
Cluster-Based Find and Replace

Robert C. Miller Alisa M. Marshall
MIT Computer Science and AI Lab Lockheed Martin Corporation

77 Massachusetts Ave 164 Middlesex Turnpike
Cambridge, MA 02139 USA Burlington, MA 01803 USA

rcm@mit.edu alisa.marshall@lmco.com

ABSTRACT

In current text editors, the find & replace command offers
only two options: replace one match at a time prompting for
confirmation, or replace all matches at once without any con-
firmation. Both approaches are prone to errors. This paper
explores a third way:cluster-based find & replace, in which
the matches are clustered by similarity and whole clusters
can be replaced at once. We hypothesized that cluster-based
find & replace would make find & replace tasks both faster
and more accurate, but initial user studies suggest that clus-
tering may improve speed on some tasks but not accuracy.
Users also prefer using a perfect-selection strategy for find &
replace, rather than an interleaved decision-action strategy.

Categories & Subject Descriptors: H.5.2 [Information Inter-
faces and Presentation]: User Interfaces – evaluation/methodology,
prototyping, user-centered design; H.1.2 [Models and Principles]:
User/Machine Systems – human factors, human information pro-
cessing; H.4.1 [Information Systems Applications]: Office Au-
tomation – word processing
General Terms: Design, Human Factors
Keywords: find & replace, text editing, error prevention, clustering

INTRODUCTION

The find & replace command in a typical text editor forces
users to choose between two alternatives: replace one match
at a time with confirmation, or replace all matches at once.
When the document is long and the number of matches large,
neither choice is ideal.

Confirming each match is slow and tedious. User thought
and action is required for every replacement, which doesn’t
scale to large, complicated tasks. Worse, the tedium of the
task leads the user to make errors. When most answers are
Yes, a bored or impatient user eventually starts to press Yes
without thinking, which makes confirmation pointless. Al-
though some of these errors may be noticed, few find & re-
place interfaces provide an obvious Undo command, so fix-
ing the error disrupts the user’s task and reduces efficiency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2003 ACM 1-58113-702-8/04/0004. . . $5.00.

further. Worse, some errors due to confirmation boredom
may never be noticed at all.

The other choice, replacing all matches without confirma-
tion, may be faster but no less error-prone. Replacing all
matches requires the user to trust the precision of the search
pattern, that it matches only text that should be replaced and
nothing more. Bysearch pattern, we mean not only the string
of characters to be replaced, but also constraints like word
boundaries, case sensitivity, and pattern matching operators.
Designing a precise search pattern is a challenging task. It
requires an understanding of the pattern constraints that are
available and how they interact. It requires a familiarity with
the document being edited, knowing which different variants
of the pattern may appear and predicting the likelihood of
false matches to a pattern. It may require tricks like search-
ing for a longer pattern than you actually need to replace,
or breaking a find & replace task down into several subtasks
with different search patterns, or learning how to use regular
expressions, in order to constrain context and eliminate false
matches. In fact, precise global find & replace requires a pro-
cess of abstraction and testing not unlike programming. Un-
fortunately, the traditional find & replace interface offers no
support for this process — just a Replace All button, which
is enough rope for users to hang themselves.

Errors apparently caused by find & replace have been found
in published documents [6], among them:

• arjpgicial turf, on a web site that evidently switched from
TIFF images to JPEG;

• eLabourated, found in a Wall Street Journal article which
also contained references to the British Labour Party;

• AmriCzar, in a Reuters wire bulletin about Amritsar, a city
in India;

• stogard, instead ofstandard, in the Danish users’ guide
for Windows for Workgroups 3.11. The English wordand
translates toog in Danish, which suggests that find & re-
place by a translator was to blame.

It isn’t clear whether these errors were due to tedious replace-
with-confirmation or imprecise replace-all, but both tech-
niques have flaws that lead to errors.

This paper explores a third interface for find & replace,
which organizes matches intoclusters based on similar-
ity. This cluster-based find & replace method can combine

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

57

the advantages of replace-all and replace-with-confirmation.
Large, identical clusters can be selected and replaced all at
once, while unclusterable matches can be judged one by one.

One complication of this new approach is that reorganizing
matches into clusters necessarily breaks the association be-
tween the order in which matches are presented for replace-
ment and the order in which they occur in the document. Tra-
ditional replace-with-confirmation always presents matches
in document order, which makes it easy for the user to limit
replacements to a certain part of the document. Cluster-
ing, on the other hand, may bring together widely separated
matches into the same cluster. Cluster-based find & replace
is therefore global in nature. This paper describes a novel
user interface that uses multiple text selections to reflect the
global nature of cluster-based find & replace.

The effectiveness of clustering depends on the ability of the
clustering algorithm to segregate true matches (which should
be replaced) from false matches (which shouldn’t). Ideally,
the clustering should produce just two clusters, one contain-
ing the true matches, and the other, the false matches. Since
this is impossible without understanding the user’s intent, we
aim for a more practical goal: clusters should behomoge-
neous, containing either all true matches or all false matches,
and large, containing as many matches as possible. Homoge-
neous clusters can be quickly and safely replaced or skipped.

Clusters are formed by comparingfeaturesof matches, de-
termined from content and context. Clusters will be homo-
geneous only if the features available to the clustering algo-
rithm are sufficient to discriminate true matches from false
matches. In general, this may be impossible; without a deep
semantic understanding of the document, it may be very hard
to discriminate between, say, uses of the wordprogramthat
refer to software and uses ofprogram that refer to an event
schedule. In practice, however, lexical, syntactic, and stylis-
tic features can substantially discriminate between true and
false matches. Our clustering engine uses a wide range of
such features, including capitalization, word boundaries, part
of speech, style, location in page layout, and adjacent text.

The rest of this paper describes our experience with design-
ing and evaluating a user interface for cluster-based find &
replace. After surveying related work, we present the user
interface, highlighting a number of design issues that were
exposed and resolved by prototyping and pilot evaluations.
Next, we describe a formal usability study we conducted to
compare traditional find & replace with cluster-based find &
replace. We then present the details of the clustering algo-
rithm we used. Finally, we discuss some of the conclusions
that can be drawn from our experience.

RELATED WORK
Clustering, also calledunsupervised learning, has a long
history of research in machine learning and information
retrieval [1]. In traditional information retrieval, cluster-
ing is applied at the document level. A document’s fea-

tures are the terms it contains (plus, for web pages, the in-
coming and outgoing links). Clustering is used in several
web search engines, including Vivisimo, WiseNut, Northern
Light, AllTheWeb, and Grouper [9], to organize search re-
sults and give the user an easy way to constrain searches.
Clustering in search engines is particularly helpful for deal-
ing with homonyms, words with diverse meanings. For ex-
ample,jaguar refers to an animal, a car maker, an operating
system from Apple, and a game platform from Atari. A clus-
tering search engine like Vivisimo can separate the different
senses of a search term into different clusters. Clustering can
also suggest additional search terms, as when a search for
Javaproduces clusters forservlets, applets, andgames.

Cluster-based find & replace differs from document cluster-
ing in two important ways. First, the user’s goal is not to sat-
isfy an information need, as it is in information retrieval. In-
stead, the goal is a manipulation task, to modify the matches
to the query. Find & replace therefore places more stringent
demands on both precision and recall than information re-
trieval. Second, the matches to a find & replace query are tiny
fragments of a document, not complete documents. The fea-
tures used for whole-document clustering — terms — are not
as useful for clustering fragments. Freitag confirmed this in
his study of inductive learning for information extraction [2],
which showed that a relational learner using features simi-
lar to ours was much more effective at extracting fragments
from documents than a term- based learner.

Cluster-based find & replace is closely related to outlier find-
ing [4], a technique for highlighting unusual instances in a
pattern match or selection, on the expectation that outliers
are likely to be errors. We use substantially the same algo-
rithm to build clusters that outlier finding uses to detect out-
liers, although the output of the algorithm is applied to the
user interface in different ways. Whereas outlier finding ig-
nores large clusters in order to focus on unusual individuals,
both large and small clusters are useful in cluster-based find
& replace, so the interface presents both.

Techniques related to outlier finding can be found in other
systems as well. For example, Microsoft Excel detects
spreadsheet formulas that are inconsistent with the formu-
las in neighboring cells, highlighting them as possible errors.
Morris and Cherry built an outlier-finding spell-checker [5]
that computes trigram frequencies for a document and then
sorts the document’s words by their trigram probability, and
found that it worked well on technical documents.

Find & replace itself has a hoary legacy, dating back to tele-
type text editors such as Unixed, in which thesubstitute
command was the primary way to change existing text. Al-
though the importance of find & replace has faded somewhat
with the rise of direct-manipulation text editing, virtually ev-
ery text editor still includes a find & replace command.

In programming and web site maintenance,multiple filefind
& replace is often essential. A search of the shareware web

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

58

Figure 1: Cluster-based find & replace interface.

site Downloads.com finds a number of Windows programs
specialized to this task, among them Advanced Find and Re-
place, HandyFile Find and Replace, Alias Find & Replace,
Actual Search & Replace, and HTML Search and Replace.
All these tools provide the traditional replace-all or replace-
with-confirmation interface. Some of the users’ comments
on Downloads.com give insight into the problem: “Fast and
easy but dumb (as they all are)... would need some intelli-
gence in choosing where and when to change... now the user
has to stay strict with the code.” [7] Our clustering prototype
currently works on a single document, but work is underway
to generalize it to multiple-file tasks.

USER INTERFACE
This section describes our user interface for cluster-based
find & replace. The interface was designed through four it-
erations of paper prototypes and pilot evaluations involving
a few users each. The iterations explored a number of design
alternatives, among them ways to display clusters, ways to
describe the content of a cluster, and interaction techniques
for selecting and replacing clusters. In this section, we first
present the final interface that we implemented, and then dis-
cuss some of the lessons learned from exploring design alter-
natives.

The cluster-based find & replace interface is implemented
inside LAPIS [3], an experimental text editor. LAPIS has
several unusual features that are relevant to find & replace.
First, the editor allows multiple discontiguous text selections
(shown as blue highlights in the editor window in Figure 1).
Multiple selections can be made several ways: by the mouse,
by a pattern, or by inference from examples. Multiple se-
lections can be used for editing; delete, cut, copy, paste, and
typing affect all selections at the same time. Multiple selec-
tions may be spread throughout a file. Marks in the scrollbar
provide cues to where selections are located, even if they are
scrolled offscreen.

Figure 1 shows cluster-based find & replace in action. The
interface sits in a side panel of the editor window. The panel
is roughly divided into three parts. The top part of the panel
contains controls for specifying the pattern: the text to search
for, and check boxes for case sensitivity and word boundary
constraints. These controls are conventionally provided in
other find & replace interfaces as well.

The middle part of the panel displays all the matches to the
pattern found in the document. Each pattern match is repre-
sented by a snapshot of document context around the match,

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

59

with the match itself highlighted in yellow. Matches are
grouped into clusters by similarity (using an algorithm de-
scribed later). The clusters are displayed in a standard tree
widget, with each cluster described by a heading, e.g. “4 re-
lated matches”, which acts as a control point for collapsing
or expanding the cluster. When a cluster is collapsed, one
of its members (the first in the document) is displayed in the
collapsed heading as a representative. Figure 1 includes two
collapsed clusters.

The list of clusters is sorted by cluster size, with larger clus-
ters appearing first. Singleton clusters — matches that were
unique and unclusterable — appear last. Singleton clusters
have no heading, and appear simply as leaves at the top level
of the tree widget. The last five items in the cluster view of
Figure 1 are singleton clusters.

Clicking on a match selects it, both in the match list and in
the editor. The editor window scrolls automatically to bring
the selection into view. An entire cluster can be selected by
clicking on its heading or on the margin around it. Multiple
clusters or matches can be selected by click-to-toggle selec-
tion. The Unselect All button clears the selection.

The bottom part of the panel controls replacement. A text
field is provided for entering replacement text. When the
Replace button is pressed, the selected matches are replaced
in the editor and removed from the list of matches. The Undo
button undoes previous replacements, undoing not only the
effect on the editor but also restoring the replaced matches to
the cluster display.

Design Lessons
The interface just described was developed through four iter-
ations of low-fidelity prototyping, with each iteration tested
on three fresh users drawn from a university research envi-
ronment. The prototypes were hybrid paper and computer in-
terfaces. The find & replace panel was prototyped on paper,
while the existing LAPIS editor was used (under the control
of the experimenter) to display the document on a computer
screen, showing selected matches in context and showing the
effect of replacements. Prototype users were given several
find & replace tasks similar to those used in the formal user
studies described later. For example, one task was a final
exam schedule in which Monday was abbreviated to M, and
users were asked to undo the abbreviation without affecting
other M’s in the schedule (e.g., in an instructor’s initials).

One surprising result from prototype testing was users’ pre-
ferred replacement strategy. Nearly all users tried to make
a perfect selection, selecting all the true matches and omit-
ting all the false ones, before pressing Replace. An alterna-
tive strategy would interleave decision-making with action,
choosing a cluster or a match and then immediately press-
ing Replace to lock in the choice and remove it from the list
of matches. Traditional replace-with-confirmation forces the
interleaved strategy; replace-all requires the perfect-selection
strategy. Given a choice, however, users seem to prefer per-

fect selection. This preference was not affected by the loca-
tion of the Replace button (either above or below the list of
matches), nor was it restricted to paper prototyping, persist-
ing throughout later computer implementations as well.

From this observation, it follows that some features we
thought necessary were actually irrelevant, while others that
seemed less important were actually vital. For example, early
prototypes included a button (variously called Omit, Reject,
Exclude, and Discard) that removed a false match or false
cluster from the display without replacing it. This function
is important to the interleaved strategy, because it acts as the
dual to Replace – an action to take when the user has decided
that a match is false. Our first prototype even made this du-
ality explicit, by labeling the two buttons “Yes, Replace” and
“No, Omit”. As it turned out, users never touched the Omit
button during their tasks, regardless of how it was labeled.
When asked afterwards what they thought the button meant,
either they couldn’t guess or they believed that it might delete
the match from theeditor, instead of just removing it from
the find & replace panel.

A perfect selection must in general be a multiple selection.
In conventional tree and list widgets, however, multiple se-
lection is fragile, because a single click can clear a carefully-
constructed selection. Furthermore, many users are unfamil-
iar with the modifier keys used to create a multiple selec-
tion (under Windows, the Control key toggles selection and
the Shift key extends a range). Although these problems did
not appear in paper prototype testing, since the prototypes
did not simulate the low-level interaction issues, it was easy
to anticipate eventual problems with the computer interface.
Indeed, early pilot tests of a computer interface with con-
ventional multiple selection revealed that some users lost se-
lections and others wanted to make multiple selections but
didn’t know how. These observations drove us to use toggle
selection instead of conventional list selection.

Another consequence of the perfect-selection strategy is the
importance of expanding clusters and selecting or deselect-
ing individual matches within a cluster. One of our early
prototypes displayed each cluster as a row in a table, so that
a cluster could only be selected and replaced as a unit. If a
cluster were inhomogeneous – containing both true matches
and false matches – then using a perfect-selection strategy
with this prototype would lead to failure. Using an inter-
leaved strategy, on the other hand, users would still be able to
make progress with the homogeneous clusters, falling back
to replace-with-confirmation (which was offered as an option
in this prototype) to deal with the inhomogeneous clusters.
Since perfect selection was preferred, however, users found
this interface frustrating.

Prototypes also explored other ways to describe a cluster.
One approach listed the features that were common to the
members of the cluster, e.g.just before Punctuation, just be-
fore LowerCaseWord, contains LowerCaseLetters, not just

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

60

after Tag. As a rule, users found these explicit feature
lists unreadable and unhelpful for deciding whether a clus-
ter might have true matches or false matches. We also ex-
perimented with displaying a confidence rating based on the
cluster’s distance from a typical match in feature space [4],
but users either found these ratings inexplicable or believed
them to be a redundant indicator of the cluster’s size.

We conclude from this experience that a cluster is best de-
scribed by its own members. A single representative is used
when the cluster is collapsed. Since users inevitably expand
every cluster to check for inhomogeneity, however, it makes
sense to display all the clusters expanded initially, in which
case a cluster’s default description is, in fact, its membership.

Two more lessons are worth mentioning. First, the early
prototypes used two kinds of highlighting in the editor win-
dow. In addition to highlighting selected matches in blue,all
matches were kept constantly highlighted in yellow, so that
they were easy to find and examine in their original context.
The yellow highlight in the editor window was consistent
with the yellow highlight in the snapshot shown in the find &
replace panel. Some users were confused by this extra high-
lighting, believing that the yellow highlights were selections
and that pressing Replace would replace all of them (effec-
tively a Replace All). Another user scanned for the yellow
highlights in the editor, selected each one with the mouse,
and manually typed the replacement text. Both pathologi-
cal behaviors were caused by failing to notice that the list
of clusters was actually selectable. Eliminating the yellow
highlights solved these problems.

Finally, some find & replace errors are caused by disagree-
ment of alphabetic case between the matched text and the
replacement text. For example, literally replacingjaguar
with panthereverywhere is wrong ifJaguar is ever capital-
ized. Since clustering separates matches by capitalization,
we speculated that users might notice and solve these prob-
lems themselves by modifying the case of the replacement
text to match the cluster being replaced. In fact, the preva-
lence of the perfect-selection strategy suggests that this hope
is unfounded, and we observed errors of this kind frequently
in the paper prototype. Our computer implementation solves
this problem in the conventional way used by other word pro-
cessors and text editors: when the pattern is case insensitive,
and the user types the replacement text with no capitaliza-
tion, then the capitalization of the replacement text is auto-
matically adjusted to agree with the text it is replacing.

ALGORITHM

We now turn to the details of the clustering algorithm, which
is based on the outlier finder algorithm [4]. The algorithm
takes as input a set of matchesR (which are substrings of a
document) and returns a partition ofR such that the members
of each subset are more similar to each other than to the other
members ofR. Similarity is determined by representing each
match inR by a binary-valued feature vector. Features and

feature weights are generated automatically fromR, option-
ally assisted by a knowledge base (in this case, a library of
useful text patterns).

A feature is a predicatef defined over text regions. The clus-
tering algorithm generates two kinds of features:library fea-
turesderived from a pattern library, andliteral featuresdis-
covered by examining the text of the substrings inR.

LAPIS has a considerable library of built-in parsers and pat-
terns, including Java, HTML, character classes (e.g. dig-
its, punctuation, letters), English structure (words, sentences,
paragraphs), and parts of speech for English words. The user
can readily add new patterns and parsers to the library. Fea-
tures are generated from library patterns by prefixing one of
seven relational operators:equal to, just before, just after,
starting with, ending with, in, or containing. For example,
just before Numberis true of a region if the region is imme-
diately followed by a match to the Number pattern, andin
Commentis true if the region is inside a Java comment. In
this way, features can refer to the context around substrings,
even nonlocal context like HTML font or paragraph style or
Java syntax.

Literal features are generated by combining relational opera-
tors with literal strings derived from the substrings inR. For
example,starts with “http://” is a literal feature. To illustrate
how we find literal features, consider thestarts withoperator.
The featurestarts with “x” is useful for describing degree of
membership inR if and only if a significant fraction of sub-
strings inR start with the prefixx. To findx, we first find all
prefixes that are shared by at least two members ofR, which
is done by sorting the substrings inR and taking the longest
common prefix of each adjacent pair in the sorted order. We
then test each longest common prefix to see if it matches at
least half the strings inR, a trivial test becauseR is already in
sorted order. For all prefixesx that pass the test, we generate
the featurestarts with “x” .

With a few tweaks, the same algorithm can generate literal
features forends with, just before, just after, andequal to.
For example, theends withversion searches for suffixes in-
stead of prefixes, and thejust beforeversion searches for pre-
fixes of the textafter each substring instead of in the sub-
string itself. Onlyin andcontainsfeatures cannot be gener-
ated in this way. The clustering algorithm does not presently
generate literal features usingin or contains.

Once the set of features has been generated, features that
match every member ofR are pruned, since they are useless
for distinguishing clusters. Our algorithm takes the simplest
possible approach to clustering the members ofR: members
with identical features are placed in the same cluster, while
members which differ on at least one feature are placed in
different clusters. This simple approach tends to produce
smaller but more homogeneous clusters. More sophisticated
clustering techniques are available, such as the commonly
usedk-means algorithm [1], but these algorithms require

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

61

Calendar: expandM to Monday, but only in exam dates

Quote: replace ? with apostrophe or double quotes as needed

Figure: remove the asterisk fromfigure* , except in
\begin{figure*}or \end{figure*}

Labor : change alllabor word forms tolabour, but not
elaborateor laboratory

Figure 2: Tasks in user study.

more input from the user (e.g., a value fork, the number
of clusters) and are more likely to produce inhomogeneous
clusters, which are undesirable for find & replace. Since our
primary purpose in this paper is to explore the user interface
design, we opted for a simple algorithm that tends to produce
homogeneous clusters.

EVALUATION

We compared cluster-based find & replace with traditional
find & replace in a small user study. We obtained 16 partici-
pants by advertisements posted around a university campus.
Participants ranged in age from 18 to mid-30’s (most were
college students), with 9 males and 7 females. All users re-
ported being experienced in word processing, using at least
one word processor or text editor regularly, and all users re-
ported significant experience with find & replace (at least
“enough to be comfortable”). Participants were paid $5 per
half hour for up to an hour of work.

Each participant was given four find & replace tasks. Por-
tions of each task are shown in Figure 2. The tasks were
chosen to represent a diverse range of texts, replacement pat-
terns, and task sizes. For example, the calendar task was
organized as a table, and correct replacements always ap-
peared in the same column of the table, giving users an addi-

Words Pattern Matches Clusters
Calendar 4836 M 73/663 4/78

M(case) 73/366 4/33
M(case, word) 73/97 4/11

Quote 563 ? (17,17)/35 (8,13)/22
Figure 4165 figure* 35/55 19/25
Labor 3533 labor 38/54 33/44

Table 1: Task sizes.Words is the total document
size. Pattern is a search pattern that might be
used to solve the task;casemeans case-sensitive,
and word means whole word only. Matches is
the number of matches to replace / total number
of matches for a pattern. (In the quote task, 17
matches must be replaced with apostrophes, and
17 with double quotes.)Clustersis the number of
clusters to replace / total number of clusters found
by the clustering algorithm for a pattern.

Figure 3: Traditional find & replace for user study.

tional spatial cue. By contrast, the quote task was organized
in freeform paragraphs, and correct replacement depended
strongly on the context. The figure task was an example of
markup or code replacement, and the labor task tested word
replacement, including multiple word forms. Table 1 shows
the size of each task by several metrics.

Each user/task combination was assigned to one of two con-
ditions: the clustering interface described previously, or a
traditional find & replace interface modeled after Microsoft
Word and Microsoft Notepad (Figure 3). This interface was
implemented in the LAPIS editor in order to eliminate editor-
related differences between the conditions. Each user did all
four tasks – two in one condition, and two in the other. The
order of tasks and assignment of tasks to conditions was bal-
anced and randomly assigned to users.

Users were told to work as quickly and accurately as they
could, and announce when they believed they had finished a
task correctly. The resulting document was then compared
with the expected correct result. If the user’s result differed
in a substantial way (extra text, missing text, different capi-
talization) from the correct result, then the user was told that
there were errors, but not where or how many, and asked to
stay on the task until all the errors were fixed. Users were
free to fix errors in a variety of ways, including undo, man-
ual editing, and restarting the task from the original input, but
for find & replace they could only use the interface appropri-
ate to the current condition. The total time required to reach
an error-free result was measured (not including time spent
by the experimenters to check for errors). Only one of the

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

62

Figure 4: Subjective ratings. Ease of use was rated
for both interfaces, but only clustering was rated
for trustworthiness and utility.

64 user-task combinations failed to reach an error-free result
within 30 minutes, where it was cut off. This failure occurred
with the traditional find & replace interface on the calendar
task, and its data was omitted from the results reported below.

Results
Times and error rates are shown in Table 2. The time is the
total time the user spent to obtain an error-free result (omit-
ting time spent by the experimenters to check for errors). The
error rate is the fraction of tasks for which at least one error
was found in the user’s first result, which represented the fin-
ished product in the user’s own judgement.

Using single-factor ANOVA on each task with the find & re-
place condition as the independent variable, the only signif-
icant differences were that cluster-based find & replace was
faster in the calendar task (p = .02), more accurate in the cal-
endar task (p = .02), and slower in the quote task (p = .03).

After the study, users rated the ease of use of both interfaces
on a 5-point Likert scale ranging fromvery hard(-2) to very
easy(+2). For the clustering interface only, users also rated
how much they trusted the clustering to come up with use-
ful groups of related matches (Trustworthiness), and whether
they would use cluster-based find & replace if it were built
into their favorite word processor (Utility). The results are
shown in Figure 4. Users were generally very positive about
cluster-based find & replace, and neutral about traditional
find & replace, but the difference in ease of use ratings was
not statistically significant.

Discussion
The calendar task and quote task deserve some discussion,
since they produced the strongest and yet most contradic-
tory effects in the study. On the calendar task, cluster-based
find & replace was almost three times faster on average than
traditional find & replace, largely because clustering was
highly effective on this task. As Table 1 indicates, whereas
the best pattern for traditional find & replace (“M”, with
case-sensitivity and whole word enabled) had 97 matches

for the user to check, the clustering algorithm grouped these
matches into only 11 clusters for cluster-based find & re-
place. On other tasks, clustering was less effective, produc-
ing more clusters and therefore providing less leverage.

On the quote task, in contrast, cluster-based find & replace
was about two timessloweron average than traditional find
& replace. This task revealed flaws in the cluster-based
user interface that had gone unnoticed in earlier prototyping.
First, the task demanded more context than the cluster dis-
play alone could provide. Figure 2 shows an example: decid-
ing how to replace the question marks incourses??requires
reading the entire sentence around it. Thus, many matches
from the cluster display had to be located in the document
in order to see the larger context. Unfortunately, the user in-
terface made this difficult; although selecting a match in the
cluster list highlighted it in the document, the highlight was
indistinguishable from other highlighted currently-selected
matches. One user worked around the problem by toggling a
match on and off to make it blink in the document, but most
resorted to a slow visual scan of the document instead.

STATUS & FUTURE WORK
Our clustering interface actually differs intwo substantial
ways from traditional find & replace. Our interface not only
reorganizes the matches into clusters of similarity, but also
displays all the matches in a compact list, where they can be
scanned and selected. Which is more important for usabil-
ity – the organization provided by clustering, or the visibility
and affordance provided by the list of matches? To answer
this question, we have run an early pilot study of 13 users
that included a third interface condition, identical to the clus-
tering interface except that the list of matches was unclus-
tered and sorted in document order. The details of the study
are omitted for lack of space, but the results suggest that the
unclustered list interface took the same time on average as
traditional find & replace, while the clustering interface was
faster (though none of the differences were significant).

Our decision to display all the clusters together in a list had
another unfortunate effect. Iterative design suggested that
the best way to represent the clusters generated by our algo-
rithm is simply a list of the cluster’s members (rather than an
abstract description likeboldfaced, starting Sentence, etc.).
When clusters are represented primarily by their member-
ship, the list of clusters tends to look like a list of individual
matches. As a result, several users in the user study clicked
only one match at a time, instead of a cluster (or range of
matches) at a time. In other words, these users were treat-
ing the interface as if it were an unclustered list. Having
observed this problem in pilot studies, we tried to fix it with
better mouse-over feedback, highlighting the entire cluster
when the mouse was over the cluster’s margin. This re-
duced but didn’t eliminate the problem. Better graphic de-
sign distinguishing the clusters might also help. Alterna-
tively, one could imagine a fourth interface condition that
provided clustering but not visibility of all clusters at once,

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

63

Calendar task Quote task Figure task Labor task
Traditional F&R time 8:29 (σ =5:31) 4:27 (σ =2:17) 4:43 (σ =2:43) 4:57 (σ =2:14)

errors 71% 25% 50% 63%
Cluster-based F&R time 2:58 (σ =1:57) 10:05 (σ =6:08) 3:29 (σ =1:20) 5:21 (σ =5:04)

errors 13% 38% 38% 63%

Table 2: User study results. Time is the median time (in minutes:seconds) to reach an error-free result, with
standard deviationσ given in parentheses. Error rate is the fraction of tasks for which the user’s first result had
errors. Each task-condition combination is aggregated over 7 or 8 users.

instead presenting one cluster at a time in the style of replace-
with-confirmation. Designing and evaluating this interface
remains future work.

Turning to issues of effective clustering, our algorithm faces
a tension between cluster size and cluster homogeneity,
strongly affected by the number of features available to the
algorithm. Using too many features might make every match
a unique, singleton cluster, so clustering would confer no or-
ganizational advantage. On the other hand, with too few fea-
tures, the clusters may not be homogeneous, forcing the user
to look at the matches one at a time anyway. One way to
address this tension is by assigning different weights to fea-
tures, with high-weight features creating cluster boundaries
while low-weight features are ignored.

The user could also guide the clustering process by choosing
which features should be used for clustering. For example,
a user might choose to cluster the matches by capitalization
or word boundaries. Interestingly, none of the 40 or so users
who tested variants of cluster-based find & replace asked for
a way to control the clustering (although many asked for bet-
ter explanation of the automatic clustering). Find & replace
users may be more accustomed to controlling matches by
changing the search pattern, rather than reorganizing a dis-
play of matches for easier selection.

Finally, cluster-based find & replace addresses only the er-
rors caused by false matches. Pattern matching tasks also
suffer fromfalse misses, text that should have been replaced
but was not matched by the user’s pattern. False misses
can happen when the user’s pattern is too specific (e.g., us-
ing whole-word searching when the word sometimes takes
endings) or when misspellings block matching. In order to
detect false misses, a cluster-based find & replace interface
would have to widen the scope of the user’s pattern, using
techniques likeagrep’s approximate matching [8] or outlier
finding [4]. The cost would be significantly more potential
matches for the user to examine. Integrating possible false
misses into the find & replace interface remains future work.

The cluster-based find & replace interface described in this
paper can be found in the experimental LAPIS editor, which
is written in Java and freely downloadable from the Web at
http://graphics.csail.mit.edu/lapis.

CONCLUSION
This paper has introduced cluster-based find & replace, a new
technique designed to improve accuracy and speed on diffi-
cult find & replace tasks. Unlike the traditional replace-all
and replace-with-confirmation approaches, clustering allows
users to focus on groups of similar replacement decisions.
By replacing or skipping large homogeneous clusters all at
once, but considering unusual matches one at a time, users
can focus their attention where it is most needed in the task.

Design experience showed that users prefer using a perfect-
selection strategy for find & replace, rather than an inter-
leaved decision-action strategy. We also discovered that the
best description for a cluster is its membership, although this
doesn’t keep users from wondering how clusters are related.

Cluster-based find & replace suggests ways that automatic
reorganization might be applied to other confirmation prob-
lems that arise in user interfaces. We hope that these tech-
niques will evolve to reduce tedium and increase correctness
in difficult tasks that demand human judgement.

Acknowledgements
We gratefully acknowledge Min Wu, Matt Notowidigdo, and
the anonymous referees for their help with this paper.

REFERENCES
1. Michael R. Anderberg.Cluster Analysis for Applications. Academic

Press, 1973.

2. Dayne Freitag.Machine Learning for Information Extraction in Infor-
mal Domains. PhD thesis, Computer Science Department, Carnegie
Mellon University, November 1998.

3. Robert C. Miller and Brad A. Myers. Multiple selections in smart text
editing. InProc. IUI 2002, pages 103–110.

4. Robert C. Miller and Brad A. Myers. Outlier finding: Focusing human
attention on possible errors. InProc. UIST 2001, CHI Letters 3(2),
pages 81–90.

5. Robert Morris and Lorinda L. Cherry. Computer detection of typo-
graphical errors. Technical Report 18, Bell Laboratories, July 1974.

6. Peter G. Neumann (moderator). Risks Digest: Forum on risks to the
public in computers and related systems. http://catless.ncl.ac.uk/Risks/.
v10 n23, v18 n24, v19 n12.

7. Various. CNET user reviews for Search and Replace 98.
http://download.com.com/3302-2048-916215.html, 2003.

8. Sun Wu and Udi Manber. Agrep – a fast approximate pattern searching
tool. In Proc. Winter USENIX 1992, pages 153–162.

9. Oren Zamir and Oren Etzioni. Grouper: A dynamic clustering interface
to web search results. InProc.WWW8, 1999.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

64

