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ABSTRACT 
We investigate pointing in true 3D environments where the 
target size varies in three spatial dimensions. We also study 
the effect of the user’s physical movement angle on pointing 
performance. Results show that target size dimension along 
the primary axis of movement has a greater impact on 
performance than the other two dimensions. Movement angle 
also significantly affects performance, and changes the 
relative impact of the three target dimensions. Building upon 
recent results in the modeling of bivariate pointing, we 
propose and validate a new model that describes pointing at 
trivariate targets. This model also accounts for movement 
angle, and outperforms previously published models.  
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Factors; Human Information Processing; H.5.2 
[Information Interfaces and Presentation]: User Interfaces 
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INTRODUCTION 
Advances in three dimensional display technology [6, 13] 
have reached the point where early models are now available 
commercially [10, 11]. In order to fully leverage the unique 
features of these displays, applications must be developed 
with appropriate user interfaces whose design is grounded in 
a sound understanding of the human’s capabilities when 
interacting in this new medium. At the most basic level, these 
interfaces must enable users to easily select and manipulate 
virtual elements in the 3D display space. While many studies 
have been conducted on selection and manipulation 
interfaces for 3D environments (e.g., [8, 20-23]), few have 
looked at developing and evaluating appropriate predictive 
theoretical models that describe the underlying human 
behavior.  

In this paper, we study and model user performance in the 
most fundamental interaction task – pointing – in a 3D 

display where the size of the target varies in three spatial 
dimensions. We review previous related work on pointing 
and Fitts’ law models in 1D and 2D; identify various factors 
– target dimensions, movement amplitude, movement angle 
and interactions between them – that could affect pointing 
performance in 3D; propose several models that could 
appropriately characterize such 3D pointing behavior; present 
the results of a controlled experiment that both investigates 
the effects of the factors identified as well as evaluates the 
proposed models; and conclude by discussing implications 
for user interface design. 

BACKGROUND 
One of the more successful quantitative models in HCI is 
Fitts’ law [7], which is used to model pointing tasks in user 
interfaces [14]. It predicts the time MT to select a target of 
width W and distance (or amplitude) A from the cursor as: 







 ++= 1log 2 W

AbaMT  

where a and b are empirically determined constants. The 
logarithmic term is the index of difficulty (ID) of the task. 
Fitts’ law as originally formulated is a one dimensional 
model, with the target width W being the only movement 
constraint. It also assumes that the direction of movement is 
collinear with this W dimension. Numerous studies have been 
conducted over the years which amply validate this model for 
1D pointing tasks (see [14] for a review). However, pointing 
tasks in most standard interfaces are typically two-
dimensional, with targets having both height and width 
constraints. While not as extensive as the literature in 
modeling 1D pointing, there has been some research studying 
the effects of varying the width and height dimensions of 2D 
targets, as well as varying the angle at which the cursor 
approaches the target [1, 5, 9, 15].  

In the first study on bivariate pointing in the HCI literature, 
MacKenzie and Buxton [15] proposed several different 
formulas for the index of difficulty for a rectangular target, 
and found two formulations which correlated highly with 
their experimental data. Their first formulation considers W 
to be the dimension of the target in the direction of 
movement (W’). This IDW’ model thus reduces the 2D task to 
a 1D task performed along a line from the start point through 
the centre of the target. Thus, directional constraints are not 
captured by this model. Their second formulation, which had 
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the highest correlation with their experimental data, is 
expressed by: 



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where W and H are the width and height of the target. In this 
case the target is treated as a two dimensional object. The 
amplitude, however, is still considered to be a one 
dimensional scalar. This IDmin model has since been used in 
follow-up work [17, 20, 22], and was also proposed 
apparently  independently by Hoffman and Sheikh [9]. 

A more recent and very thorough study conducted by Accot 
and Zhai [1] identifies various problems with the IDW’ and 
IDmin formulations. The fundamental problem with the IDW’ 
model is that it completely ignores the directional constraints. 
With the IDmin model, the directional constraint (or height) is 
considered, but not if it becomes greater than the width. 
Similarly, the width is not considered if it is greater than the 
height. Thus, this model does not account for data by, for 
example, Sheikh and Hoffman [19] that showed it is harder 
to acquire a square than a rectangle. Another problem with 
the IDmin model is that it ignores the angle of approach. 
Lastly, the IDmin model allows the width and height factors to 
be interchanged without changing the index of difficulty. In 
Accot and Zhai’s [1] study it was shown that this last 
property does not hold. Figure 1 illustrates all of these 
limitations. 

Figure 1. Limitations of IDw’ and IDmin models: all target pairs 
in this figure are considered identical by the respective ID 

formulations. (a) No difference in  IDw’ for targets of different 
heights. (b) Width has no effect on IDmin if greater than height. 
(c) Movement angle has no effect on IDmin. (d) Interchanging 

width and height has no effect on IDmin. 

To resolve these problems with existing formulations of ID, 
Accot and Zhai [1] proposed a number of properties a 
bivariate pointing model should contain, and developed and 
experimentally validated a weighted Euclidean model, which 
we dub IDWtEuc: 
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where η is empirically determined. This model considers 
(A/W, A/H) to be the “constraint vector”, and they take a 
weighted norm of this vector and consider it to be the 
“appropriate distance in a two dimensional space” [1]. As can 
be seen, it is similar to the Euclidean norm, with the addition 
of the parameter η, which allows the model to weight the 
effect of the height differently from the effect of the width. 
This IDWtEuc model is a significant improvement over the 
IDmin model in that it alleviates the problem of the larger of 

the two dimensions not being considered. However, different 
approach angles and different two-dimensional shapes are 
still not addressed by this model.  

While previous work [1, 5, 9, 15] has resulted in a good 
understanding of bivariate pointing in 2D, the same cannot be 
said for pointing to trivariate targets in 3D. The only work we 
are aware of which attempts to model trivariate pointing in 
3D is by Ware and colleagues [20, 22] who note that the 
IDmin model can be easily extended to 3D: 

( ) 
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Unfortunately, this model suffers from the same problems as 
the equivalent 2D model. In addition, this model has only 
been applied in the context of studies that were primarily 
concerned with other factors, such as lag and frame rate [20] 
and 2D vs. 3D selection [22], and has not been validated in 
an explicit experiment that manipulated the three target 
dimensions W, H, and D. Other work on pointing, selection, 
and manipulation tasks in 3D environments are similarly 
concerned with other factors such as device resistance and 
the influence of muscle groups, and not on modeling pointing 
behavior per se. We refer the reader to [23] for a review of 
this literature. 

GOALS AND DIRECTIONS OF THE CURRENT STUDY 
Our work is ultimately motivated by the desire to build a 
sound foundation of theories and empirical data that can 
guide the development of user interfaces for emerging 3D 
displays. The present work is one step in this direction, and 
our goal here is to obtain a thorough understanding of the 
factors that govern pointing at trivariate targets in 3D, and to 
develop a predictive model that accurately characterizes such 
behavior. Our work extends the prior art in three key 
directions: a new experimental hardware platform, 
manipulation of experimental parameters, and modeling.  

Experimental Hardware Platform 
Most studies on 3D manipulation to date have relied on 
stereoscopic displays, either immersive VR systems [3], or 
non-immersive fish-tank VR systems using LCD shutter 
stereo-glasses [20, 22, 23]. While these displays enable users 
to infer depth by fusing together the two different images, the 
display’s single image plane does not adequately support 
accommodation (the ability to focus the eye's lens on objects 
at different depths in the frontal field of view) (see [18] for a 
review of human stereoscopic vision). Imperfectly aligned 
stereo goggles can also confuse cues users obtain from their 
ocular muscles. Head tracking is also often used to provide 
motion parallax, but hindered by technical difficulties such as 
lag and poor accuracy. Lag can also contribute to nausea and 
dizziness [16]. Due to these limitations, previous studies of 
3D manipulation have a potentially uncontrolled confound in 
that participants’ perception of the depth dimension is poorer 
relative to their perception of the other two dimensions. 
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Unlike stereoscopic displays, volumetric displays [6] 
generate true 3D volumetric images by illuminating points in 
3D space. As such, viewing such a display is akin to viewing 
physical objects in a real 3D scene. The human viewer uses 
their natural physiological mechanisms for depth perception 
such as true motion parallax and stereopsis through eye 
convergence and accommodation, resulting in a richer 
understanding of the virtual 3D scene. In addition, these 
displays can be viewed from any direction around a 360° 
hemispherical projection, and the user does not have to wear 
hardware such as shutter glasses or head-trackers. These 
displays, however, are in their early stages of development 
and have lower resolution and refresh rates than 2D displays. 
Despite these limitations, this is a unique platform for 
studying 3D pointing, since participants have the ability to 
reliably perceive all three dimensions. We use a volumetric 
display for the present study. 

Manipulation of Experimental Parameters 
Target dimensions (W, H, D). It has been shown in bivariate 
2D pointing that H affects MT to a lesser degree than W [1]. 
We verify if this property holds for trivariate targets, and how 
the additional parameter D affects performance relative to W 
and H. 

Accot and Zhai [1] found that increasing H reduced MT only 
when it was smaller than W, but increasing W reduced MT 
regardless of H. In other words, the W-H ratio was 
significant. For trivariate targets in 3D, there are three such 
interactions which must be examined (W-H, W-D, H-D).  

Movement and approach angles. We use the following 
definition of the three primary axes: the X-axis is the left-
right axis, the Y-axis is the up-down axis, and the Z-axis is 
the forward-backward axis. For the present study, we limit 
our exploration to physical movements in the XZ plane in 3D 
space (i.e., Y=0), and explore movement angles Ө of 0° (i.e., 
along the X-axis), 90° (Z-axis), and 45° (XZ-axis). While the 
movement angle is the human user’s axis of movement, the 
approach angle is the angle between the movement vector 
(defined by Ө) and the axis parallel to the width of the target, 
as shown in Figure 2a,b. In [15], the approach angle was 
adjusted so that target width was not collinear with the user’s 
movement vector. It is quite probable that this will affect MT, 
and the IDW’ model was proposed to compensate for this. 
However, in altering the approach angle, the physical 
movement angle  Ө  was also simultaneously altered. 
Evidence that Ө affects MT has been seen in [2] and is 
partially due to differences in the muscle groups required to 
affect the different movements. 

Because both Ө and approach angle were simultaneously 
altered in [15], there was no way to positively determine 
which variable was primarily responsible for the changes in 
MT for the different conditions tested. To eliminate this 
confound, our study uses a constant approach angle of 0°. 

In a trivariate target 3D pointing task, as in 2D [2], it is likely 
that the changes in Ө will affect MT because of the different 

physical movement requirements. It is also likely that the 
changes in Ө in the XZ plane will effect the user’s perception 
of the targets due to the targets being at different distances in 
the visual field. This is likely independent of the quality of 
the 3D display, since such an effect would occur in the 
“perceptually ideal” physical 3D world as well. Thus, 
altering Ө may affect MT due to both physical and perceptual 
differences. We compensate for this possible perceptual 
difference by counterbalancing the location of targets to both 
ends of each movement vector. 

Figure 2. (a) Both targets have approach angle of 0° but 
movement angles of 0° and 45° respectively. (b) Both targets 
have approach angle 45°. (c) Stimulus used in experiment. 

Targets are constrained to XZ plane and have movement angles 
of 0°, 45°, and 90°.  W is measured along movement axis, H 

along the Y-axis, and D is perpendicular to both. 

Modeling 
We wish to develop a single model that will accurately 
capture the various parameters that define user performance 
when pointing to trivariate targets in 3D. 

Despite the deficiencies inherent in the IDmin model, for the 
sake of completeness and continuity with previous work, we 
include it as the first baseline model in our work: 
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Following [1], we extend this model to accommodate the 
possible relative effects of different target dimensions, by 
assigning weights α and β to these parameters, resulting in:  
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We compare this model to a 3D version of Accot and Zhai’s 
[1] weighted Euclidian model: 
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The problem with these weighted extensions is that, like their 
corresponding 2D versions, they do not account for possible 
differences in performance due to varying movement angles. 
To accommodate movement angles, all components should 
also be weighted by an additional parameter fW,H,D(Ө) which 
takes on different empirically determined values dependent 
on movement angle Ө. Incorporating f(Ө) into the IDWtmin 
model results in: 
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Note that the α and β parameters in IDWtmin simply get 
absorbed into the new fH(Ө) and fD(Ө) parameters in IDWtminӨ. 
Incorporating f(Ө) in a similar manner into the IDWtEuc model 
results in: 
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EXPERIMENT 

Apparatus 
We used a 3D volumetric display developed by Actuality 
Systems (www.actuality-systems.com), which generates a 
10” spherical 3D volumetric image by sweeping a semi-
transparent 2D image plane around the Y-axis (Figure 3). A 
total of 198 2D images (slices) of 768x768 pixels each are 
displayed uniformly around the Y-axis, resulting in a total of 
116 million voxels. The display’s refresh rate is 24Hz. The 
display was driven by a 2 GHz Pentium4 computer on which 
the experimental software ran. The input device used was an 
Ascension Flock-of-birds electromagnetic 6-dof tracker 
equipped with a single button. The tracker controlled a 3D 
cursor with a direct one-to-one mapping and a control-
display gain of one. The origin was defined to be the center 
of the volumetric display, with positive X-axis pointing right, 
Y pointing up, and Z pointing away from the user. Graphical 
objects were modeled in units relative to the radius (5”) of 
the display volume (1 unit = 5”). 

 
Figure 3. Volumetric display 

Participants 
Five female and seven male paid volunteers participated in 
the experiment. Participants were screened for adequate 
stereo vision using the StereoOptical RANDDOT stereopsis 
test. Participants ranged in ages from 20 to 25, were all right-
handed, and controlled the tracking device and consequently 
the cursor with their right hand.  

Procedure 
The task was reciprocal 3D target acquisition, which required 
participants to point to two targets back and forth in 

succession. The targets were rendered as wireframe cuboids, 
equidistant from the centre of the display in opposite 
directions along the given axis of movement. This effectively 
counterbalanced any differences in perception of targets in 
different parts of the display. All targets were constrained to 
the XZ plane (i.e., Y = 0). The target to be selected was 
yellow, and the other red. When participants clicked on the 
yellow target, the targets would swap colors, as an indication 
that the participant had to now move to and select the other 
target. The 3D cursor that the participant controlled with the 
handheld tracker was displayed as a crosshair with short line 
segments along the X, Y, and Z directions all intersecting at 
its origin. 

Design 
A repeated measures within-participant factorial design was 
used. The independent variables were amplitude A (0.44, 
0.88, 1.28 units), target height H, width W, depth D (all 0.04, 
0.08, 0.16, 0.32 units), and movement angle Ө (0°, 90°, 45°). 
A fully crossed design resulted in a total of 576 combinations 
of A, H, W, D, and Ө. 

We use a target-centric definition of W, H, and D as 
illustrated in Figure 2c, where H is always measured along 
the Y-axis, W is the dimension of the target along the 
direction of movement, and D is perpendicular to W and H. 

The experiment was performed in three sessions, each 
occurring on separate days. In each session, participants 
would complete trials for all 192 H,W,D,A permutations for 
one of the three movement angles. For each of the H,W,D,A 
permutations, presented in random order in the session, 
participants performed a trial set consisting of seven yellow 
target selections (i.e., six reciprocal movements between the 
two targets). Because the first selection was used to signal the 
beginning of the trial set, it required an accurate selection – 
the 3D cursor needed to be positioned inside the target. 
Subsequent selections did not enforce this accuracy, but an 
audible buzzing sound provided feedback when an error was 
made. After each trial set, the display informed participants 
of their error rate in the immediately completed set, their 
cumulative error rate for that session, and the number of trial 
sets remaining. Participants were asked to minimize their 
errors. Participants could take breaks between trial sets, but 
not within each trial set. 

Before each session participants were given two practice trial 
sets to familiarize themselves with selection for the given 
movement angle.  

Participants were randomly divided into 6 groups of 2 each. 
Assignment of movement angle to groups on each day was 
counterbalanced using a balanced latin square. Each session 
lasted approximately one hour. 

Performance Measures 
The dependent variables were movement time MT – defined 
as the time between clicks in a trial set, and error rate – 
defined as the average number of errors per trial. Errors 
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occurred when participants clicked when the cursor was 
outside the target. 

Results 
Outliers were removed based on MT and accuracy – defined 
as distance between the click and the target center. Any data 
point further than 2 standard deviations away from its 
condition’s mean (by MT, or by accuracy) was removed. 
7.6% of the data were removed as outliers. 

Movement Time Analysis 

Main effects: 

Analysis of variance showed that the independent variables 
W (F3,105 = 2527, p < .0001), H (F3,105 = 715, p < .0001), D 
(F3,105 = 1577, p < .0001), and Ө (F2,22 = 892, p < .0001) all 
had a significant main effect on MT. Of particular interest is 
the effect of Ө. Multiple means comparisons showed no 
significant difference in MT for Ө = 0° and 45°, but a 
significantly higher MT for Ө = 90°. This effect is most 
likely due to the different muscle groups utilized, as 
movement for Ө = 0° and 45° requires limited use of the 
shoulder muscles, while movement for Ө = 90° is achieved 
primarily with the shoulder. This is consistent with the 
findings of previous studies [2, 4, 12] which suggest that the 
use of smaller muscle groups (hand, wrist) will result in 
better performance in a pointing task than larger muscle 
groups (upper arm, shoulder). This effect clearly indicates 
that movement angle must be accounted for in any attempt to 
model pointing behavior in 3D. 

Effect of movement direction:  

Recall that for each Ө we tested (0°, 45°, 90°), two targets 
were placed equidistant from the origin at opposite directions 
along the movement axis defined by Ө on the XZ plane. Our 
reciprocal pointing task required back-and-forth movements 
in both directions along these three angles. Ideally, one 
would expect that two equally sized targets on either end of 
any of these vectors would be equally difficult to select. 
However, there is a possibility that targets displayed further 
away from the user in the depth axis are harder to perceive 
and therefore select. Analysis of variance, however, showed 
that movement direction did not have a significant effect on 
MT (F1,35 = 0.51, p = .4764), as Figure 4a illustrates. This 
implies that perception of targets was equally good in all 
locations. 

Interactions between Ө and target dimensions: 

The effect of Ө on MT was dependent on W and D as 
indicated by the interactions WxӨ (F6,121 = 17.4, p < .0001), 
and DxӨ (F6,121 = 22.5, p < .0001). However, there was no 
significant HxӨ interaction. This is an important result that 
likely occurs because targets were located in the XZ plane 
and the perception of the height of the target remains 
constant as Ө changes in this plane. In contrast, the 
perception of W is likely best with Ө = 0° and worst at Ө = 

90°, while the perception of D is best with Ө = 90° and worst 
at Ө = 0°. Figure 4b,c shows these interactions.  

Relative effect of target dimensions:  

One goal of our study was to investigate if any particular 
target affected MT more than the others. Multiple means 
comparisons indicated that regardless of the values of H and 
D, MT significantly increased when W is increased from 0.04 
to 0.08, from 0.08 to 0.16, and from 0.16 to 0.32. For H and 
D, however, this was only true until the parameter reached a 
size of 0.16; the increase from 0.16 to 0.32 did not 
significantly affect MT. This is illustrated by the slopes of the 
lines in Figure 4e, where it is clear that changes in W has the 
most impact on MT. This result is consistent with the same 
effect found in 2D pointing [1]. 

Figure 4. (a) Effect of movement direction on MT, by movement 
angle. (b) Interaction between W and Ө. (c) Interaction between 

D and Ө. (d) Effect of movement direction on error rate, by 
movement angle. (e) Relative effect of target dimensions on MT. 

Interactions between target dimensions: 

Also of interest is whether changes in any one of W, H, and 
D would have differing effects on MT depending on the size 
of the other dimensions. Indeed, our analysis showed 
significant interaction effects for all combinations of 
dimensions: HxW (F9,525 = 38.6, p < .0001), HxD (F9,525 = 
17.4, p < .0001), WxD (F9,525 = 42.7, p < .0001).  

An alternative way of looking at this issue is to consider the 
effect on performance of the ratios between these target 
dimensions. Figure 5 shows how the W/H, W/D, and H/D 
ratios affect MT, broken down by movement angle and the 
three different amplitudes tested. Note that the ratios 0.125 
and 8 represent only single data pairs (e.g., W/H ratio of 8 is 
generated only when W=8 and H=1), whereas the ratios 0.25, 
0.5, 1, 2, 4 represent double data pairs (e.g., W/H ratio of 4 is 
generated for W=8, H=2 and W=4, H=1). As such, to keep 
the analysis balanced by number of data points, we exclude 
the 0.125 and 8 ratios from this analysis. 

W/H ratio: There was a significant effect on MT (F4,140 = 167, 
p < .0001), and significant interactions with amplitude A 
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(F8,490 = 7.1, p < .0001), movement angle Ө (F8,154 = 5.9, p < 
.0001), and depth D (F12,665 = 2.4, p < .0001).  

For Ө = 0° (Figure 5a), increasing W/H from 1 to 2 had a 
significant effect on MT for all distances. However, 
increasing it from 2 to 4 significantly affects MT only for the 
shortest amplitude A = 0.48. Looking at the left half of the 
graph, the only significant effects are when W/H decreased 
from 1 to 0.5 for the furthest amplitude A = 1.28, and when it 
is decreased from 1 to 0.25 at A = 0.88 (all p < .01). 
Examining the symmetry about unity shows that at A = 0.48, 
MT is significantly lower for W/H = 2, 4 than W/H = 0.5, 
0.25. This corresponds to the effect observed by Accot and 
Zhai [1]. However, when A = 0.88 and 1.28, MT for 
corresponding ratios (0.25 and 4, 0.5 and 2) are not 
significantly different. Thus, we see that at high amplitudes, 
increasing H, even when W is the constraining factor, can 
still significantly reduce MT. While this is in contrast to 
Accot and Zhai [1]’s results, they did not break down their 
results by amplitude, and it is therefore possible that their 
data exhibited a similar trend for large amplitudes but was 
simply not reported. As Figures 5b,c illustrate, the results for 
Ө = 90°, and Ө = 45° show similar trends to Ө = 0°.  

Figure 5. (a-c) Effect of W/H ratio on MT, by Ө and amplitude. 
(d-f) W/D ratio. (g-i) H/D ratio. 

W/D ratio: There was a significant effect on MT (F4,140 = 167, 
p < .0001), and significant interactions with A (F8,490 = 2.9, p 
< .0001) and Ө (F8,154 = 8.3, p < .0001). There was no 
significant interaction with H (F12,665 = 1.2, p = .2774). 
Figures 5d-f illustrate the trends. The most interesting trend 
is when Ө = 0° (Figure 5d), where the curves are very 
symmetric about unity. For the two larger amplitudes (A = 
0.88, 1.28), the symmetric pairs (W/D = 0.5 and 2, 0.25 and 
4) do not result in significantly different MT, indicating that 

increasing D had the same effect as increasing W. However, 
for A = 0.48, W/D = 4 results in a significant lower MT than 
its counterpart ratio W/D = 0.25. (p < .001 in all cases). This 
result is not observed for the other two movement angles, as 
might be expected from the interactions between Ө and D 
which indicated that increasing D reduces MT most for Ө = 
0° and less for Ө = 45° and 90° (Figure 4c). 

H/D ratio: There was a significant effect on MT (F4,140 = 111, 
p < .01), and significant interactions with A (F8,490 = 2.0, p < 
.01), Ө (F8,154 = 4.0, p < .0001), and W (F12,665 = 3.2, p < .01) 
(Figures 5g-i). Note that symmetry about unity were 
observed in both Ө = 90° and 45°: for all A, MT for the 
symmetric pairs (H/D = 0.5 and 2, 0.25 and 4) are not 
significantly different. However, this isn’t true for Ө = 0°, 
where increasing D reduces MT more than increasing H due 
to Ө and target dimension interactions (Figure 4c). 

Fit of the models 

We fit the MT data to the five candidate models described 
earlier, using a least-squares method (Table 1). Where 
appropriate, models were fitted by Ө, allowing us to analyze 
results independent of how Ө effects the time. The table 
shows parameter estimates where applicable and the 
corresponding standard errors for those estimates. The last 
column provides the R2 values for the regression. 

The poor correlation of the IDmin model supports our earlier 
argument as to its shortcomings. Adding weights to the target 
dimensions improves the fit, as does including f(Ө). The 
IDWtEuc and IDWtEucӨ models, however, outperforms all the 
IDmin model variants. The best fit overall, with a correlation 
of 0.912, was with the IDWtEucӨ model where f(Ө) was 
calculated independently for each target dimension (note that 
f(Ө) was not calculated for the H parameter due to the lack of 
a significant HxӨ interaction as discussed earlier), and is 
hence our preferred model: 
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with fW(0°) = 0.211, fW(90°) = 0.717, fW(45°) = 0.242,  fD(0°) 
= 0.194, fD(90°) = 0.312, and fD(45°) = 0.147.  

Figure 6 illustrates the differences between IDWtEucӨ and 
IDWtMinӨ. Note how the points in the Euclidian model are less 
spread out, especially as ID increases. 

 
Figure 6. Raw data for (a) IDWtEucӨ and (b) IDWtMinӨ 
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Parameter Estimates (with std error indicated below)  Model Ө a (ms) b (ms/bit) α β fW(O°) fD(O°) fW(9O°) fD(9O°) fW(45°) fD(45) R2 

O° -187 
69.6 

454 
17.4 

        0.781 

90° 78 
68.9 

451 
17.2 

        0.783 IDmin 

45° -16 
53.2 

411 
13.3 

        0.833 

O° -163 
53.4 

472 
14.1 

1.656 
0.087 

1.162 
0.052 

      0.855 

9O° 118 
45.7 

477 
12.3 

1.751 
0.081 

1.394 
0.056 

      0.887 IDWtmin 

45° 11 
40.5 

428 
10.7 

1.515 
0.065 

1.278 
0.048 

      0.894 

O° -395 
48.7 

496 
11.9 

0.372 
0.051 

0.905 
0.096 

      0.901 

9O° -23 
43.4 

494 
11.2 

0.259 
0.033 

0.421 
0.045 

      0.910 IDWtEuc 

45° -149 
36.8 

445 
9.21 

0.412 
0.044 

0.582 
0.056 

      0.924 

IDWtminӨ All 79 
25.5 

467 
7.26 

2.128 
0.757 

 1.440 
0.517 

1.670 
0.597 

0.851 
0.309 

1.236 
0.445 

1.442 
0.518 

1.821 
0.651 0.878 

IDWtEucӨ All 56 
21.6 

508 
6.58 

0.109 
0.063 

 0.211 
0.123 

0.194 
0.114 

0.717 
0.426 

0.312 
0.148 

0.242 
0.142 

0.147 
0.044 0.912 

Table 1. Summary of model fitting results. fH(Ө) was not calculated since there was no significant HxӨ interaction. αααα and ββββ are 
calculated instead of fW(Ө) and  fD(Ө) for IDWtmin and IDWtEuc when presented by Ө = O°,45°, 9O°, because the breakdown of data by Ө 

makes it unnecessary to compute f(Ө) for each Ө as is done when data is aggregated across all Ө in IDWtminӨ and IDWtEucӨ.

Error Analysis 
Error rate was significantly affected by H (f3,105 = 206.2, p < 
.0001), W (f3,105 = 467.9, p < .0001), D (f3,105 = 246.9, p < 
.0001), and Ө (f2,70 = 13.47, p < .0001). There was no 
significant effect for A (f2,70 = 2.46, p = .086). The overall 
mean error rate was 15.7%. While this is higher than the 
error rate of 4% seen in typical Fitts’ Law experiments, our 
observations of the participants rules out the possibility of 
subjects “racing through the experiment”. Rather, our 
analysis indicates that when any of the target dimensions W, 
H, or D takes on the smallest value of 0.04 units, the error 
rate goes up significantly (p < .0001). When this smallest 
dimension is not considered, the error rate decreases to an 
average of 5.4%, which is in line with results reported in the 
literature. We also believe that secondary sources of error 
were the greater perceptual and motor difficulty of the 3D 
task, and noise in our 3D tracker. 

Finally, we looked at how the direction of movement affected 
error rate. Recall that for all three movement angles tested, 
the direction of movement did not have a significant effect on 
MT. With error rate, however, there was a significant 
interaction between movement direction and Ө (f2,175 = 7.12, 
p < .0001), and multiple means comparisons indicated that 
the error rate for –ve direction movements when Ө = 90° was 
significantly higher than for Ө = 0° or Ө = 45° (Figure 4d). 
This effect is likely due slight difficulty in perceiving targets 
at the far back of the display. However, recall that we did not 
find a similar effect on MT (Figure 4a). This indicates that 
users may not actually think they have perception difficulties 
with these targets, believing they are in the target and thus 
completing the task without compromising MT but 
unwittingly making an erroneous selection. 

IMPLICATIONS for USER INTERFACE DESIGN 
A primary motivation of our work was to provide empirical 
results and practical models that could guide the development 
of user interfaces for 3D displays. Our study investigated 
how target dimensions and movement angles affect selection 
performance, and the results can provide us with significant 
guidelines about the layout of selectable targets, i.e. how 
items such as widgets, menus, and other objects should be 
sized and positioned in 3D displays. 

Target sizing: As in any interface, widgets should be large 
enough so that they can be easily selected and manipulated, 
but their size should be minimized to reduce the amount of 
visual space which they take up. An observation from our 
experiment is that as error rates significantly spiked after they 
were reduced to a certain size (1/5 of an inch), so clearly 
targets should not be made this small. More interesting is that 
designers should avoid targets with grossly disproportionate 
dimensions, since our results show that having one 
dimension more than four times as large as another does not 
make it any easier for the user to select the target. Another 
important finding was that the dimension parallel to the line 
of approach (defined as W in our experiment) was always the 
most critical one. Thus if a target was at the back of the 
display, it would be beneficial for it to have a larger size in 
the Z-axis, since the user would most likely be moving 
forward to select it. Similarly if were at the side of the 
display, a larger size along the X-axis would be beneficial. 

Target positioning: In typical 2D interfaces, the user’s 
workspace is in the center of the screen taking up most of the 
display space, while the interface widgets border the screen. 
Extending this layout to a 3D display could have the 
workspace in the center volume of the display, and the 
interface elements on its outside surface. However, our 
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experiment showed that moving forwards and backwards to 
select targets was significantly slower than moving left and 
right. If targets were to be positioned on the outside surface, 
they should be limited to the left and right sides of the 
surface, maximizing left and right selections. 

Recall that our results, which can guide both target sizing and 
positioning, were dependant on the location of the user’s 
viewpoint. This presents a challenge for interface designers, 
since one benefit of volumetric displays is that users can 
walk around it for full 360° viewing. It would therefore be 
quite useful if a 3D volumetric display system were able to 
track the position of its users and then adjust the layout of the 
interface elements accordingly. 

CONCLUSION 
We have presented experimental work that investigated how 
target dimensions, movement angles, and their interactions 
effect selection performance in a 3D environment. Unlike 
most experiments involving 3D tasks, ours was performed on 
a true 3D volumetric display which provided users with 
reliable perception of all three spatial dimensions. We 
observed that moving forwards and backwards in depth is 
slower than moving left and right for selecting targets; that 
the target width was more critical than the height and depth 
of the target; and that the effect of the width and depth were 
dependant on the movement angle, while the effect of the 
height was constant regardless of the movement angle. 
Building upon previous work on univariate and bivariate 
pointing tasks, we introduced and validated a variant of Fitts’ 
law that models pointing to trivariate targets in 3D. Unlike 
the previous models, our model also accounts for varying 
movement angles. We have shown that performance time can 
be predicted from this model to a greater extent than 
alternative models which have been previously suggested. 
Finally, we have discussed the implications of our results for 
the sizing and positioning of user interface widgets in three 
dimensional displays. 
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