debug Help
BERREDIRPEEERE B L

Command: j View As: | Weh Page ¥ |

yourselves. This support, for which I tender you my hearty thanks, together with my sense of the |2 : r Patterns rCIus‘ter Find and Replace |
trust and dignity of the office, and the interest attached to its duties, make my resignation of it a :
more difficult step than [ had anticipated. Wiy reasons are, however, strong They are the pressure of
official duties at Kew, annually increasing in amount and responsibility, together with the

/| Find What: [1abor |
: [ Match Case [ |Find Whole Words Onby

engagements 1 am under to complete scientific worlks, undertaleen jointly with other botanists, before Find Al

wou raised me to the Presidency; and the fact that indefinite postponement delays the publication of

the fahogs of my coadjutors. I am also influenced by the consideration that, though whally opposed 31 total matches shown [ Select All | Unselect Al |
to the view that the terrn, of the Presidency of the Royal Society should be either short or definitely B 4 related matches:

lirnited, this term should not be very long; and that, considering the special nature of my own wers of elaborate contrivances for prewe

scientific studies, it should, in my case, on this as well as on other grounds, be briefer than might
otherwise be desirable. Cogent as these reasons are, they might not have been paramount, were it
not that we have among us, one pre-eminently fitted to be your President by scientific attainments,
by personal qualifications, and by intimate knowledge of the Societys affairs; and by calling upon
whom to fill the proud position which [ have occupied, you are also recognising the great services
he has rendered to the Society as tts Treasurer for eight years, and its ofttines munificent
henefactor.

1 by an elaborate series of
e been elaborated. Its value in
wstem, elaborated and put to industrial u
3 related matches:
the labors of my coadjutors. [ama
1 in their labors. Their
fhen the labors of Gauss had given an it

Hiz experimental results and the conclusions which he has drawn from them have been deservedly |- : 2related matches: -acter of labor: more precizely, on the rig
trusted by other workers in the same field, and have safely guided thern in their fabogs. Their .

. ; . . ) . 4 2related matches: 1 Living labor, an appendix of the syster
incontestable excellence has prevented thern from becoming subjects of animated discussion, and B

thus arousing as much attention and interest in the outer world as has sometimes heen aroused by st labor, labor activily is mute.
hasty experiments and daring generalizations. : odigious labor; it required for its satisfac

five (5) laboratory exercises. These
When the Ebogs of Gauss had given an impetus to the study of terrestrial magnetism by rendering : =, in the Laboratory of Professor Bachs;
precision possible, Observatories devoted to this branch of research, in conjunction with e Jndrell Lahoratory at Kew are Dr. -]
meteorology, began to rise in warious places. Thelate General Sir T. I Brishane erected one at 9 matches selected for replacement in blue
Makerstown, in Scotland, and placed it under the direction of Mr. Broun, who remained in charge of | Replace With: | japour |
it from 1842 to 1850, His ohservations and their results, have been conumended by magneticians and i _’—
meteorologists, for the skill ernployed in the developrnent of new methods ofreduitiong:nd M M

investigation. Close
[ |Document loaded. | Feedback |

Figure 1: Cluster-based find & replace interface.

site Downloads.com finds a number of Windows programs The cluster-based find & replace interface is implemented
specialized to this task, among them Advanced Find and Re-inside LAPIS [3], an experimental text editor. LAPIS has
place, HandyFile Find and Replace, Alias Find & Replace, several unusual features that are relevant to find & replace.
Actual Search & Replace, and HTML Search and Replace. First, the editor allows multiple discontiguous text selections
All these tools provide the traditional replace-all or replace- (shown as blue highlights in the editor window in Figure 1).
with-confirmation interface. Some of the users’ comments Multiple selections can be made several ways: by the mouse,
on Downloads.com give insight into the problem: “Fast and by a pattern, or by inference from examples. Multiple se-
easy but dumb (as they all are)... would need some intelli- lections can be used for editing; delete, cut, copy, paste, and
gence in choosing where and when to change... now the usetyping affect all selections at the same time. Multiple selec-
has to stay strict with the code.” [7] Our clustering prototype tions may be spread throughout a file. Marks in the scrollbar
currently works on a single document, but work is underway provide cues to where selections are located, even if they are
to generalize it to multiple-file tasks. scrolled offscreen.

USER INTERFACE Figure 1 shows cluster-based find & replace in action. The
This section describes our user interface for cluster-basednterface sits in a side panel of the editor window. The panel
find & replace. The interface was designed through four it- js roughly divided into three parts. The top part of the panel
erations of paper prototypes and pilot evaluations involving contains controls for specifying the pattern: the text to search
a few users each. The iterations explored a number of desigrfor, and check boxes for case sensitivity and word boundary

alternatives, among them ways to display clusters, ways toconstraints. These controls are conventionally provided in
describe the content of a cluster, and interaction techniquesther find & replace interfaces as well.

for selecting and replacing clusters. In this section, we first

present the final interface that we implemented, and then dis-The middle part of the panel displays all the matches to the

cuss some of the lessons learned from exploring design alterpattern found in the document. Each pattern match is repre-
natives. sented by a snapshot of document context around the match,
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with the match itself highlighted in yellow. Matches are fect selection. This preference was not affected by the loca-
grouped into clusters by similarity (using an algorithm de- tion of the Replace button (either above or below the list of
scribed later). The clusters are displayed in a standard treamatches), nor was it restricted to paper prototyping, persist-
widget, with each cluster described by a heading, e.g. “4 re-ing throughout later computer implementations as well.

lated matches”, which acts as a control point for collapsing ) _ )

or expanding the cluster. When a cluster is collapsed, oneFrom this observation, it follow; that some .features we
of its members (the first in the document) is displayed in the thought necessary were actually irrelevant, while others that

collapsed heading as a representative. Figure 1 includes tw$€emed less important were actually vital. For example, early
collapsed clusters. prototypes included a button (variously called Omit, Reject,

Exclude, and Discard) that removed a false match or false
The list of clusters is sorted by cluster size, with larger clus- cluster from the display without replacing it. This function
ters appearing first. Singleton clusters — matches that wergjs important to the interleaved strategy, because it acts as the
unique and unclusterable — appear last. Singleton clustersjual to Replace — an action to take when the user has decided
have no heading, and appear simply as leaves at the top levehat a match is false. Our first prototype even made this du-
of the tree Widget. The last five items in the cluster view of a|ity exp”cit' by |abe|ing the two buttons “Yes, Rep|ace” and
Figure 1 are singleton clusters. “No, Omit”. As it turned out, users never touched the Omit
button during their tasks, regardless of how it was labeled.
When asked afterwards what they thought the button meant,
either they couldn’t guess or they believed that it might delete
the match from thesditor, instead of just removing it from
the find & replace panel.

Clicking on a match selects it, both in the match list and in
the editor. The editor window scrolls automatically to bring
the selection into view. An entire cluster can be selected by
clicking on its heading or on the margin around it. Multiple
clusters or matches can be selected by click-to-toggle selec

tion. The Unselect All button clears the selection. A perfect selection must in general be a multiple selection.

The bottom part of the panel controls replacement. A text In conventional tree and list widgets, however, multiple se-
field is provided for entering replacement text. When the lection is fragile, because a single click can clear a carefully-
Replace button is pressed, the selected matches are remacé‘@nstructed selection. Furthermore, many users are unfamil-
in the editor and removed from the list of matches. The Undo iar with the modifier keys used to create a multiple selec-
button undoes previous replacements, undoing not only thetion (under Windows, the Control key toggles selection and
effect on the editor but also restoring the replaced matches tdhe Shift key extends a range). Although these problems did

the cluster display. not appear in paper prototype testing, since the prototypes
_ did not simulate the low-level interaction issues, it was easy
Design Lessons to anticipate eventual problems with the computer interface.

The interface just described was developed through four iter-|ndeed, early pilot tests of a computer interface with con-
ations of low-fidelity prototyping, with each iteration tested ventional multiple selection revealed that some users lost se-
on three fresh users drawn from a university research envi-lections and others wanted to make multiple selections but
ronment. The prototypes were hybrid paper and computer in-didn’t know how. These observations drove us to use toggle
terfaces. The find & replace panel was prototyped on paper,selection instead of conventional list selection.

while the existing LAPIS editor was used (under the control

of the experimenter) to display the document on a computerAnother consequence of the perfect-selection strategy is the
screen, showing selected matches in context and showing thémportance of expanding clusters and selecting or deselect-
effect of replacements. Prototype users were given severaing individual matches within a cluster. One of our early
find & replace tasks similar to those used in the formal user prototypes displayed each cluster as a row in a table, so that
studies described later. For example, one task was a finaR cluster could only be selected and replaced as a unit. If a
exam schedule in which Monday was abbreviated to M, and cluster were inhomogeneous — containing both true matches
users were asked to undo the abbreviation without affectingand false matches — then using a perfect-selection strategy

other M’s in the schedule (e.g., in an instructor’s initials). ~ With this prototype would lead to failure. Using an inter-
leaved strategy, on the other hand, users would still be able to

One surprising result from prototype testing was Users’ pre- make progress with the homogeneous clusters, falling back
ferred replacement strategy. Nearly all users tried to makey, replace-with-confirmation (which was offered as an option
a perfect selection, selecting all the true matches and omit-, this prototype) to deal with the inhomogeneous clusters.

ting all the false ones, before pressing Replace. An altema-gince perfect selection was preferred, however, users found
tive strategy would interleave decision-making with action, this interface frustrating.

choosing a cluster or a match and then immediately press-

ing Replace to lock in the choice and remove it from the list Prototypes also explored other ways to describe a cluster.
of matches. Traditional replace-with-confirmation forces the One approach listed the features that were common to the
interleaved strategy; replace-all requires the perfect-selectiormembers of the cluster, e.mist before Punctuation, just be-
strategy. Given a choice, however, users seem to prefer perfore LowerCaseWord, contains LowerCaseletters, not just
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after Tag As a rule, users found these explicit feature feature weights are generated automatically frl@noption-
lists unreadable and unhelpful for deciding whether a clus- ally assisted by a knowledge base (in this case, a library of
ter might have true matches or false matches. We also ex-useful text patterns).

perimented with displaying a confidence rating based on the
cluster’s distance from a typical match in feature space [4]
but users either found these ratings inexplicable or believe
them to be a redundant indicator of the cluster’s size.

A feature is a predicatg defined over text regions. The clus-

(’jtering algorithm generates two kinds of featurgsrary fea-
turesderived from a pattern library, arderal featuresdis-
covered by examining the text of the substringgin

We_ conclut_je from this expernience that a cluster IS b_est de_LAPIS has a considerable library of built-in parsers and pat-

scribed by its own members. A single representative is used

: . T erns, including Java, HTML, character classes (e.g. dig-
when the cluster is collapsed. Since users inevitably expan . !
. ; ’ its, punctuation, letters), English structure (words, sentences,
every cluster to check for inhomogeneity, however, it makes

sense to display all the clusters expanded initially, in which paragrap_hs), and parts of speech for English Word_s. The user
case a cluster’s default description is, in fact, its membership.Can readily add new patter_ns and parsers to the _Ill_)raw. Fea-
tures are generated from library patterns by prefixing one of
Two more lessons are worth mentioning. First, the early seven relational operatorgqual tq just before just after
prototypes used two kinds of highlighting in the editor win- starting with ending with in, or containing For example,
dow. In addition to highlighting selected matches in blie, ~ just before Numbeis true of a region if the region is imme-
matches were kept constantly highlighted in yellow, so that diately followed by a match to the Number pattern, amd
they were easy to find and examine in their original context. Commentis true if the region is inside a Java comment. In
The yellow highlight in the editor window was consistent this way, features can refer to the context around substrings,
with the yellow highlight in the snapshot shown in the find & €ven nonlocal context like HTML font or paragraph style or
replace panel. Some users were confused by this extra highJava syntax.
lighting, believing that the yellow highlights were selections
and that pressing Replace would replace all of them (effec

tivel Reol Al Anoth d for th I “tors with literal strings derived from the substringsfin For
IVely a Replace ) nother user scanned for the yeliow examplestarts with “http://” is a literal feature. To illustrate
highlights in the editor, selected each one with the mouse,

d v tvoed th | t text. Both pathologi how we find literal features, consider thiarts withoperator.
and manually typed the replacement text. Both pathologl- 1 e a1 restarts with “x” is useful for describing degree of

C?l Ibek:awors wers: c:illusedl b¥ f;\llllngE}p potltge t?r?t the” list membership inR if and only if a significant fraction of sub-
of clusters was actually selectable. Eliminating the yellow strings inR start with the prefix:. To find z, we first find all

highlights solved these problems. prefixes that are shared by at least two membe#3, afhich

Finally, some find & replace errors are caused by disagree-iS done by sorting the substrings fhand taking the longest
ment of alphabetic case between the matched text and th&ommon prefix of each adjacent pair in the sorted order. We
replacement text. For example, literally replacijaguar then test each longest common prefix to see if it matches at
with panthereverywhere is wrong iflaguaris ever capital- least half the strings iR, a trivial test becausR is already in
ized. Since clustering separates matches by capitalizationsorted order. For all prefixesthat pass the test, we generate
we speculated that users might notice and solve these probthe featurestarts with “x”.

lems themselves by modlfy!ng the case of the replacementWith a few tweaks, the same algorithm can generate literal
text to match the cluster being replaced. In fact, the preva-taatures forends with just before just after andequal to
lence of the perfect-selection strategy suggests that this hope- example, thends withversion searches for suffixes in-
is unfounded, and we observed errors of this kind frequently g0 o prefixes, and thst beforeversion searches for pre-
in the paper prototype. Our computer implementation Solves o5 of the textafter each substring instead of in the sub-
this problem in the conventional way used by other word pro- gying jtself. Onlyin andcontainsfeatures cannot be gener-

cessors and text editors: when the pattern is case insensitiveyiaq'in this way. The clustering algorithm does not presently
and the user types the replacement text with no capitaliza-generate literal features usiitgor contains

tion, then the capitalization of the replacement text is auto-

Literal features are generated by combining relational opera-

matically adjusted to agree with the text it is replacing. Once the set of features has been generated, features that
match every member af are pruned, since they are useless
ALGORITHM for distinguishing clusters. Our algorithm takes the simplest

We now turn to the details of the clustering algorithm, which possible approach to clustering the member&ofmembers

is based on the outlier finder algorithm [4]. The algorithm with identical features are placed in the same cluster, while
takes as input a set of matchBywhich are substrings ofa members which differ on at least one feature are placed in
document) and returns a partition®fsuch that the members different clusters. This simple approach tends to produce
of each subset are more similar to each other than to the othesmaller but more homogeneous clusters. More sophisticated
members ofR. Similarity is determined by representing each clustering techniques are available, such as the commonly
match inR by a binary-valued feature vector. Features and used k-means algorithm [1], but these algorithms require
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Calendar: expandM to Monday but only in exam dates Words | Pattern Matches | Clusters
Dynanic Strategic ||R de Neufwille 1-190 i 12116 Calendar| 4836 | M 73/663 4/78
Planning Morning M (case) 73/366 4/33
Transporiation J Sussman 1-150 F 12/20 M case, word)| 73/97 4/11
Svstems Iorning Quote 563 | ? (17,17)/35| (8,13)/22
Trans & Demand & |B Ben-Akiva 1249 1216 Figure 4165 | figure* 35/55 19/25
Foonotmics Morting Labor 3533 | labor 38/54 33/44

uote: replace ? with apostrophe or double quotes as needed 1able 1: Task sizes.Wordsis the total document
Q P b P 9 size. Patternis a search pattern that might be

used to solve the task,casemeans case-sensitive,
and word means whole word only. Matches is

the number of matches to replace / total number
of matches for a pattern. (In the quote task, 17
matches must be replaced with apostrophes, and

\begin{figure*} or \end{figure*} clusters to replace / total number of clusters found

within the docuwent. 3creenshots of the two interfaces by the CIUStermg algorlthm fora pattern'

are showm in Fig‘ureﬁ \ref{screenTreel:Eig'l.J.re?j} and

fWe hope to make the contents of our service courses more cleatly
known to other facdty,f said Miller. EWefre always getting questions
from faculty like: EDD wou really teach complex numbers in your
coursesff because students claim theyfve nevrer seety them, Whether

Fig‘ure’j ‘.ref{screenListl:Eig‘ure’j}. Find What: |Iab0r
\,hegin{Eigureﬁ} Replace With: [labour
[C] Match Case [_] Whole Word Only
Labor: change allabor word forms tolabour, but not | FindNext | Replace | ReplaceAll | Undo | Close |
elaborateor laboratory
capitalist production. f,abng is interaction Therefore, in order to Figure 3: Traditional find & replace for user study.

really understand postfordist Elbn;ing prasis, one must increasingly
refer to Saussure, to Wittgenstein and to Carnap. These authors have
hardly shown any interest in social relations of production, tional spatial cue. By contrast, the quote task was organized
nonethless, having cffillfsed theories and images of kngwage, they in freeform paragraphs, and correct replacement depended
strongly on the context. The figure task was an example of
Figure 2: Tasks in user study. markup or code replacement, and the labor task tested word
replacement, including multiple word forms. Table 1 shows

. the size of each task by several metrics.
more input from the user (e.g., a value flor the number y

of clusters) and are more likely to produce inhomogeneousEach user/task combination was assigned to one of two con-
clusters, which are undesirable for find & replace. Since our ditions: the clustering interface described previously, or a
primary purpose in this paper is to explore the user interfacetraditional find & replace interface modeled after Microsoft
design, we opted for a simple algorithm that tends to produceWord and Microsoft Notepad (Figure 3). This interface was

homogeneous clusters. implemented in the LAPIS editor in order to eliminate editor-
related differences between the conditions. Each user did all
EVALUATION four tasks — two in one condition, and two in the other. The

We compared cluster-based find & replace with traditional order of tasks and assignment of tasks to conditions was bal-
find & replace in a small user study. We obtained 16 partici- anced and randomly assigned to users.

pants by advertisements posted around a university campus. _

Participants ranged in age from 18 to mid-30's (most were Users were told to work as qwckly_and accurately_a_s they
college students), with 9 males and 7 females. All users re-could, and announce whe_n they believed they had finished a
ported being experienced in word processing, using at leastask correctly. The resulting document was then compared
one word processor or text editor regularly, and all users re-With the expected correct result. If the user's result differed
ported significant experience with find & replace (at least N @ substantial way (extra text, missing text, different capi-

“enough to be comfortable”). Participants were paid $5 per talization) from the correct result, then the user was told that
half hour for up to an hour of work. there were errors, but not where or how many, and asked to

stay on the task until all the errors were fixed. Users were
Each participant was given four find & replace tasks. Por- free to fix errors in a variety of ways, including undo, man-
tions of each task are shown in Figure 2. The tasks wereual editing, and restarting the task from the original input, but
chosen to represent a diverse range of texts, replacement pafer find & replace they could only use the interface appropri-
terns, and task sizes. For example, the calendar task waste to the current condition. The total time required to reach
organized as a table, and correct replacements always apan error-free result was measured (not including time spent
peared in the same column of the table, giving users an addiby the experimenters to check for errors). Only one of the
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2 for the user to check, the clustering algorithm grouped these
matches into only 11 clusters for cluster-based find & re-
place. On other tasks, clustering was less effective, produc-
ing more clusters and therefore providing less leverage.

15

05

o Traditional F&R On the quote task, in contrast, cluster-based find & replace

B Cluster-based F&R was about two timesloweron average than traditional find

05 & replace. This task revealed flaws in the cluster-based
4] user interface that had gone unnoticed in earlier prototyping.

First, the task demanded more context than the cluster dis-

play alone could provide. Figure 2 shows an example: decid-

ing how to replace the question marksciourses?equires

1.5

Ease of Use  Trustworthiness Utility . . .
reading the entire sentence around it. Thus, many matches
from the cluster display had to be located in the document
Figure 4: Subjective ratings. Ease of use was rated in order to see the larger context. Unfortunately, the user in-
for both interfaces, but only clustering was rated terface made this difficult; although selecting a match in the

for trustworthiness and utility. cluster list highlighted it in the document, the highlight was

indistinguishable from other highlighted currently-selected

64 user-task combinations failed to reach an error-free resultMatches. One user worked around the problem by toggling a
within 30 minutes, where it was cut off. This failure occurred Match on and off to make it blink in the document, but most
with the traditional find & replace interface on the calendar esorted to a slow visual scan of the document instead.

task, and its data was omitted from the results reported below.STATUS & FUTURE WORK

Results Our clustering interface actually differs two substantial
Times and error rates are shown in Table 2. The time is theways from traditional find & replace. Our interface not only
total time the user spent to obtain an error-free result (omit- reorganizes the matches into clusters of similarity, but also
ting time spent by the experimenters to check for errors). Thedisplays all the matches in a compact list, where they can be
error rate is the fraction of tasks for which at least one error scanned and selected. Which is more important for usabil-
was found in the user’s first result, which represented the fin- ity — the organization provided by clustering, or the visibility
ished product in the user’'s own judgement. and affordance provided by the list of matches? To answer
this question, we have run an early pilot study of 13 users
that included a third interface condition, identical to the clus-
tering interface except that the list of matches was unclus-
tered and sorted in document order. The details of the study
are omitted for lack of space, but the results suggest that the
unclustered list interface took the same time on average as
After the study, users rated the ease of use of both interfacegraditional find & replace, while the clustering interface was
on a 5-point Likert scale ranging frowery hard(-2) tovery faster (though none of the differences were significant).
easy(+2). For the clustering interface only, users also rated
how much they trusted the clustering to come up with use-
ful groups of related matches (Trustworthiness), and whethe
they would use cluster-based find & replace if it were built
into their favorite word processor (Utility). The results are
shown in Figure 4. Users were generally very positive about
cluster-based find & replace, and neutral about traditional
find & replace, but the difference in ease of use ratings was
not statistically significant.

Using single-factor ANOVA on each task with the find & re-
place condition as the independent variable, the only signif-
icant differences were that cluster-based find & replace was
faster in the calendar task & .02), more accurate in the cal-
endar tasky{ = .02), and slower in the quote task & .03).

Our decision to display all the clusters together in a list had
ranother unfortunate effect. Iterative design suggested that
the best way to represent the clusters generated by our algo-
rithm is simply a list of the cluster's members (rather than an
abstract description likeoldfaced, starting Sentencetc.).
When clusters are represented primarily by their member-
ship, the list of clusters tends to look like a list of individual
matches. As a result, several users in the user study clicked
only one match at a time, instead of a cluster (or range of
Discussion matches) at a time. In other words, these users were treat-
The calendar task and quote task deserve some discussiomg the interface as if it were an unclustered list. Having
since they produced the strongest and yet most contradic-observed this problem in pilot studies, we tried to fix it with
tory effects in the study. On the calendar task, cluster-basedbetter mouse-over feedback, highlighting the entire cluster
find & replace was almost three times faster on average thanwhen the mouse was over the cluster’s margin. This re-
traditional find & replace, largely because clustering was duced but didn’t eliminate the problem. Better graphic de-
highly effective on this task. As Table 1 indicates, whereas sign distinguishing the clusters might also help. Alterna-
the best pattern for traditional find & replace (“M”, with tively, one could imagine a fourth interface condition that
case-sensitivity and whole word enabled) had 97 matchesprovided clustering but not visibility of all clusters at once,
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Calendar task Quote task Figure task Labor task
Traditional F&R time | 8:29 (¢ =5:31) | 4:27 (0 =2:17) | 4:43 (0 =2:43) | 4:57 (0 =2:14)
errors 71% 25% 50% 63%
Cluster-based F&R time | 2:58 (0 =1:57) | 10:05 ¢ =6:08) | 3:29 (0 =1:20) | 5:21 (¢ =5:04)
errors 13% 38% 38% 63%

Table 2: User study results. Time is the median time (in minutes:seconds) to reach an error-free result, with
standard deviation o given in parentheses. Error rate is the fraction of tasks for which the user’s first result had
errors. Each task-condition combination is aggregated over 7 or 8 users.

instead presenting one cluster at a time in the style of replace-CONCLUSION

with-confirmation. Designing and evaluating this interface This paper has introduced cluster-based find & replace, a new

remains future work. technique designed to improve accuracy and speed on diffi-
cult find & replace tasks. Unlike the traditional replace-all

Turning to issues of effective clustering, our algorithm faces and replace-with-confirmation approaches, clustering allows

a tension between cluster size and cluster homogeneityusers to focus on groups of similar replacement decisions.

strongly affected by the number of features available to the By replacing or skipping large homogeneous clusters all at

algorithm. Using too many features might make every match once, but considering unusual matches one at a time, users
a unique, singleton cluster, so clustering would confer no or- can focus their attention where it is most needed in the task.

ganizational advantage. On the other hand, with tc_)o few fea-Design experience showed that users prefer using a perfect-
tures, the clusters may not be homogeneous, forcing the usegg|action strategy for find & replace, rather than an inter-
to look at t'he mgtchgs one afc a.t|me.anyway. Qne Way 0aaved decision-action strategy. We also discovered that the
address_thls_tensmn is by assigning d_|fferent weights 10 fgzal'best description for a cluster is its membership, although this
tures, with high-weight features creating cluster bounda”esdoesn’t keep users from wondering how clusters are related.
while low-weight features are ignored.

Cluster-based find & replace suggests ways that automatic
The user could also guide the clustering process by Choosing{eorganization might be applied to other confirmation prob-
which features should be used for clustering. For example,!éms that arise in user interfaces. We hope that these tech-
a user might choose to cluster the matches by capitalizationnNiques will evolve to reduce tedium and increase correctness
or word boundaries. Interestingly, none of the 40 or so usersin difficult tasks that demand human judgement.
who tested variants of cluster-based find & replace asked forpcynowiedgements

away to control the clustering (although many asked for bet- \ye gratefully acknowledge Min Wu, Matt Notowidigdo, and

ter explanation of the automatic clustering). Find & replace he anonymous referees for their help with this paper.
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