

Revealing Delay in Collaborative Environments
Carl Gutwin1, Steve Benford2, Jeff Dyck1, Mike Fraser2, Ivan Vaghi2, and Chris Greenhalgh2

1Department of Computer Science
University of Saskatchewan

57 Campus Drive, Saskatoon, Canada, S7N 5A9
{carl.gutwin, jeff.dyck}@usask.ca

2The Mixed Reality Laboratory,
The University of Nottingham
Nottingham, NG8 1BB, UK

{sdb, mcf, irv, cmg}@cs.nott.ac.uk

ABSTRACT
Delay is an unavoidable reality in collaborative
environments. We propose an approach to dealing with
delay in which ‘decorators’ are introduced into the
interface. Decorators show the presence, magnitude and
effects of delay so that participants can better understand its
consequences and adopt their own natural coping strategies.
Two experiments with different decorators show that this
approach can significantly reduce errors in specific
collaborative activities. We conclude that revealing delays
is one way in which groupware can benefit from accepting
and working with the reality of distributed systems, rather
than trying to maintain the illusion of copresent interaction.
Categories & Subject Descriptors: D.2.2 [Software
Engineering]: Tools and Techniques—User interfaces;
H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces—CSCW.
General Terms: Design, Experimentation.
Keywords: Collaborative environments, groupware,
network delay, latency, jitter, shared workspaces

INTRODUCTION
It is widely recognised that delay is a significant issue for
collaborative applications. Previous research has examined
the effects of delays in a number of situations, including
multimedia transmission [14], conversation [23] and
coordination of action in collaborative systems [9, 17, 26].
Research into strategies for dealing with delay, however,
has primarily been conducted in the networking and
multimedia communities, and has been oriented around
schemes that reduce delays at the network level [1, 12].
This paper explores a different and complimentary
approach in which the characteristics and effects of delay
are revealed to users in order to support them in adopting
their own natural coping strategies. This approach has been
proposed in previous research [5]. Here we develop it in

two ways. First, we introduce different families of delay-
related information that might be revealed to users. Second,
we report on two experiments to assess the effectiveness of
revealing delays in collaborative tasks, the results of which
show that the revealing delays can significantly reduce
coordination errors.

THE NATURE AND CONSEQUENCES OF DELAY
Delay is an unavoidable fact of life in distributed
applications. Delays result from two main sources: the
network used to transmit messages, and the processing of
those messages at the endpoints. Network delays arise from
a combination of transmission delay, switching delay,
queuing delay, and retransmission delay, and their
magnitude varies greatly according to the type of network
involved and changing network conditions. Processing
delays result from processing information at the sender,
receiver, and servers (if present).
There are two key aspects to delay: latency and jitter.
Latency is the amount of time between when an event
occurs and when it is received by another system in the
group. This results in a slower pace of communication, with
actions seen sometime after they actually occur. Jitter is the
variation in latency due to changing network traffic
conditions and processing loads. This causes a remote
user’s actions (e.g. moving a telepointer) to appear jerky,
with the result that they may become difficult to predict.
Delays can have severe effects on collaboration – on
feedback, coordination, communication, and understanding
of the shared situation. Feedback may become delayed so
that users cannot relate consequences to previous actions or
may believe that their actions have failed when they are in
fact delayed. Depending on the underlying control
mechanism that is used, it can become difficult to negotiate
turn taking: unpredictable communication may hinder social
locking protocols, single master locking mechanisms may
suffer from reduced availability, and there is more
likelihood of inconsistent updates where local replicas are
used, with the confusing possibility of having to roll back
local actions to some previously agreed state. Delay may
also cause users to disagree over the timing or simultaneity
of key events. People may experience different orderings of
events with implications for causality, such as missed causal
links or wrongly inferred dependencies. Finally,
applications may suffer from faulty physics, especially

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

503

those that rely on the metaphor of a consistent shared space
such as Collaborative Virtual Environments (CVEs).
One approach to dealing with delay is to reduce it. This
may involve choosing appropriate distribution architectures
[20] and consistency mechanisms [6]. Peer-to-peer, client-
server and hybrid architectures trade communication speed
against simplicity and the ability to enforce common
orderings on events, and different consistency mechanisms
trade immediate response time against the possibility of
inconsistent updates. Collaborative applications may also
draw on various multimedia networking techniques
including using improved network protocols [25], adapting
to meet quality of service (QoS) requirements [2], error
correction techniques [1, 19] application layer multicast
[18], sending information over multiple network paths [15],
load balancing [13] and prioritising communication
between users with high mutual awareness [7]. Although
HCI research is beginning to explore the potential impact of
such techniques [4, 16], the bottom line is that delays and
their effects on users are here to stay.

THE APPROACH OF REVEALING DELAY
Given these observations, this paper explores a different
approach to dealing with delay in which its presence,
magnitude and potential effects are revealed to users so that
they can adopt natural coping strategies. This approach is
not an alternative to reducing delay, but rather a method for
mitigating the effects of delay on the user, and can be
combined with the strategies described above.
This approach arose from previous empirical work that
explored the effects of delay on users in a CVE [27]. Pairs
of users were asked to play a simple tennis-like ball game
over a simulated wide area network connection that was
systematically subjected to increasing delay. Analysis of
video recordings supported by semi-structured interviews
showed that some users attributed their interactional
difficulties to delay, and that some of these adopted natural
coping strategies such as predicting the trajectory of the ball
and moving to intercept it at an estimated future position,
playing from the back of the court in order to create time to
judge the trajectory of the ball, and deliberately trying to
slow the game down by bouncing the ball off of walls in
order to buy yet more time.
This experiment inspired a new approach to dealing with
delay – making users more aware of its presence and
characteristics so as to further encourage the adoption of
natural coping strategies. Philosophically, this approach
treats delay as a natural feature of networked media and
considers its effects to be ‘delay induced phenomena’ rather
than problems to be swept under the carpet (an approach
that has its roots in a broader discussion of breaking down
the transparency of distributed systems in order to better
support cooperative work [22]). In short, rather than
slavishly following the metaphor of copresent physical
space, distributed shared spaces should be treated as their
own medium with their own defining characteristics.

DELAY DECORATORS
Although the idea of revealing delay-induced phenomena is
straightforward, the practice is not, due to the complex
nature of delays and their various potential effects on
collaboration. This paper therefore undertakes a deeper
exploration of the nature of delay induced phenomena and
the ways in which they might be revealed to users. Our
main mechanism for revealing delay is what we call a
decorator. This is a visual ornament that is added to the
representation of an object in the user interface in order to
enhance a user’s understanding of an associated delay-
induced phenomenon.
As we shall discuss later, there are potentially many
different kinds of decorator to deal with the varied
consequences of delay for different applications. For the
time being however, we focus on the two specific families
of decorators that have provided the basis for our early
experimental work: magnitude of delay decorators and past
and future state continuum decorators.

Magnitude of delay decorators
Our first family of decorators communicates the most basic
underlying information about delay – its presence and
magnitude. We introduce four categories of magnitude of
delay decorators: roundtrip time, jitter, one-way temporal
distance, and third-party delay decorators. We will use the
network scenario shown in Figure 1 as the context for our
descriptions of these various decorators.

C

A

B

800ms latency
high jitter 1500ms latency

low jitter

Latency
100ms

400ms
low jitter

C

A

B

800ms latency
high jitter 1500ms latency

low jitter

Latency
100ms

400ms
low jitter

Figure 1. Networked computers running a shared
environment with different delays between them.

Roundtrip abstract decorator. This is the simplest
example of a decorator and shows the overall round trip
time for communication with a remote object (that is, the
total delay involved in sending a message and receiving an
immediate response). This allows a user to reason about the
minimum time that they can expect to wait before observing
the effects of acting on an object or, in social situations, the
minimum time before they could reasonably expect any
response from a remote user. Of course, this time might be
longer in practice if the remote object has to process the
message. Referring to Figure 1, the roundtrip time between
A and B is 1600 milliseconds (ms), between B and C is 500
ms, and between A and C is 3000 ms. As well as
representing the magnitude of the delay.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

504

There are many potential ways in which this information
might be visualized depending upon the nature of the
application and the experience of the users, for example
using numbers, translucence or color. One notable
possibility is to employ rhythmic animation, for example
introducing objects that pulse or oscillate.
Jitter decorator. This shows the variation in delay over
time rather than the raw magnitude of delay, as this can be
an important factor in predicting the movements of objects
[9]. As part of our first experiment (see below), we have
implemented an example jitter decorator in which the color
of an object (a telepointer) changes according to the amount
of time elapsed between receiving position updates.
Temporal distance decorator. Figure 1 reminds us that the
delay between two objects need not be symmetrical, for
example due to differences between downlink and uplink
bandwidth, or due to messages in each direction taking a
different route through the underlying network. In some
circumstances it may be important to show the delay
associated with a given direction. This decorator therefore
changes its state to reveal the magnitude of the delay in one
direction, from the local user to a remote object or vice
versa. It might be necessary to introduce two decorators
(one for each direction) or to choose which direction takes
precedence in terms of whether it is more important that the
user understand how long it takes for the objects’ updates to
reach them or the other way around. For example, users
who are passively accessing remote video and audio will be
interested in the delay in the direction from the source
object to their local machine.
Third-party delay decorator. Returning to Figure 1, it
may sometimes be important for the user to be able to
reason about the communication delay between two objects
that are both remote. For example, in our network scenario,
perhaps the user B is watching two remote users (or
objects) A and C. Understanding the interactions between A
and C may be helped by knowledge that is a roundtrip
communication delay of 3000 ms between them.
Third-party delay decorators provide an inter-subjective
view of the delay between two objects that are both remote
from the local observer. Given that there are now three
locations involved, there are several possibilities as to what
might be revealed. A user might be made aware of how
long it takes one object’s messages to reach the other or
conversely, might see the round trip time between them.
Alternatively, the user might be given a sense of how long it
could be before they will see the effects on one object’s
communication with another, which needs to take account
of the delays between the two objects and also to the
observer. These kinds of decorations could take the forms
described above, but with the addition of a clear visual
connection between the remote objects to show which delay
values are being represented. Figure 2 shows a design in
which an animated pulse travels back and forth along a
connecting line between the two objects.

B’s view

A

B

C

B’s view

AA

B

CC

Figure 2. Third-party delay decorator to show the user
B the delay between the remote objects A and C.

Past and future state continuum decorators
Our second family of decorators shows the state of artefacts
as they were in the past or might be in the future so as to
help a user predict how to interact with them.
Past state decorators. These show how an object appeared
in the past, especially its past positions. Possible designs
include telepointer trails for shared 2D workspaces (see
Figure 3) or the animated shadow avatars described in [8],
that follow their users around a virtual world and replay
their actions from the recent past.

Figure 3. A telepointer trail as a past state decorator

Although past state decorators suit moving objects, they can
also be used for other purposes. For example, they might
help observers understand the timing of speech – the delay
between when an utterance is made and when it is heard –
by showing a visual trail of objects to indicate its progress
between a speaker and a listener.
Future state decorators. These show the predicted future
states of objects, derived from the histories of their past
states, knowledge of constraints on their movement (e.g., do
they have a maximum speed) and information about current
delays. The intention behind future state decorators is to
help users predict the potential course of events and so plan
their activities in advance, for example moving to a point
that correctly anticipates the arrival of an object. These
decorators are at best reasonable guesses as to the likely
state of an object, and so might try to show their equivocal
nature through representations that suggest uncertainty,
such as translucent, wire-frame or outline representations of
a future position or trail. For example, a user’s telepointer
might be surrounded by a highlighted region that suggests
where it is likely to be now (an example that we implement
and test in our second experiment below).
It is also possible to combine past and future state
decorators. For example, Figure 4 sketches a design for a
decorated telepointer that shows past (solid trail), present

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

505

(solid telepointer) and possible future (dashed trail and
faded telepointer) states.

Figure 4. A decorated telepointer shows both past and
possible future states

Having introduced two initial families of decorators in
some detail, we now turn to the question of whether these
techniques actually assist people in carrying out
collaborative tasks in delayed conditions.

EMPIRICAL INVESTIGATIONS OF REVEALING
DELAY
We carried out two experiments to determine whether
decorators help people adapt to delay. The first experiment
studied a magnitude-of-delay decorator in situations where
jitter is a problem, and the second experiment looked at a
future state decorator in a latency scenario.

Study one: a jitter magnitude-of-delay decorator
In a stream of messages such as those seen for a moving
telepointer, jitter disrupts smooth motion. When the stream
experiences jitter, the telepointer appears to freeze during
periods when updates are delayed in transit, and then jumps
forwards following updates that are less delayed. Previous
work has shown that jitter causes problems when people
rely on smooth motion to interpret and predict another
person’s movements [9]. In these situations, jitter makes it
difficult for people to anticipate the pointer’s motion. This
is especially problematic when the viewer sees the
telepointer stop as it is difficult to determine whether the
stop is due to a jitter freeze, or whether the other person has
really stopped moving.
We carried out an experiment to determine the effects of a
jitter decorator on this prediction problem.

Method
Sixteen users who were regular users of basic networked
applications were recruited from a local university. Half of
the participants had experienced jitter from playing online
games. The participants were asked to carry out a number
of telepointer prediction tasks in a custom-built application
(see Figure 5).
The study system presented a sequence of pre-recorded
telepointer motions, and participants were asked to predict
where the telepointer would stop. In different experimental
conditions, different amounts of jitter were introduced into
the playback. For each trial, the user’s task was to predict
which grid square the telepointer was moving to, and click
their mouse cursor on that square. We asked people to try
and aggressively minimize their prediction time while still
trying to avoid errors.

Jitter was introduced into the telepointer motion by
randomly pausing the playback at a particular telepointer
message (at a frequency of 5%, and for a length of time
determined by the experimental condition). When a freeze
occurred, the cursor would halt until the jitter period
passed, and then the playback – and hence the cursor –
would jump forward to its correct location and continue
moving (note that freeze times were not allowed to lengthen
the overall time of the telepointer’s motion).

telepointer start position

jitter freezes

final position

pointer path

telepointer start position

jitter freezes

final position

pointer path

telepointer start position

jitter freezes

final position

pointer path

Figure 5. Jitter study system, illustrating telepointer
motion in a jittery network condition

The study compared prediction performance with no
decorator (the normal groupware situation) to a fading
cursor (a jitter decorator from the magnitude of delay
decorator family).

The fading cursor decorator
This decorator changes the colour of the telepointer based
on the time since a position update has been received (see
Figure 6). Assuming that the sender system is providing
regular position updates, the receiver can easily calculate
how ‘stale’ the current telepointer position is and colour it
accordingly. This technique could reduce errors by
differentiating between a telepointer that has really stopped
(still white) and a freeze due to jitter (a rapid fade to black).

up-to-date

no update for: 100ms 200 300 400 500 600 700 800 1000ms900

up-to-date

no update for: 100ms 200 300 400 500 600 700 800 1000ms900

Figure 6. Fading cursor effects for different jitter delays

Study procedure and design
Participants carried out several practice trials both with and
without jitter, and then completed 20 test trials with each
jitter amount and each decorator. The study used an order-
balanced 4x2 within-subjects factorial design. The factors
included Decorator type (None or Fade) and Jitter amount
(0ms, 800ms, 1100ms, and 1400ms). These amounts were
chosen because previous studies showed that prediction
errors are a significant problem in this range [9]; although
these amounts are relatively high, they are within what we
have observed with Internet-based groupware. The study

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

506

system collected two types of data: completion time (from
the start of the telepointer’s motion until the user’s correct
click), and errors (the number of incorrect clicks).

Results
There were negative effects on performance as jitter
increased, regardless of decorator (see Figure 7). However,
the fading cursor allowed people to predict telepointer
movements significantly more quickly and significantly
more accurately than with no decorator. ANOVA showed
main effects of both completion time (F1,15=6.93, p<0.005)
and error rate (F1,15=11.56, p<0.001). The actual
completion time difference was very small (about 20ms per
trial), but the improvement in error rate was substantial: the
fading cursor reduced errors from more than one in three
trials to about one in five (see Figure 7). We checked
whether prior experience with delays led to any differences
in these results, but no significant differences were found.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 200 400 600 800 1000 1200 1400

Jitter amount (ms)

E
rro

r r
at

e
pe

r t
ar

ge
t

No Decorator
Fading Cursor

Figure 7. Mean error rates for all jitter amounts.

For prediction of telepointer movement in jittery conditions,
the fading-cursor decorator allowed people to better
understand the state of the distributed system and adjust
their behaviour accordingly.

Study two: latency and future state decorators
Latency causes well-known coordination problems when
two people attempt to obtain a single shared resource,
whether a graphical object in a workspace or a free space in
a telephone conversation. Both parties believe that they are
‘next in line’ for the resource, and both take the resource
(or at least their local copy of it). After the delay period,
however, it becomes clear that they have both taken the
same resource, and a conflict occurs.
We carried out an experiment to determine whether a future
state decorator (from the past and future state continuum
family) could reduce this coordination problem in a shared
visual workspace.

Method
Twelve pairs of students were recruited from a local
university. Again, about half of the pairs had experienced
latency through playing on-line games. These pairs were

asked to carry out tasks that involved shared access to
visual objects.
The study was carried out using a custom-built distributed
groupware application that allowed different amounts of
latency to be applied to the message streams between the
two participants. In the system, participants were asked to
drag blocks from a central stack and deposit them in a drop
zone, one for each participant, moving around a set of fixed
obstacles (see Figure 8). The blocks could be grabbed by
either user, and the system recorded instances where one
person grabbed a block that had already been taken by the
other. The groups were told to minimise the number of
these ‘double grabs.’
Participants were represented on their partner’s view of the
workspace with a telepointer, which appeared either as a
normal telepointer or as a pointer with a ‘halo’ decorator.

Drop zone

Block stack

Obstacles

Telepointer
with halo

Drop zone

Block stack

Obstacles

Telepointer
with halo

Figure 8. Latency study system (halo effect has been
darkened for clearer printing).

The halo technique
The future state decorator used in the system is one of the
simplest possible: it shows the potential future location of
the telepointer, based on the current speed of the pointer
and the current latency in the network. The ‘halo’ used to
represent this area of potential movement is drawn on the
screen as a light-grey circle. The size of the halo changes
with the speed of the pointer; slow movement will result in
a small halo, fast movement (or large latency) will result in
a large halo. The intent of the technique is to indicate when
a pointer could potentially be in range of the central block
stack, and hopefully to help people reduce conflicts in
grabbing blocks from the stack.

Study procedure and design
Participants carried out several practice trials with different
amounts of latency, and then completed 50 test trials (i.e.
50 blocks dragged by the group to the drop zones) with
each latency amount and each decorator. The study used a
balanced 5x2 within-subjects factorial design. The factors
were Decorator type (None or Halo) and Latency amount
(0ms, 200ms, 400ms, 600ms, 800ms). Again, these values
were chosen because a previous study had showed that
latency was a problem for this range of delays [9]. The
study system recorded completion time per condition, and
the number of errors (where one person clicked on a block
already held by another person).

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

507

Results
Again, increasing latency above 200ms led to increasing
error rates in the system; however, as with the jitter study,
performance with the halo decorator was significantly better
than with no decorator. ANOVA was used to compare error
rates per block of 50 trials. A significant main effect of
Decorator type was found for error rate (F1,11=5.98,
p<0.05). Performance with the halo decorator was on
average about 25% better than with no decorator. For
example, at 400ms latency, error rates decreased from
about one in 11 trials to about one in 15; at 800ms latency,
they decreased from one in six to one in 10. No effects of
decorator type on completion time were found (F1,11=0.91,
p=0.36). In addition, no significant effect of prior
experience was found.

0

1

2

3

4

5

6

7

8

0 200 400 600 800

Latency (ms)

M
ea

n
er

ro
rs

 p
er

 5
0

tri
al

s

No Decorator
Halo

Figure 9. Mean error rates at all latency amounts.

The latency study shows that even with a simple (and
imperfectly-estimated) future state decorator, coordination
can be significantly improved.

DISCUSSION
Our two experiments provide specific examples of where
the addition of delay decorators to an interface helps users
cope with the effects of delay. More generally, we now
have multiple pieces of evidence to suggest that the overall
approach of revealing the presence of delay in the interface
can be effective. In the next paragraphs, we step back and
consider this evidence with respect to three issues: why the
decorators worked, whether they will be successful in real-
world tasks, and the potential problem of distraction.

Why the decorators worked
Both of the decorators in our studies worked because they
provided answers to questions that were important to the
task. For the prediction study, the fading cursor answered
the question “has the telepointer really stopped?” For the
coordination study, the halo answered the question “is the
other person taking a block?” Although these are very
simple questions, they cannot be answered in a standard
collaborative environment (unless the delay is negligible).

It is important to note, however, that the decorators are not
over-fitted to these tasks – they simply indicate a delay
value, which can be the answer to other questions as well,
in other situations. For example, these decorators can also
help people disambiguate deictic references in situations
where the voice channel is less delayed: the fading cursor
by indicating whether the object in front of the cursor is the
real referent, and the halo decorator by constraining the
number of objects that the speaker could currently be
pointing at.

Generalising the results
There are two factors that govern the degree to which these
results will generalize to real-world collaborative situations:
the type of task being performed, and the temporal
granularity of the interaction.
First, the tasks used in our studies were not realistic group
activities. However, they were constructed from real task
components: predicting another person’s movement, and
coordinating access to a shared object are elements of
group work that appear in many different activities. They
are evident in any situation where people undertake real-
time collaboration, where the environment contains shared
artifacts, and where people are represented by
embodiments. Therefore these decorators will have an
effect whenever the task component occurs. In cases where
these task components are frequent, we expect the
decorators to make a substantial difference to the overall
activity.
The second factor is the granularity of interaction. It is clear
that if the ‘turns’ that make up an interactive task happen on
a time scale that is much larger than the amount of delay,
then the delay is unlikely to cause a problem for that
interaction. For example, instant messaging happens (with
some exceptions) on a timescale of a few seconds for each
turn – therefore, delays of significantly less than that
amount will not typically cause a problem, and would not
require delay decorators. This essentially states that delay-
induced phenomena should be defined in terms of the user’s
perception of them: if no phenomena are apparent to the
users, then there is no need to reveal the delays that are
present. The typical delays present on the Internet,
therefore, suggest that delay decorators are applicable
primarily to closely-coupled real-time work, such as games,
design sessions, code reviews, or discussing shared data.

The potential for distraction
There are of course some potential drawbacks to using
decorators, including the additional computation and
rendering that they require, the difficulty of obtaining
information about delay from the system infrastructure, and
the potential for distraction, which is the focus of this
discussion. Decorators add additional visual information to
the collaborative environment, and this may distract or
annoy participants. While this was not the case in our
experiments where the decorators were always useful to the

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

508

task, distraction could become more of a problem when
users are engaged in real-world tasks or are interacting with
many more objects. Ultimately, it is designers who will
have to determine the appropriate trade-off between the
potential value and distraction of decorators. However, we
do offer a few suggestions as to how to approach this
decision. First, it may be important to decorate only
selected objects. One approach is to decorate those objects
upon which the user is focused or with which they are likely
to interact. This might exploit fish-eye techniques [24],
proximity or other expressions of focus or interest [7], or
might build on predictive-locking techniques where system
locks are allocated on the basis of predicted user
interactions [21]. A second approach might be to introduce
decorators when there is a significant change in delay
conditions. Previous experiments that did not involve
decorators revealed that users could adapt to delay
providing that they were aware of its presence and
magnitude [5]. It may be that users who are familiar with
the current level of delay won’t require decorators, but that
a change in conditions will require an explicit decoration
until the user has adapted or conditions have returned to
their usual state. Alternatively, decorator-like techniques
may be used outside the primary interaction space to
support a more peripheral or occasional awareness of
general delay characteristics.

FUTURE WORK: OTHER FAMILIES OF
DECORATORS
So far we have introduced and tested two families of delay
decorators. We plan to continue studying these families,
adding our existing decorators to realistic collaborative
systems, and implementing new designs. However, there
are other delay-related phenomena that might also usefully
be exposed to users through further families of decorators.
Two that we plan to investigate in the future are the double
feedback and causality preservation families of decorators
which are intended to help users cope with the effects of
delay on underlying system consistency mechanisms.

Double feedback decorators
Many distributed systems adopt an approach to consistency
where each user accesses a local replica copy of an object
while the true state of the object is maintained by a remote
master copy. Building on the principle of double level
feedback [3], we introduce two decorators to help users
understand the relationships between master and replica
copies, depending on the underlying concurrency control
mechanism in use.
Last true state decorators are designed for systems with
optimistic concurrency control. These systems provide
immediate local feedback to the user based on the state of
their local replica. However, the true state of the object
represented by the master will lag behind this, and may
even ultimately conflict with it (e.g., if another user is
already updating the object). A last true state decorator
enhances the existing local view of the replica with some

further information about the last confirmed state of the
master. This is comparable to the clone objects used with
the CIAO system’s optimistic concurrency control
mechanism [26]. A last true state decorator might take the
form of a ghostly representation of the master object that is
connected to the local replica’s representation by a rubber
band. As the object is manipulated, the user sees a solid
representation move immediately, followed by its ghostly
shadow sometime later as the master is updated.
Instant feedback decorators are designed for systems with
conservative consistency policies. These already show the
last agreed representation according to the master.
However, interaction with this may be subject to a visible
lag which may potentially confuse the user (have they
managed to grab the object or not?). This decorator
enhances the existing representation with an additional
portrayal of the immediate local action (e.g., as a ghostlike
object that this time precedes the true representation and is
connected to it).

Causality preservation decorators
Causality preservation decorators are concerned with the
effects of delays on the apparent causality of actions. This is
important when causally related events may be seen in the
wrong order or with an increased separation in time.
Explicit event decorators emphasizes that a particular
event has happened that may otherwise have been missed.
Systems that employ optimistic concurrency control
sometimes apply corrections to represented positions as
conflicts become apparent and are resolved, with the result
that users may never see key events such as collisions. An
explicit event decorator generates a new object to indicate
that a key event has happened in case it was missed.
Correction decorators take this idea a step further by
explicitly showing corrections. For example, they might
show the corrected path of an object alongside the original
path so that the user can understand the correction that has
been applied.

CONCLUSIONS
We have argued for an approach of revealing the
characteristics of delay to users of collaborative
applications in order to support their own natural coping
strategies. This is achieved though the introduction of delay
decorators – interface objects that visually show the
presence, magnitude and even consequences of delay. We
have described two experiments to assess the effectiveness
of different kinds of delay decorator. In the first, a fading
cursor trail (a jitter decorator) was used to convey the
nature of jitter in a task in which users had to predict the
stopping point of a second cursor. The presence of the
decorator enabled them to make more accurate predictions.
In the second, a halo around a cursor (a future state
decorator) was used to help the user coordinate the grasping
of objects with others. Again, the presence of the decorator
led to a significant reduction in errors.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

509

We conclude that revealing delays to users is one way in
which groupware can benefit from accepting and working
with the reality of distributed systems, rather than trying to
maintain the illusion of co-present interaction. The key
issue that must be addressed when applying this work to
real collaborative environments is that the decorators be
chosen with appropriate consideration of the task, the
network conditions, and the potential for distraction.

REFERENCES
1. Bolot, J-C, Fosse-Parisis, S., Towsley, D. (1999)

‘Adaptive FEC-Based error control for Internet
Telephony’, Proc. Infocom '99, New York, NY.

2. Campbell, A. and Coulson, G. (1997) ‘QOS Adaptive
Transports: Delivering Scalable Media to the Desk
Top’, IEEE Network.

3. Dix, A. (1994) ‘Que Sera Sera – The Problem of the
Future Perfect in Open and Cooperative Systems’, Proc.
HCI’94, 397-408, Cambridge University Press.

4. Dyck, J., and Gutwin, C. (2002) ‘Improving Groupware
Performance in Lossy Networks with Adaptive Forward
Error Correction’, Technical Report HCI-TR-2002-01

5. Fraser, M., Glover, T., Vaghi, I., Benford, S.,
Greenhalgh, C., Hindmarsh, J. and Heath, C. (2000)
‘Revealing the Reality of Collaborative Virtual Reality’,
Proc. CVE 2000, 29-37, ACM.

6. Greenberg, S., and Marwood, D. (1994) ‘Real Time
Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface’, Proc.
CSCW’94, 207-217, ACM.

7. Greenhalgh, C, Benford, S. and Reynard, G (1999) ‘A
QoS Architecture for Collaborative Virtual
Environments’, Proc. Multimedia’99, 121-130, ACM.

8. Greenhalgh, C., Purbrick, J., Benford, S., Craven, M.,
Drozd, A. and Taylor, I. (2000). ‘Temporal links:
recording and replaying virtual environments’, Proc.
Multimedia 2000, 30-37, ACM.

9. Gutwin, C. (2001) ‘Effects of Network Delay on Group
Work in Shared Workspaces’, Proc. ECSCW 2001

10. Gutwin, C., and Penner, R. (2002) ‘Improving
Interpretation of Remote Gestures with Telepointer
Traces’, Proc. CSCW 2002

11. Hindmarsh, J., Fraser, M., Heath, C., Benford, S. and
Greenhalgh, C. (2000) ‘Object-Focused Interaction in
Collaborative Virtual Environments’, in ACM ToCHI,
7(4), 477-509, ACM.

12. Hsu, C-Y., Ortega, A. and Khanshari, M. (1997) ‘Rate
control for robust video transmission over wireless
channels’, Visual Communications and Image
Processing ‘97, 3024(120), SPIE.

13. Kameda, H., Li, J., Kim, C., Zhang, Y. (1997) Optimal
Load Balancing in Distributed Computer Systems,
Springer-Verlag London Ltd, 1997, Pages 212-223.

14. Karlsson, G. (1996) ‘Asynchronous Transfer of Video’,
IEEE Communications, August 1996, pp.118-126.

15. Liang, Y., Steinbach, E., and Girod, B. (2001) ‘Multi-
stream Voice Transmission over the Internet Using Path
Diversity’, Proc. ACM Multimedia 2001.

16. Litiu, R., and Prakash, A. (2000) ‘Developing Adaptive
Groupware Applications Using a Mobile Component
Framework’, Proc. CSCW 2000.

17. Park, K. and Kenyon, R. (1999) ‘Effects of Network
Characteristics on Human Performance in the
Collaborative Virtual Environment’, Proc. of IEEE
Virtual Reality '99, 104-111, IEEE.

18. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.
(2001) ‘ALMI: An Application Level Multicast
Infrastructure’, Proc. USITS '01.

19. Perkins, C., Hodson, O., and Hardman, V. (1998) ‘A
Survey of Packet Loss Recovery Techniques for
Streaming Audio’, IEEE Network, Sept/Oct 1998.

20. Phillips, W.G. (1999). ‘Architectures for Synchronous
Groupware’, Technical Report 1999-425. Department
of Computing and Information Science, Queen's
University, Kingston, Ontario, Canada.

21. Roberts, D., Sharkey, P and Sandoz, P, A Real-time
Predictive Architecture for Distributed Virtual Reality,
Proc 1st ACM SIGGRAPH Workshop on Simulation &
Interaction in Virtual Environments, Des Moines, Iowa,
179-288, July 1995, ACM Press.

22. Rodden, T and Blair, G. (1991) ‘CSCW and Distributed
Systems: The Problem of Control’, Proc. ECSCW’91,
49-64, Kluwer.

23. Ruhleder, K. and Jordan, B. (2001) ‘Co-Constructing
Non-Mutual Realities: Delay-Generated Trouble in
Distributed Interaction’, Journal of CSCW, 10(1), 113-
138, Kluwer.

24. Sarkar, M., and Brown, M. (1992) ‘Graphical Fisheye
Views of Graphs’, Proc. CHI 1992, 83-91, ACM

25. Schulzrinne, A., Casner, S. (1993) ‘RTP: A Transport
Protocol for REAL-Time Applications’, Internet
Engineering Task Force, Internet Draft.

26. Un-Jxe Sung, Jae-Heon Yang & Kwang-Yun Wohn,
‘Concurrency Control in CIAO’, Proc 1999 IEEE
Virtual Reality Conference, VR ’99, 22-28, 13-17
March 1999, Houston, Texas, USA, IEEE.F

27. Vaghi, I., Greenhalgh, C., and Benford, S. (1999)
‘Coping with Inconsistency due to Network Delays in
Collaborative Virtual Environments’, Proc. VRST’99,
42-49, ACM.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

510

