
Predictive Human Performance Modeling Made Easy
Bonnie E. John

HCI Institute
Carnegie Mellon Univ.
Pittsburgh, PA 15213

bej@cs.cmu.edu

Konstantine Prevas
HCI Institute

Carnegie Mellon Univ.
Pittsburgh, PA 15213

gusp@cmu.edu

Dario D. Salvucci
Computer Science
Drexel University

Philadelphia, PA 19104
salvucci@cs.drexel.edu

Ken Koedinger
HCI Institute

Carnegie Mellon Univ.
Pittsburgh, PA 15213
koedinger@cmu.edu

ABSTRACT
Although engineering models of user behavior have
enjoyed a rich history in HCI, they have yet to have a
widespread impact due to the complexities of the modeling
process. In this paper we describe a development system in
which designers generate predictive cognitive models of
user behavior simply by demonstrating tasks on HTML
mock-ups of new interfaces. Keystroke-Level Models are
produced automatically using new rules for placing mental
operators, then implemented in the ACT-R cognitive
architecture. They interact with the mock-up through
integrated perceptual and motor modules, generating
behavior that is automatically quantified and easily
examined. Using a query-entry user interface as an example
[19], we demonstrate that this new system enables more
rapid development of predictive models, with more accurate
results, than previously published models of these tasks.

Author Keywords
Cognitive modeling, GOMS, KLM.

ACM Classification Keywords
H.1.2. Human information processing. H5.m. Information
interfaces and presentation (e.g., HCI): Miscellaneous.

INTRODUCTION
Predictive human performance modeling has one of the
longest research histories in HCI. Starting with Card,
Moran, and Newell in the 1980s [6,7], the prediction of
skilled performance time has enjoyed a constant stream of
validation and expansion into many areas of user interaction
with computers. Over one hundred research papers have
been published about GOMS and the Keystroke-Level
Model (KLM) (see the GOMS bibliography,
http://www.gomsmodel.org/gomsbib.html). Applications in
the real world have been reported (e.g., [9,14]). Many
general HCI textbooks contain summaries of and references
to GOMS and KLM (e.g., [8,20,21,23]). Given its validity
and predictive value, it is surprising that modeling has not

become widespread as a tool for design in the UI
community. Our belief is that cost of learning and
constructing correct models, even ones as simple as the
KLM, is perceived to be too high to justify the benefits of
estimating skilled performance times [12]. This paper
introduces a suite of new tools that allow a UI designer to
mock up an interface as an HTML storyboard, demonstrate
a task on that storyboard, and automatically produce a
consistent, correct KLM of that task that runs in the ACT-R
cognitive architecture [1] to produce predictions of skilled
performance time.

Other modeling tools have been proposed in the past. For
example, Baumeister, et. al. [2] reviewed three GOMS
tools: QGOMS [3], CAT-HCI [24], and NGOMSL [16].
One problem with these tools for HCI design is that none
can be easily hooked up to a mock-up of the system,1 so if a
change is made to the design, the analyst must hunt down
the effects of that change in the model by hand. This makes
the exploration of alternative design solutions prohibitively
effortful. Byrne et. al. [5] integrated GOMS into a model-
based interface design environment, but that paradigm of
interface construction has not become common practice.
Hudson et. al. [10] built a tool, CRITIQUE, that
automatically produced KLM models from demonstration
with an interface mock-up implemented in subArctic [11].
However, subArctic, a research tool that is not in common
use, requires UI designers to learn another programming
language.

Our experience with these, and other, cognitive modeling
tools has led us to several principles for designing a useful
tool for UI designers: (1) exploit tools already in
widespread use by the UI design and cognitive modeling
communities, (2) connect interface mock-ups to cognitive
models so changes in the mock-ups are automatically
reflected in the models’ predictions, (3) avoid the need for
learning new programming languages by using WYSIWYG
drag-and-drop to construct mock-ups and demonstration to
construct models.

1 GLEAN3 has the capability of connecting to a system or mock-
up implemented in C++. But this connection requires extensive
programming experience, and we do not consider it “easy” for UI
designers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

455

TOOLS FOR EASY PREDICTIVE MODELING
Given our design principles, we have collected a suite of
tools that act in concert to produce more accurate KLMs
more quickly than ever before. In this section, we introduce
the tools and how they reflect our design principles. We
then detail their operation. In the next section, we
demonstrate their use on a previously published task.

UI designers often use HTML to mock up their interfaces
for presentation to others on the development team,
management, or clients, making HTML a reasonable choice
for constructing mock-ups. We chose to use Macromedia
Dreamweaver as the tool to instrument and/or build mock-
ups because it is WYSIWYG (principle 3), familiar to UI
designers (or so similar to other commercially-available
tools that its selection satisfies principle 1), and easily
extensible, so customizing it to our mock-up and modeling
use is possible for an academic research group.

ACT-R is a computational cognitive architecture widely
used in the cognitive modeling community to simulate
human behavior and performance [1]. ACT-R 5.0, which is
publicly available on the ACT-R web site (http://act-
r.psy.cmu.edu/), incorporates a set of perceptual-motor
modules that allow models to interact with external
simulation environments — for instance, seeing objects on-
screen, pressing buttons, or typing keys [4]. ACT-R’s
relationship to the KLM modeling framework, so familiar
to and validated in the HCI community, has been recently
explored with the ACT-Simple compiler for ACT-R [22].
At this writing, mental operators, (M in KLM, think in
ACT-Simple) compile into ACT-R productions that simply
take time in ACT-R’s cognitive processor corresponding to
the duration of KLM’s M operators. They do not
manipulate information, decompose into more atomic
operations (e.g., memory retrieval), or learn. Since KLM
models only skilled performance, it is not necessary to use
the full capability of ACT-R’s cognitive theory of problem
solving or learning to produce accurate predictions.
However, ACT-Simple commands such as press-key and
look-at compile into ACT-R production rules that do make
use of ACT-R mechanisms. The behavior resulting from
these rules reflects ACT-R’s intricate interplay between
perception, cognition, and motor operations and inherits
ACT-R’s validity in this regard. For example, ACT-R’s
motor processor produces horizontal movements obeying
Fitts’s Law, but also incorporates a theory of preparation
separate from execution so repeated presses of the same
button (which need no new preparation) are faster than the
first press. This combination of capability, availability, and
validity makes ACT-R and ACT-Simple good choices for
the modeling engine for this endeavor, satisfying our
principles 1 and 2.

The Netscape web browser allows external systems to
access the objects and their layout on the pages it displays
and operate those widgets through LiveConnect. Thus, it
can be connected to ACT-R so that changes in the mock-up

can be automatically reflected in the behavior of the model,
tisfying principle 2.

nally, we have added a special software application called
e Behavior Recorder [17] which can observe a UI
signer’s demonstration of a mock-up in Netscape,
nerate the corresponding ACT-Simple commands, and
us produce the resulting ACT-R code automatically. The
havior Recorder also mediates between ACT-R and

etscape when the ACT-R model operates the mock-up in
ulation.

eamweaver Extensions and HTML Mock-ups
ere are two ways to produce an instrumented HTML

ock-up using our extensions to Dreamweaver. First, a
stomized tool palette, labeled Recording, provides
strumented widgets that can be placed on a page (see
gure 1). Second, any previously constructed webpage can
 instrumented through a simple procedure.

e leftmost icon in Figure 1, BR, represents a header that
ust be placed at the top of each page in the mock-up,
ether it was created with our tool palette or instrumented

ter construction. This header contains Javascript that
ows the pages to communicate a designer’s actions to the
havior Recorder as he or she demonstrates the use of the

ock-up in Netscape. This header also contains an
bedded Java applet that listens for messages from the

Customized tool
palette of
instrumented widgets
can be dragged-and-
dropped to create an
HTML mock-up

Figure 1. Customized tool palette in Dreamweaver
provides widgets from which to create an

instrumented HTML mock-up.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

4

sa

Fi
th
de
ge
th
Be
N
sim

Dr
Th
m
cu
in
Fi
be

Th
m
wh
af
all
Be
m
em

Behavior Recorder, allowing actions produced by ACT-R
to be communicated to the mock-up. All of this
communication is enabled simply by clicking on the BR

 Volume 6, Number 1 56

icon which places the header at the beginning of an HTML
file; a UI designer need not write Javascript or Java applets.

An HTML mock-up can be constructed using the widgets
we provide in the Recording tool palette: buttons, check
boxes, text fields, pull-down lists, links, etc. If a mock-up
requires a more custom interface, the designer can insert an
image of the design and populate it with hotspots that link
to other pages. This technique allows an infinite variety of
designs to be mocked up using HTML.

Several special widgets are currently included in the
Recording palette to allow UI designers to mock up a wide
variety of interfaces. The rollover image mocks up an
interface that changes based on mouse movement rather
than on mouse-click. For example, it can be used to mock
up a CAD system that changes the cursor when the user
moves vertically or horizontally. The menu widgets allow
the designer to mock up pull-down menus and cascading
menus. The Audio Input widget (the microphone icon in the
rightmost portion of the Recording palette) is a specialized
text field; text entered into this field emulates voice input to
the mocked-up system. That is, when a UI designer types
text into this field in the mock-up, it is a stand-in for a user
using voice input to the system, and it is modeled by ACT-
R’s speech module. Likewise, the Audio Output widget (the
speaker icon) is a text field where speech output from the
mocked up system appears; when the mock-up places text
in this field, it is a stand-in for the system speaking to the
user, and it is modeled using ACT-R’s auditory module.

As an alternative to creating a mock-up with our tool
palette, an existing webpage can be instrumented to work
with the Behavior Recorder. To do this, the user can open
the page in Dreamweaver, click on the BR tool on the
Recording palette to insert the necessary header, then select
the Instrument All Widgets item in the Command menu.
Thus, HTML mock-ups constructed for other purposes need
not be redone to allow modeling.

Modeling by Demonstration with the Behavior Recorder
Once the instrumented web pages are created in
Dreamweaver, tasks can be demonstrated on these pages by
opening the Behavior Recorder, opening the first HTML
page in Netscape, and demonstrating the task with mouse
movement, clicks, and typing. The web pages use HTML
event handlers to send messages to the Behavior Recorder
via the LiveConnect feature supported by Netscape.

The Behavior Recorder creates a state-transition diagram,
where the state of the webpage is a node and the
demonstrated actions are the transitions between nodes.2
Once a correct procedure for a task is demonstrated, the
designer uses the Export item in the File menu to create a

2 The Behavior Recorder can be used to record alternative correct
procedures for a task and also erroneous actions, to create a
cognitive tutor for this task, but that functionality is beyond the
scope of this paper. See [17] for details.

file containing ACT-Simple code. The designer has the
option of declaring that the mock-up is of a computer-based
system where mouse pointing and clicking is a valid
interaction technique, or of a physical system where mouse
operations are a stand-in for actual physical operations on
real buttons (e.g., the HTML represents a cell phone, flight
management system, or automobile navigation system). The
Export function creates appropriate ACT-Simple code
given the choice of this option, e.g., it includes mouse
clicks if the mock-up is of a computer-based system, but
does not include them for a mock-up of a physical device or
touch-screen system.

In addition to producing ACT-Simple code of the physical
operators corresponding to the common KLM operators
(K=keypress or mouse-click, 1/2K=mouse button press or
release, P=point with a mouse, H=homing between the
keyboard and mouse), the Behavior Recorder’s Export
function also automatically places KLM mental operators
(M). As the rules for placing Ms are the main contribution
of this work, we describe them fully in a separate section,
below.

Translating ACT-Simple Code into ACT-R
The KLM operators generated above map almost one-to-
one to a sequence of commands in the ACT-Simple
framework [22]. For instance, K maps to the press-key
command, H to the move-hand command, P to move-mouse
command, etc. The one exception arises for the M mental
operator. In the original definition of M in Card, Moran,
and Newell [6,7], the mental operator was an approximation
to the amalgam of a variety of unobservable processes,
including remembering commands and arguments, visually
locating elements on a page or screen, comparing elements,
etc. However, the ACT-Simple operator think is intended
only to represent cognitive processes, while there is a
separate operator look-at for shifting visual attention to a
new object. Look-at is also required to locate the spatial
location of objects so that the motor modules can move to
these locations. Card, Moran and Newell estimate their M
to be 1350 ms. Since ACT-Simple’s look-at operator takes
approximately 150 ms when run in ACT-R, and most Ms
logically include a look-at to an object in a GUI, we set the
time for a think operator to 1200 ms.

After mapping the KLM operators to a sequence of ACT-
Simple commands, the ACT-Simple compiler translates this
sequence into ACT-R production rules. Like any set of
ACT-R production rules, the final model has the capability
of interacting with an external environment through its
perceptual and motor modules [4]. In this way, the final
model can interact with the interface mock-up through the
Behavior Recorder, accessing information from the mock-
up through visual and aural attention, and delivering
information to the mock-up through simulated voice, hand
movements, and key and button presses.

To bring the performance of the resulting ACT-R model
closer to the parameters of KLM, we made one change to

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

457

the ACT-Simple compiler. Salvucci and Lee’s compiler
[22] had totally serialized the motor commands, making the
preparation of the next motor movement wait for the
completion of the previous motor movement. However, this
produced mouse-click times twice as long as CMN
estimated. We changed the ACT-Simple compiler to
produce click productions that could prepare the click
movement during the preceding mouse movement. This is a
legal action in hand-generated ACT-R code and in line with
CMN’s notion of fully anticipated, as well as producing
click times more in line with the 200 ms given by CMN.

One bug in ACT-R’s motor module was also uncovered in
this endeavor. The times for homing between the mouse
and the keyboard in ACT-R were about 800 ms, twice the
time observed by CMN. In consultation with Mike Byrne,
we discovered that the homing time was calculated using
Fitts’s Law, but that the size of the mouse and the home
row had been set to the size of a single key. When more
realistic sizes were entered, the homing time reduced to
about 600 msec. We are still investigating the disparity
between CMN’s data and ACT-R’s prediction.

RULES FOR PLACING MENTAL OPERATORS
As mentioned above, the rules for placing Ms are an
interpretation of the rules that Card, Moran, and Newell
(CMN) proposed and validated in the early 1980s [6,7].
Rather than explicitly following CMN’s procedure by
adding Ms before most physical operators and then
removing many of them, the Behavior Recorder’s Export
function simply inserts Ms wherever they would be inserted
by, and not subsequently removed by, CMN’s rules. Since
the Behavior Recorder records demonstrated actions at the
widget level, it is able to make inferences about mental
operators that would not be possible by examining the
individual physical operators alone. Similar inferences were
used to place mental operators in CRITIQUE [10].

Consider mouse-operated widgets like buttons, check
boxes, radio buttons, and links. The user points to the
widget and clicks on it, which generates physical operators
P and K. The decision to place an M before the PK is
determined by whether the object pointed to is a command
or an argument, a distinction made by CMN. In most
modern GUIs, these widgets are commands, so the
Behavior Recorder puts an M before the PK. CMN’s Rule 0
puts an M between the P and the K, but the M is removed
by Rule 1 because it is fully anticipated in the P; the
Behavior Recorder therefore does not insert this second M
between the P and K. If the right hand is on the keyboard
before this action, the Behavior Recorder also inserts the
homing operator, exporting a total sequence of HMPK.

For menus, Lane et. al. [18] showed that the Ms placed by
CMN’s rules between the actions to operate hierarchical
menus were not evident in empirical data. Evidently, skilled
use of hierarchical menus are a cognitive unit, and CMN’s
Rule 2 applies to remove them. We apply this result to
automatically place only a single M at the beginning of the

series of PKs that select an item in a pull-down menu or
cascading menu widget.

In some cases, successive mouse clicks occur without Ps
preceding them. Either the action is a double-click on a
widget, or a widget has appeared underneath the mouse
cursor as the result of a screen change. The Export function
examines the previous action to determine whether an M
should precede the click. If the widget is the same for both
clicks, the action is a double-click and no M is inserted as
the double-click is a cognitive unit and CMN’s Rule 2
would have applied. If the widget is different for the second
click, we assume that the second action cannot be fully
anticipated and an M is inserted before the click. Although
not yet implemented, a similar procedure could be used to
implement CMN’s Rule 3 that removes Ms between
redundant terminators. Thus, if two successive widgets
were named “OK”, “Done”, or another terminating
command, the Behavior Recorder could decide not to insert
an M between the clicks.

For actions on a text field, we assume that the mouse action
that sets the focus in the text field is the equivalent of a
command to change the contents of that field; therefore, an
M is placed before that action. If the keyboard entry
involves keys on the right hand, the Behavior Recorder
inserts a homing operator (H) before the first right-hand
keypress to bring the hand from the mouse to the keyboard.
In most modern GUI interfaces, text entry actions are
specifying arguments, not commands, so CMN’s rules
place no Ms before or into the typing, but do place an M
before the terminator of that typing. Thus, the Behavior
Recorder places an M before the action that changes the
focus out of the text field.

The M placement rules described above assume that all
mouse actions are commands and all text entry actions are
arguments, which we believe to be generally true for GUI-
based tasks. However, in keyboard-based tasks like the
Bravo editing tasks studied by Card, Moran and Newell [7],
the opposite is true. For modeling keyboard-based tasks, we
have provided an option in the Behavior Recorder’s Export
dialog box that will switch these rules, so that Ms are
placed before text entry (corresponding to keyboard
commands) but not before mouse actions (which select
arguments).

EXAMPLE USE OF OUR TOOLS
As an example of using these tools, we use the tasks and
interfaces examined by Nielsen and Phillips [19], and
subsequently modeled by John [12], and Salvucci and Lee
[22]. The tasks were to look up one telephone number (1-
query) or two telephone numbers (2-queries) in a database.
The interfaces were called Design A – Dialog box and
Design B – Pop-up menu.

We quote from Nielsen and Phillips [19] for the description
of the tasks and interfaces, as follows.

“Design A: Dialog Box

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

458

 “To use this interface, the user first pulls down a menu from
the menubar at the top of the screen. This menu contains the
names of the databases and the user positions the mouse
cursor over the name of the relevant database in this list. The
user pushes down the mouse button and drags the mouse to the
right to get a hierarchical submenu with the legal queries for
the chosen database. This submenu contains an average of
four alternatives, and the user moves the mouse until it
highlights the option “query on telephone number.” The user
then releases the mouse button.
“This causes a standard sized dialog box to appear in the
middle of the screen as shown in Figure 1. The large field at
the top is initially empty. This field will eventually list the
telephone numbers to be submitted to the database as a query.
The dialog box does not overlap the window with the list of
telephone numbers. The user clicks in the input field (the one-
line field below the prompt “Inquiry on telephone number”)
and types the telephone number. The user clicks on the “Add”
button to add the number to the query. The figure shows the
state of the dialog box after the user’s click on “Add.” If the
query is for a single telephone number, the user then clicks on
the “OK” button to submit the query.
“If the query is for two telephone numbers, the user instead
clicks in the input field and selects the previously typed
telephone number by dragging the mouse cursor over the
existing text in the input field. The user then types in the
second number (thus replacing the previous selection in the
input field) and clicks on the “Add” button. Finally, the user
clicks on the “OK button to submit both queries at once. In a
similar manner, the user can issue queries for larger number of
telephone numbers in a single dialogue.
“Design B: Pop-Up Menu
“As previously mentioned, it can be assumed that the
telephone number(s) in question is/are already on the screen.
“To query for one number, the user moves the mouse cursor to
the telephone number on the screen and presses down the
mouse button. This causes a pop-up menu to appear over the
number with one element for each database for which queries
can be performed with telephone numbers as keys.
“The user moves the mouse until the desired database is
highlighted in the pop-up menu. The user then lets go of the
mouse button. (The system knows which number to search on
because the user pointed to it when calling up the menu).
“To query for two numbers, the user repeats this entire
interaction sequence for the second number. The second
number was normally about five lines below the first number
in the window. It is possible to submit the second query before
seeing the result of the first one, and the result of the first
query can be assumed to appear such that it does not overlap
the telephone number needed for the second query. [19, pp.
215-216.]

We created an HTML mock-up of these two interfaces
using our Dreamweaver extensions. The cascading menus
were mocked up using our menu widgets. The buttons in
the dialog box were HTML buttons arranged in a table. The
fields where telephone numbers appeared in the dialog box,
both typed by the user and displayed by the system, were
HTML text fields. (Figure 1). We asked two people to
create models by demonstrating both tasks on each interface
using Netscape and the Behavior Recorder to export to

ACT-Simple. We then asked them to run the automatically
generated ACT-Simple models in ACT-R to produce
execution time predictions for all four tasks (see Figure 2).
One of our users was an author of this paper, an expert in
both modeling and use of our tools. The other user was an
expert computer user, but had no experience with cognitive
modeling in general, or these tools in particular.

Table 1 compares the times observed by Nielsen and
Phillips [19] to the predictions in previous publications and
to the predictions of our two users. Where available, the
time for the users to model the tasks appears in the last
column. The results of modeling using our tools are in bold,
both for a novice modeler and an expert modeler. Our
novice modeler had over a decade of experience in the
computer industry in the help center of major applications
companies, in quality assurance, and as a UI and web
developer in dot.com start-ups and as an independent
consultant. She had no prior knowledge of cognitive
modeling. Although a sophisticated computer user, she was
the least trained in cognitive modeling of all the novice
modelers reported in the literature (Nielsen and Phillips
[19] used undergraduates who had received lectures on
GOMS and had done one homework assignment prior to
this exercise; Salvucci and Lee’s [22] novice was an
undergraduate who had a 10-week course in cognitive
modeling prior to this exercise).

Table 1 shows that our models are more accurate than
previously published models. The novice model is exactly
the same as the expert model, because the model is
produced automatically from demonstration. As long as
both parties understand the task in the same way and
demonstrate it correctly, the accuracy of the models is not
affected by the expertise of the modeler.

The models are also more accurate, on average, than
previous expert models, especially those reported by John
[12]. That model used Card, Moran and Newell’s KLM
procedure and rules for placing Ms [6,7], which are also the
basis for the automatic placement of Ms by the Behavior
Recorder. In fact, the models produced by the Behavior
Recorder map exactly to the expert KLMs reported in [12].
The new models are more accurate numerically because
they are using ACT-R’s more powerful modeling engine,
with its motor and perceptual modules, interacting with the
HTML mock-up to produce performance time estimates.
For example, John [12] used the 1.1 second estimate for the
Point parameter, whereas ACT-R’s motor module uses
Fitts’s Law to calculate pointing times from a knowledge of
where the cursor was left by the last action and the distance
to and size of the next target in the HTML storyboard.

The automatically generated models are as good as or better
than the models generated by hand, except for Design B - 1
number. This model must be examined together with the
models for the 2-number task on the same interface,
because the type of interface greatly influences the
modeling results. For both the expert and novice modelers

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

459

Figure 2. The task is demonstrated in Netscape on the HTML mockup (left), exported from the Behavior Recorder (center) into
ACT-Simple, then loaded into ACT-R and run in a Lisp environment (right).

Table 1. Comparison of user data to predictive models of execution time. All modelers used Card, Moran and Newell’s KLM
rules as a guide for placing Ms either by hand or automatically, except Salvucci and Lee (S&L03), where the modelers were
told only that “It's common practice to put a mental operator, i.e. (think), before a logical grouping of actions." Furthermore,
the Time to Model includes different aspects of the task for each set of modelers. None of the times include the time to make
task materials, either in a paper document or an HTML storyboard. Nielsen and Phillips estimated their time to make a paper
document of the task description to be 2 hours. Our time to make the HTML storyboard was of that order. (a) This time
includes the time to understand the task, build the models and produce numeric predictions. It does not include the several
hours of lecture on modeling and the previous homework assignment done by these modelers. (b) This time includes
constructing a text file of the models, but not the time of instruction in cognitive modeling (a 10 week course), instruction in
ACT-Simple, understanding the task, or running the models to produce numeric predictions. (c) This time includes everything:
instruction in cognitive modeling, instruction in how to use the tools, understanding the task, construction of the models, and
running the model to produce numeric predictions. (d) This time includes constructing the models but not understanding the
task or running the models to produce numeric predictions. (e) This time includes constructing the models and running them to
produce numeric predictions.

N

Task
Time
(sec)

Error
(sec)

%
Error

Task
Time
(sec)

Error
(sec)

%
Error

Task
Time
(sec)

Error
(sec)

%
Error

Task
Time
(sec)

Error
(sec)

%
Error

User data N&P 93 20 15.4 25.5 4.3 6.5
N&P 93 19 16.6 1.2 8% 22.6 -2.9 -11% 5.8 1.5 35% 11.2 4.7 72% 2.6 32% 108(a)
John 94 19 14.7 -0.7 -5% 22.6 -2.9 -11% 4.6 0.3 7% 8.7 2.2 34% 1.5 14% --
S&L 03 1 25.0 9.6 62% 41.9 16.4 64% 4.9 0.6 13% 9.4 2.9 44% 7.4 46% 44(b)
This paper 1 15.6 0.2 2% 25.6 0.1 0% 3.5 -0.8 -19% 6.2 -0.3 -5% 0.4 6% 25(c)
John 94 1 16.8 1.4 9% 27.0 1.5 6% 4.5 0.2 5% 8.6 2.1 33% 1.3 13% --
S&L 03 1 15.6 0.2 1% 24.4 -1.1 -4% 3.8 -0.5 -12% 7.2 0.7 11% 0.6 7% 28(d)
This paper 1 15.6 0.2 2% 25.6 0.1 0% 3.5 -0.8 -19% 6.2 -0.3 -5% 0.4 6% 3(e)

Design A-2numbers

(3.0 sd) (5.0 sd)

Avg
Abs
Error
(sec)

Avg
Abs
%

Error

Time
to

Model
(min)

(1.0 sd) (0.9 sd)

Design A-1number Design B-1number Design B-2numbers

Novice
Modeler

Expert
Modeler

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

460

in John [12], and the novice in Salvucci and Lee [22], the
models show the same pattern: a small overprediction for
the 1-number task and a much larger overprediction for the
2-number task, that averages to worse performance than
that of the automatically-generated models. This interaction
is dominated by pointing: two points for the 1-number task
and four points for the 2-number task. John [12] used the
generic 1.1 second estimate for P, which is far longer than
Fitts’s Law predicts for the small movements to large
targets in this interface, producing a small overprediction
for the 1-number task, but a much larger overprediction for
the 2-number task. Examining the details of the novice
models shows that there were many more Ms (or think
operators) than in the expert models, indicating that the
novices did not know the data about hierarchical menus
[18]. The average of Salvucci and Lee’s expert and the
automatically generated models is about the same, at 12%
off of the data, with Salvucci and Lee’s expert
underpredicting the 1-number task and overpredicting the
2-number task, and the automatically generated models
underpredicting both. The details of the ACT-Simple
models reveal that these models are the same, but Salvucci
and Lee’s models did not interact with a mock-up and
therefore did not have Fitts’s Law calculations. Their
movement times were uniformly longer, giving this pattern
of results. The fact that the automatically generated models
underpredict these very short pointing tasks is an indication
that more is going on in those short tasks than is being
modeled, and data at a finer grain size needs to be collected
to tell us what the differences might be.

CONCLUSIONS AND FUTURE WORK
This collection of tools that allow cognitive models to be
constructed automatically through demonstration on HTML
storyboards, and then run to produce numeric predictions,
promises to dramatically improve the accuracy of models
constructed by novices and decrease the time it takes both
novice and expert modelers to make their predictions.
However, there is still work to be done before these tools
can become commonplace in the UI design world.

Cognitive Modeling Work to be Done
CMN’s KLM parameters and rules were written more than
two decades ago [6,7], primarily for command-line
interfaces, and mapping them to modern GUI interfaces
introduces uncertainty as to whether they are still valid. Our
implementation of the parameters and rules produce
relatively good models for the tasks examined here.
However, further validation on modern interface widgets is
called for. Our tools are constructed so that M-placement
rules or mental parameters can easily be changed to
accommodate the findings of new empirical investigations.

Skilled typing is not approximated well in the current
implementation of ACT-R, and therefore our tools also
cannot approximate typing in a straightforward way. ACT-
R currently moves its finger back to the home row after
each keypress, resulting in much longer typing time than

skilled typists normally achieve. 3 A tractable fix would be
to implement a theory of typing like TYPIST [13] in the
motor module of ACT-R.

Although it is not strictly necessary for usefulness of this
process and the Keystroke-Level Models it produces,
further work understanding how the M operator (or think, in
ACT-Simple) is comprised of plausible cognitive operators
in ACT-R would benefit HCI in the long term. Such
understanding would open up the possibility of using
modeling by demonstration in the areas of learning and
problem-solving as well as skilled execution time.

Tool Usability Work to be Done
At this writing, we have research versions of these tools
running, which demonstrate the concept and the potential
value, but have known usability problems. For example,
simply having four independent systems that must be used
in concert (Dreamweaver, Netscape, the Behavior Recorder
and ACT-R running in a Lisp environment) is an
unnecessary complication. In addition some of our
procedures for mocking up widgets in HTML (e.g.,
cascading menus) are known to be cumbersome, but
creating Dreamweaver extensions that hide the difficulty
from the UI designer needs only time to build as opposed to
conceptual breakthroughs.

Tool Usefulness Work to be Done
Keystroke-level models take a set of benchmark tasks, a
particular sequence of physical operators that perform those
tasks, and produce a quantitative estimate of performance
time for skilled users on those tasks. The quantitative
estimates themselves have proved useful for many design
problems [14]. However, cognitive modeling advocates
have always argued that the process of constructing the
models was of value in addition to the quantitative results
because it made the analyst think hard about what the user
needed to know and do. This new process may be so simple
that it does not deliver value of this type. It is possible that
different ways to visualize the results of the running ACT-R
model, as opposed to the common text trace, might help
focus attention on difficult aspects of the interface design.
How examination of a computational model’s trace can
inform design is an open research question.

Finally, usability and usefulness in context must be
established. How does this tool fit with how UI designers’
work? Are our Dreamweaver tools expressive enough for
real work? When would performance estimates be valued,
assuming the cost of learning to do them, and doing them,
were dramatically reduced as this paper promises? All of
these questions are in the process of being answered.

3 To model the typing of telephone numbers in the Nielsen and
Phillips task [19], we substituted letters on the home row for some
numbers, to get the same number of movements up to the number
row and back as would be observed with skilled typists. Thus 123-
4567 became 1sd-fg6j in our demonstrations.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

461

ACKNOWLEDGMENTS
All authors were supported by grants from the Office of
Naval Research: Bonnie John under N00014-03-1-0086,
Konstantine Prevas and Ken Koedinger under N00014-03-
1-0220, and Dario Salvucci under N00014-03-1-0036.
Salvucci was also supported by Ford Motor Company. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Ford
Motor Company, the Office of Naval Research or the U. S.
Government.

REFERENCES
1. Anderson, J. R., and Lebiere, C. The Atomic

Components of Thought. Lawrence Erlbaum Associates,
Hillsdale, NJ, USA, 1998.

2. Baumeister, L., John, B. E. and Byrne, M. A
Comparison of Tools for Building GOMS Models. CHI
2000, ACM Conference on Human Factors in
Computing Systems, CHI Letters 2(1), 502-509.

3. Beard, David V., Smith, Dana K. and Denelsbeck,
Kevin M. Quick and Dirty GOMS: A Case Study of
Computed Tomography, Human-Computer Interaction
11, 2 (1996), 157-180.

4. Byrne, M. D. ACT-R/PM and menu selection: Applying
a cognitive architecture to HCI. International Journal of
Human-Computer Studies, 55 (2001), 41-84.

5. Byrne, M. D., Wood, S. D., Sukaviriya, P. N., Foley, J.
D. and Kieras, D. Automating Interface Evaluation,
Proceedings of CHI 1994, ACM Press (1994), 232-237.

6. Card, S. K., Moran, T.P. and Newell, A. The keystroke-
level model for user performance time with interactive
systems. Communications of the ACM 23, 7 (1980),
396-410.

7. Card, S. K., Moran, T.P. and Newell, A. The Psychology
of Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, NJ, USA (1983).

8. Dix, A., Finlay, J., Abowd, G., and Beale, R. Human-
Computer Interaction (2nd ed.) Prentice Hall Europe,
London, UK, 1998.

9. Gray, W. D., John, B. E., and Atwood, M. E. Project
Ernestine: A validation of GOMS for prediction and
explanation of real-world task performance. Human-
Computer Interaction, 8 (1993), 237-309.

10. Hudson, S. E., John, B. E., Knudsen, K., and Byrne, M.
D. A tool for creating predictive performance models
from user interface demonstrations. UIST'99:
Proceedings of the ACM Symposium on User Interface
Software and Technology, CHI Letters 1(1), 93-102.

11. Hudson, S., and Stasko, J. Animation Support in User
Interface Toolkits: Flexible, Robust, and Reusable
Abstractions. Proceedings of the ACM Symposium on
User Interface Software and Technology, ACM Press
(1995), 57-67.

12. John, B. E. Toward a deeper comparison of methods: A
reaction to Nielsen and Phillips and new data.
Proceedings Companion of CHI 1994, ACM Press
(1994), 285-286.

13. John, B. E. TYPIST: A Theory of Performance In
Skilled Typing. Human-Computer Interaction 11, 4
(1996), 321-355.

14. John, B. E., and Kieras, D. E. Using GOMS for user
interface design and evaluation: Which technique? ACM
Transactions on Computer-Human Interaction 3, 4
(1996), 287-319.

15. John, B., Vera, A., Matessa, M., Freed, M., and
Remington, R. Automating CPM-GOMS. CHI 2002,
ACM Conference on Human Factors in Computing
Systems, CHI Letters 4(1), 147-154.

16. Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A.
GLEAN: A Computer-Based Tool for Rapid GOMS
Model Usability Evaluation of User Interface.
Proceedings of the ACM Symposium on User Interface
Software and Technology, ACM Press (1995), 91-100

17. Koedinger, K. R., Aleven, V., and Heffernan, N.
Toward a rapid development environment for Cognitive
Tutors. Artificial Intelligence in Education: Shaping the
Future of Learning through Intelligent Technologies,
Proceedings of AI-ED 2003, IOS Press (2003), 455-457.

18. Lane, D. M., Napier, H. A., Batsell, R. R. and Naman, J.
Predicting the skilled use of hierarchical menus with the
keystroke-level model. Human-Computer Interaction 8,
2 (1993), 185-192.

19. Nielsen, J., and Phillips, V. A. Estimating the relative
usability of two interfaces: heuristic, formal, and
empirical methods compared. Proceedings of CHI 1993,
ACM Press (1993), 214-221.

20. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland,
S., and Carey, T. Human-Computer Interaction.
Addison Wesley, Wonkingham, UK, 1994.

21. Raskin, J. The Humane Interface. Addison Wesley,
Boston, MA, USA, 2000

22. Salvucci, D. D., and Lee, F. J. Simple cognitive
modeling in a complex cognitive architecture. CHI
2003, ACM Conference on Human Factors in
Computing Systems, CHI Letters 5(1), 265-272.

23. Shneiderman, B. Designing the User Interface (3rd ed.).
Addison Wesley, Reading, MA, USA, 1998.

24. Williams, K. E. Automating the cognitive task modeling
process: An extension to GOMS for HCI. Proceedings
of the Fifth International Conference on Human-
Computer Interaction Poster Sessions: Abridged
Proceedings, 3 (1993), 182.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

462

