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ABSTRACT 
We report results on the performance of the combination of 
soft keyboards and marking menus. A model of expert user 
performance indicated an 11 - 37% (depending on the 
keyboard layout) improvement in text entry rate over the 
same keyboard without the menu. To verify the advantage 
in real usage, we conducted two experiments using the 
QWERTY keyboard layout with and without the menu. The 
first experiment imitated nearly perfect cognitive 
performance and measured motor performance. Using the 
menu saved time. The second experiment measured 
performance in a realistic text entry task. Initially using the 
menu slows down text entry. By the end of the 20-session 
experiment both conditions were equally fast. With 
continued practice text entry is likely to be faster with the 
menu. 

Categories and Subject Descriptors 
H5.2 [Information Interfaces and Presentation]: User 
Interfaces - Evaluation/Methodology, Input Devices and 
Strategies. 

Keywords 
text entry, Fitts’ law, marking menu, soft keyboard  

INTRODUCTION 
A large number of text entry systems for computers without 
a full sized keyboard have been proposed recently (see [11] 
for an overview). Some of these utilize combinations of soft 
keyboards and menus. We call such systems menu-
augmented soft keyboards. Before describing the new 
system that is our main topic, we will give a brief overview 
on those systems that seem, in retrospect, to be its most 
obvious ancestors. 

Previous Work 
T-Cube by Venolia and Neiberg [20] is a well-known 
example of text entry with popup menus. It is operated by 

landing the stylus on a stationary ring-shaped menu and 
popping up a radial menu from which a character is selected 
by moving the stylus to the direction of a slice and lifting it. 
Another example of the use of popup menus is the POBox 
system [14]. It uses popup menus in the context of soft 
keyboards to present most likely word completions. 

Work on T-Cube and POBox was in the context of pen-
based computing. The aim was to increase text entry speed 
in comparison to other available systems. Later efforts with 
the same goal [16, 4] were in the context of mobile phones. 
The 9-slice ring-shaped keyboard of T-Cube was replaced 
with the 12 keys of the telephone keypad. Naturally, when 
used with the physical keypad popup menus are not drawn. 
Instead, hints of the available key combinations are printed 
on the keys. These systems can also be used with a stylus 
and a software-rendered keyboard [16]. 

Besides for speeding up text entry, menus have been used 
to modify the character being entered. For example 
Microsoft’s soft keyboards in some Handheld computers 
(such as Compaq iPAQs) allow entering upper case 
characters by landing the stylus on a key and then sliding it 
upwards before lifting. Additionally, the recent Fitaly 
versions [19] allow entering the accented variations of 
characters by landing on a key (say ‘a’) and then sliding to 
different directions to choose characters (like ‘å’, ‘ä’, ‘â’, 
‘á’ and ‘à’). Left and right slides can also be mapped to 
backspace and delete. 

The Present Study 
The goal of our work was to evaluate a new stylus-based 
text entry system, where a popup menu is added to a regular 
soft-keyboard to increase text entry speed. A recent student 
project with the same goal [6] suffered from unreliable 
software, but produced useful findings that have been taken 
into account in our implementation. 

We examined menu augmented soft keyboards in three 
phases. First, we simulated their use with models based on 
Fitts’ law and previously published data on menu selection 
performance. Then, we verified the modeling result in an 
experiment that measured the text entry capacity of the 
user’s motor system with and without the menu. Finally, we 
undertook a longitudinal experiment where the users’ 
performance was measured in a somewhat realistic task. 
Before reporting the results, we explain our menu-
augmented soft keyboard in more detail. 
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MENU-AUGMENTED SOFT KEYBOARD 

The Basic Idea 
A soft keyboard with a menu is shown in Figure 1. When 
the user sets the stylus down on a key (“l” in Figure 1), the 
corresponding character is entered. After that the user has 
two choices: to lift the stylus, or to do a marking-menu 
selection to enter another character.  

Marking menus [7] are radial menus that pop up after a 
delay. The user selects a menu item by moving on it and 
then lifting the stylus. It is not necessary to wait for the 
menu to pop up. The selection can be done immediately by 
drawing the gesture as if the menu were visible. 

The savings in stylus travel are illustrated in Figure 2. The 
upper part shows the stylus movements without the menu 
and the lower part with the menu on the left side of Figure 
3. The text written in the example is “happy”. In both cases 
writing starts by landing the stylus on “H”. Then, if the 
menu is not available, the stylus is lifted and moved over 
“A”. When the menu is available, “A” is selected by sliding 
the stylus down from “H”. Another big saving occurs in the 
end when the long P-Y movement is replaced by selecting 
Y from the southwestern menu slice. 

The menu does not interfere with normal use of the soft 
keyboard. Users that do not want to use it can ignore it. 

Menu Design 
Throughout this paper we use menus with vowels, space 
and backspace in them. According to the digraph frequency 

table in [17] the English vowels and space constitute 49.9% 
of English text. However, because two consecutive 
characters cannot be entered using the menu, the menu on 
the left side of Figure 3 can be used to enter about 35% of 
the text (note that this means that about 54% of taps on the 
keyboard end in a menu selection). 

Instead of vowels the menu could be populated with, the 
most frequent characters. This tends to increase the 
frequency of digraphs with both characters in the menu, 
which means that one of the characters cannot be entered 
using the menu. Only about 26% of characters can be 
entered using the menu on the right in Figure 3.  

Possibly more optimal menus than the one on the left in 
Figure 3 can be constructed. However, we expected the 
vowels, backspace and space to be an easy combination to 
remember and therefore better than many others. 

Each key could have its own popup menu with the most 
probable following characters. In practice this leads to 
difficulties in learning to utilize the menu as exemplified by 
the Fluctuating Optimal Character Layout (FOCL) work [1, 
9]. In an attempt to reap most of the benefits of the menu 
without the disadvantages we decided to experiment with a 
system where the menu is always the same. 

We chose the breadth of the menu based on the results of 
Kurtenbach et al. [7] and McQueen et al. [15]. Eight slice 
menus seemed optimal because a greater number leads to 
degradation of both selection speed and error rate. 

MODEL 

Goal and Method of Modeling 
The purpose of the modeling was to reveal the relationship 
between the motor efficiency of a soft keyboard with a 
menu and without it. The results were two-fold. First, we 
found a limit under which the menu selection time has to be 
in order to yield performance benefits. Second, we used 
previously measured menu selection times to compute the 
difference that we can expect the menu to make in text 
entry rate. 

Models based on Fitts’ law assume that the motor control 
over the stylus is the bottleneck that limits the user’s 
performance. Consequently the results are applicable only 
to nearly perfectly trained expert user populations. We 
accepted this limitation and explored the non-expert 
performance experimentally. 

 

Figure 1. A QWERTY soft keyboard with a menu. 

 

 

Figure 2. Stylus travel without a menu and with it when 
writing “happy”. 
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Figure 3. A menu with vowels (left) and an alternative design 

with the most frequent characters (right). 
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We used the five keyboard layouts shown in Figure 4. Two 
of them were designed for two-handed use (Dvorak [2] and 
QWERTY) and three for stylus tapping (FITALY [19], 
OPTI II [12], and ATOMIK [21]). 

QWERTY is the most popular of these layouts. It is the 
default layout on almost all systems that have a soft 
keyboard. The other layouts are research prototypes or 
commercially available systems with limited success. The 
dominant position of the QWERTY layout means that the 
immediate usefulness of menu-augmentation depends on 
whether it improves text entry rates with QWERTY. 

Both traditional soft keyboard optimization and menu-
augmentation aim to reduce stylus travel. It is interesting to 
compare the effectiveness of these methods and to see 
whether optimized soft keyboard layouts can be further 
improved by adding the menu.  

Fitts-digraph Model 
Elementary keyboard optimization work was discussed by 
Card et al. [3] (example 5, p. 56), but the digraph table for 
modeling text entry was added later by Soukoreff and 
MacKenzie [17]. The Fitts-digraph model is widely used 
[11, 12, 13, 16, 21, 22, 23] tool for modeling expert stylus 
tapping performance. 

The model works by breaking writing into elemental 
pointing tasks and then modeling each of these with Fitts’ 
law. While the basic rationale of the model is generally 
accepted, some details of it vary in the literature. Our 
choices regarding these details were as follows: 

Fitts’ law formula: We used the Shannon formulation 
introduced by MacKenzie [8]. That is, movement time 
equals to a + b log2 (A / W  + 1). 

Key repeat: We modeled repeating taps on the same key 
with the same Fitts’ law equation as taps on different keys. 
Because the distance to be traveled is zero, the repeat taps 
are modeled with the intercept (a) value of the formula 
above. Repeating key presses are rather rare (1.9% in the 
table by Soukoreff and MacKenzie [17]). Thus, repeat key 
handling does not have a large effect on the results. 

Intercept value: Sometimes the Fitts’ law intercept value is 
set to zero [12, 13, 17], sometimes it is measured from 
experimental data [23]. We used a non-zero intercept. This 
fits with our choice of key repeat modeling. 

Multiple key instances: Some layouts have more than one 
instance of the same key. The assumption is that the user 
chooses the closest one.  Our model used the target key and 
the preceding key to decide which instance to choose. 

Wide keys: Some keys have a significantly elongated 
shape. This means that using the center point of the key as 
the Fitts’ law target in the model produces unrealistic 
results. We split the wide keys into several keys with width 
equal to that of the smallest key in the keyboard. As 
described above, the model selected the one that is closest 
to the preceding key. 

Key position and shape: Our choices of key positions and 
shapes can be seen in Figure 4. One of the most notable 
choices is the shape of keys in ATOMIK. Originally they 
were hexagonal. Our version with rectangular keys is based 
on the version shown in Figure 26 by Zhai et al. [21]. 

Menu Selection Model 
Entering a pair of characters using the menu for the second 
one consists of two phases. First, the stylus is moved from a 
starting point onto the key of the first character. Second, it 
is dragged over one of the menu slices and lifted. 

One way to model this is to use Fitts’ Law for both phases 
(as, for example, in [16]). Unfortunately, the phases have 
interactions that limit the accuracy of this approach. For 
example Venolia and Neiberg [20] observed that there were 
differences in the overall task completion times depending 
on both the menu item direction and the location of the 
stylus on the keyboard. For example menu selection to the 
southeast was faster in the southeastern part of the 
keyboard. 

Although menus have been studied extensively, most 
published results are either on mouse or keyboard use, or 
only report total selection times after a stimulus. Since we 
did not have data that would have allowed accurate 
treatment of all the subtleties, we used a constant movement 
time that was the same for all menu selections. 

Although we used a simplified menu selection model, we 
still needed to know the size of the stylus movements 

           

 

Figure 4. The keyboard layouts used in this study (from top 
Dvorak, QWERTY, FITALY, OPTI II, and ATOMIK) 
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because we needed a starting point for the following 
movement. We set the menu radius to be twice the width of 
a regular key in our keyboards. The endpoint of the menu 
selection was in the middle of the menu slice. These 
parameters are reasonable because the menu slices were big 
enough to contain the labels and users might be inclined to 
aim at the center of the menu item. 

Model Implementation 
We built our model in the form of simulation software.  It 
uses keyboard and menu layout descriptions, Fitts’ law 
model, menu selection model, and text files to simulate 
stylus movement over the keyboard. The simulator was 
implemented in Java. 

In summary, the model knows two primitive actions: 
tapping a key (modeled with Fitts’ law), and menu selection 
(modeled by a constant time move to the center of the 
appropriate menu slice). It reads a text stream character by 
character and performs the keyboard actions needed for 
replicating the text. 

MODELING RESULTS AND DISCUSSION 

Upper Limit for Menu Selection Time 
A simple way to estimate whether the menu can make text 
entry faster is to find out how long a menu selection can 
take and still yield performance benefit. If the numbers look 
good, further work is warranted. To find this limit we 
selected values for Fitts’ law intercept and slope and ran our 
simulation software using a small text corpus (published by 
MacKenzie and Soukoreff [10]) to find out how long 
entering that text took without the menu functionality. Then 
we ran several more simulations with the menu enabled 
with varying menu selection time to do a binary search for 
the point where the menu no longer helped. 

To observe how the crossover point behaves under different 
Fitts’ law coefficients, we ran the simulation software to 
find a 20 by 20 matrix of the crossover points with both 
coefficients (a and b) ranging from 0 to 0.19. 

This produced results like the one shown in Figure 5. Given 
values for Fitts’ law intercept (a) and slope (b), the menu 
selection time needs to be below the plane in Figure 5 to 
save time. The plane is described by the equation t = a+bk. 
Where t is the critical menu selection time, a and b are the 
Fitts’ law coefficients used as simulation parameters, and k 
is a coefficient whose value depends on the keyboard and 

menu layout. The values for k with the simulated keyboard 
layouts are shown in Table 1. These values let us compute 
estimates for the upper limit of useful menu selection time. 
As an example we used the Fitts’ law coefficients measured 
by Zhai et al. [23] as shown in Table 1.   

Text Entry Rate 
To find out how much the menu speeds up text entry, we 
turned back to the simulator. We used the menu selection 
times measured by McQueen et al. [15]. They report times 
broken down to preparation time and scripting time. 
Preparation time means the time when the stylus is not 
touching the display. This portion is modeled by the Fitts’ 
law part of our model. Scripting time means the time 
between the stylus landing and lifting. This is roughly 
equivalent to the menu selection time component in our 
model. The results of McQueen et al. are for a 12-slice pie 
menu. The accuracy constraints in our 8-slice menu are 
lower allowing higher selection speed with the same error 
rate. The scripting time reported by McQueen et al. is 0.3 
seconds in the beginning of the experiment of twenty 15-
minute sessions and about 0.16 seconds at the end. 

We used the number measured by the end of the experiment 
because we were modeling expert performance. 
Simulations with this menu selection time and the Fitts’ law 
coefficients by Zhai et al. [23] gives the numbers shown in 
Table 2. The differences are substantial enough to show in 
experimental results at least with the Dvorak and QWERTY 
layouts. 
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Figure 5. The upper limit for useful menu selection time for the

QWERTY layout. 

Table 1. Values for k and the upper limit of useful menu 
selection time for five keyboard layouts. 

Keyboard k Upper limit 
Dvorak 2.61 0.083 + 0.127 x 2.61 = 0.41 s 
QWERTY 2.08 0.083 + 0.127 x 2.08 = 0.35 s 
OPTI II 1.35 0.083 + 0.127 x 1.35 = 0.25 s 
ATOMIK 1.21 0.083 + 0.127 x 1.21 = 0.24 s 
FITALY 1.18 0.083 + 0.127 x 1.18 = 0.23 s 

Table 2. Simulated text entry rates with and without the menu. 

 Text entry rate (words per minute) 
Keyboard No menu Menu Difference 
Dvorak 33.9 46.5 12.6 (37%) 
QWERTY 36.7 46.3 9.6 (26%) 
OPTI II 43.8 50.2 6.4 (15%) 
ATOMIK 44.2 49.5 5.5 (12%) 
FITALY 44.7 49.8 5.1 (11%) 
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The rank order of the keyboards in the no menu condition 
in Table 2 differs from previously published results. This is 
a matter of some concern. As detailed above, our modeling 
assumptions differ from previous work for example in the 
handling of the space keys. In addition, the previously 
published results have been computed using different text 
corpora. All the used corpora are argued to be 
representative of typical English but small differences do 
exist. 

EXPERIMENT 1 
To do a reality check on our modeling results, we compared 
character entry speeds experimentally in two conditions: 
with a plain keyboard and with a menu-augmented 
keyboard.  

Method 

Participants 
12 participants (8 male, 4 female) were recruited from 
within our research unit. The age of the participants ranged 
from 23 to 34 years (mean 26, SD=3.2). All were 
experienced computer users who had seen and operated a 
computer with a stylus. None, however, had used soft 
keyboard for text entry for extended periods. Similarly none 
had hands-on experience with marking menus. 

Apparatus 
We used an Acer TravelMate C102Ti laptop running 
Microsoft Windows XP TabletPC Edition. The stylus 
functionality in this model is implemented using a Wacom 
10.4” module with the styli sensed using electromagnetic 
resonance. We used a stylus that is approximately the size 
of a regular ballpoint pen (140 mm long and 8 mm thick). 
The computer and stylus are shown in Figure 6. 

The software was written in Java. Because mouse events 
are inherently unreliable in Windows (some get dropped if 
the computer is busy), and we did not find a way to access 

the Microsoft pen API from Java, we implemented the 
experimental software as a module in a text input 
architecture [5] that uses C++ code to access DirectInput8 
API. The timestamps in the DirectInput events are 
propagated through the system. This excludes possible 
delay and delay jitter due to Java garbage collection and 
scheduling. 

The display of our software is shown in Figure 7. During 
the experiment the window was maximized to fill the whole 
screen. The mouse cursor was not shown over the 
keyboard. The width of the alphabet keys and the height of 
all keys was approximately 4.9 mm. A popular trick in soft 
keyboards is to show small keys that have a larger active 
area. This fools the users to aim more accurately at the 
center of the key. We utilized this trick too. The active 
areas of the keys fill the whole keyboard, but the graphical 
representations are separated by small gaps as seen in 
Figure 7. The calibration error between the stylus tip and 
the measured coordinates was typically low. The largest 
errors over the keyboard were in the order of 1.5 mm. 

Procedure and Design 
To make the task cognitively easy, patterns of 2-4 
characters were entered repetitively. There were a total of 
30 different patterns. Each pattern was repeated 11 times in 
a string like the one shown in Figure 7. The patterns were 
chosen to represent a wide range of key distances on the 
QWERTY layout and varying movement directions. The 
patterns also required the use of all of the menu items. Each 
participant entered the block of 30 patterns four times: once 
for practice and once for data collection with and without 
the menu. The order of the menu conditions was balanced 
between subjects but the order of the patterns within a block 
was always the one shown in Figure 8. 

The software accepted only correct input. Incorrect 
characters caused a sound to be played. Upon hearing the 
sound a participant had to either keep entering the pattern to 
resynchronize on the next repetition or stop, find the error, 
and enter the correct character. 

The design was within subjects with one factor with two 
levels (menu and no menu). The dependent variable was the 
time spent per character. 

 
Figure 6. The computer and stylus used in the experiments. 

 Figure 7. The task display in the pattern task. 

CHI 2004  ׀  Paper 24-29 April  ׀  Vienna, Austria 

 Volume 6, Number 1 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

427



  

Results 

Data Considerations 
Data for pattern instances with errors in them were 
excluded because we were interested in fluent and correct 
performance only. The average exclusion rate varied 
between participants and patterns. However, at least 4 out 
of the 10 possible (the first one was always excluded) 
repetitions per pattern per participant were correct. On 
average 95% of the repetitions were included. 

Time Per Character 
The per character timing results are shown in figure 8. 
Using the menu seemed to pay off, except when the 
distance between the keys in the no menu condition was 
very small. Even then using the menu was approximately 
equally fast. With the simple patterns that allowed menu 
use (“pa”-“no” in Figure 8) the time for the menuless 
condition varied depending on the distance between the 
keys. When the menu was used the time per character was 
around 200 milliseconds varying only slightly depending on 
the menu item chosen. 

In the more complex patterns (“pal”-“päl” and “pala”-
“pälä”) the difference between the conditions was smaller. 
The task began to become cognitively difficult thus 
increasing the task time in a way that does not reflect the 
motor demands of the task. 

In real text entry tasks the performance bottleneck is almost 
completely on the cognitive side. Especially in the 
beginning when users have to attend to planning of the 
menu selections. Therefore, our results so far have not 
really proven the value of adding a menu to soft keyboards. 
We have merely seen that when motor performance is the 
bottleneck, the menu helps. This is why we needed to 
conduct another experiment. 

EXPERIMENT 2 
The goal of the second experiment was to find an estimate 
for how long it takes for users learn the menu usage well 
enough to take advantage of the smaller motor load. 

Method 

Participants 
6 volunteers (5 male, 1 female) were recruited from our 
research unit.  The ages ranged from 23 to 30 years 
(mean=25.5, SD=2.7). All were experienced computer 
users, but none were regular soft keyboard users. None of 
the participants were native speakers of English, but all had 
a good skill and used English in their daily work. 

Apparatus 
The hardware and software used in experiment 2 was the 
same as in experiment 1 except that the menu was partially 
optimized using the data measured for the two-character 
patterns in experiment 1. As shown in Figure 9, backspace 
and space are in the leftmost and rightmost slices. The 
vowels have been re-located according to their frequency so 
that the most frequent “e” is in the fastest remaining 
location and the least frequent “y” is in the slowest location.  

Procedure and Design 
The experiment consisted of 20 sessions per participant. 
Each session consisted of two 15-minute sub-sessions. One 
of these was for text entry with the plain QWERTY soft-
keyboard and the other for using the same keyboard with 
the menu enabled. The order of the sub-sessions was 
reversed for each session to reduce the effect of learning 
and fatigue towards the end of the session. 

The task was to enter the presented phrase as fast as 
possible while making as few errors as possible and then to 
press the enter key. Pressing the enter key erased the 
written text and caused a new phrase to be randomly 
selected and presented. The phrase set we used was a 
modified version of the set of 500 English phrases 
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Figure 9. The menu used in experiment 2. 
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published by MacKenzie and Soukoreff [10]. The 
modifications consisted of adding upper case characters and 
punctuation to where it seemed grammatically appropriate. 

The design of the experiment was a within subjects 
repeated measures design with session (1-20) and the 
availability of the menu (menu, no menu) as independent 
factors. 

Results 
Because the task could be accomplished without using the 
menu, we needed to verify that the participants actually 
used the menu in the menu condition. The percentage of 
characters entered using the menu rose from 23% during 
the first session to 29% by the last session. Thus, the menu 
was indeed used in the menu condition. 

The two systems were not equally fast (F1,5=29.0, p<0.01). 
As seen in Figure 10 the menuless system was initially 
faster. The effect of the session was also significant 
(F19,95=66.2, p<0.0001) indicating that performance 
improved over time. The interaction of system and session 
was significant as well (F19,95=30.4, p<0.0001) meaning that 
that learning progressed at different rates on different 
systems. In the end both systems were approximately 
equally fast. The best-fitting power curves in Figure 10 
suggest that had the experiment continued the system with 
the menu might have overtaken the menuless system in 
speed. 

For error rate calculations we used the MSD/KSDPC 
approach of Soukoreff and MacKenzie [18]. Corrections 
while writing were allowed. Thus, comparing the presented 
and transcribed text using the minimum string distance 
(MSD) reveals only those errors that were left after 
corrections. This is why the ratio of needed characters and 
executed keystrokes needs to be computed. This measure is 
called Keystrokes per character (KSPC). Larger KSPC 
means more error correction activity. ANOVAs on MSD 
and KSPC figures revealed no significant differences 
between the systems or significant effects of session or the 
interactions of these. The mean error rate after corrections 

was 0.96% for the menu condition and 0.59% for the no 
menu condition. The corresponding KSPC values were 
1.097 and 1.094. 

Figure 11 shows the time spent per character broken down 
into time spent with the stylus down (downtime) and stylus 
up (uptime) for three different situations. First, when the 
menu is used (menu), second, when the menu is available, 
but not used for this character (tap), and third when menu is 
not available (no menu tap). This breakdown reveals that by 
the end of the experiment all downtimes are short (95- 151 
ms). The big differences are in uptimes. The uptime of the 
menuless condition (no menu tap) is much lower than in the 
menu condition (menu and tap). Apparently the users were 
spending more time (170 ms more) in planning their next 
move when the menu was available. 

DISCUSSION AND CONCLUSIONS 
Based on our simulations of user users’ motor behavior it 
seemed that adding a marking menu to a soft keyboard 
would speed up text entry. A measurement of character 
entry speed in a simplified test situation supported this 
finding. Finally, a longitudinal experiment with a more 
realistic text entry task showed that the simulation results 
may hold for expert users, but reaching that level of 
expertise takes a long time. This should not be taken as a 
very discouraging finding. All text entry systems require 
extensive user learning. In comparison to some other 
speedy text entry systems, adding the menu seems attractive 
because it is compatible with traditional soft keyboarding. 
Users who do not want to use the menu do not need to 
know that it exists. 

The menu design needs to be further explored. There may 
be better menu designs than the vowel menu we used. An 
appropriate size for the menu and the central “dead zone” 
should be found. Also, backspace in the menu was found to 
be useless. Something useful should take its place. 

A menu-augmented soft keyboard needs some empty space 
around it so that all menu items can be selected even after 
landing on the peripheral keys. Whether this is acceptable 
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in small devices remains to be seen. Some of the 
surrounding space can be used for placing infrequently used 
keys such as function keys and numeric keys that are 
unlikely to be followed by a menu selection.  

The text entry rates we measured in experiment 2 were 
lower than others have reported. For example MacKenzie 
and Zhang [12] reported QWERTY tapping rates up to 40 
wpm in a similar experiment. Possible reasons for the 
difference include our use of upper and lower case 
characters and punctuation as well as not allowing breaks 
during the half-sessions, allowing corrections, having non-
native speakers writing English, a larger phrase set 
(MacKenzie and Zhang had 70 phrases), and shorter 
training sessions. 

In conclusion, the menu-augmented soft keyboard is likely 
to be faster in expert use with the QWERTY layout. 
Because the QWERTY layout is widely used and the menu 
does not harm its normal operation, it may be worthwhile to 
add the menu to future soft keyboard implementations. 
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