

Performance of Menu-Augmented Soft Keyboards
 Poika Isokoski

Department of Computer Sciences
FIN-33014, University of Tampere, Finland

poika@cs.uta.fi

ABSTRACT
We report results on the performance of the combination of
soft keyboards and marking menus. A model of expert user
performance indicated an 11 - 37% (depending on the
keyboard layout) improvement in text entry rate over the
same keyboard without the menu. To verify the advantage
in real usage, we conducted two experiments using the
QWERTY keyboard layout with and without the menu. The
first experiment imitated nearly perfect cognitive
performance and measured motor performance. Using the
menu saved time. The second experiment measured
performance in a realistic text entry task. Initially using the
menu slows down text entry. By the end of the 20-session
experiment both conditions were equally fast. With
continued practice text entry is likely to be faster with the
menu.

Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]: User
Interfaces - Evaluation/Methodology, Input Devices and
Strategies.

Keywords
text entry, Fitts’ law, marking menu, soft keyboard

INTRODUCTION
A large number of text entry systems for computers without
a full sized keyboard have been proposed recently (see [11]
for an overview). Some of these utilize combinations of soft
keyboards and menus. We call such systems menu-
augmented soft keyboards. Before describing the new
system that is our main topic, we will give a brief overview
on those systems that seem, in retrospect, to be its most
obvious ancestors.

Previous Work
T-Cube by Venolia and Neiberg [20] is a well-known
example of text entry with popup menus. It is operated by

landing the stylus on a stationary ring-shaped menu and
popping up a radial menu from which a character is selected
by moving the stylus to the direction of a slice and lifting it.
Another example of the use of popup menus is the POBox
system [14]. It uses popup menus in the context of soft
keyboards to present most likely word completions.

Work on T-Cube and POBox was in the context of pen-
based computing. The aim was to increase text entry speed
in comparison to other available systems. Later efforts with
the same goal [16, 4] were in the context of mobile phones.
The 9-slice ring-shaped keyboard of T-Cube was replaced
with the 12 keys of the telephone keypad. Naturally, when
used with the physical keypad popup menus are not drawn.
Instead, hints of the available key combinations are printed
on the keys. These systems can also be used with a stylus
and a software-rendered keyboard [16].

Besides for speeding up text entry, menus have been used
to modify the character being entered. For example
Microsoft’s soft keyboards in some Handheld computers
(such as Compaq iPAQs) allow entering upper case
characters by landing the stylus on a key and then sliding it
upwards before lifting. Additionally, the recent Fitaly
versions [19] allow entering the accented variations of
characters by landing on a key (say ‘a’) and then sliding to
different directions to choose characters (like ‘å’, ‘ä’, ‘â’,
‘á’ and ‘à’). Left and right slides can also be mapped to
backspace and delete.

The Present Study
The goal of our work was to evaluate a new stylus-based
text entry system, where a popup menu is added to a regular
soft-keyboard to increase text entry speed. A recent student
project with the same goal [6] suffered from unreliable
software, but produced useful findings that have been taken
into account in our implementation.

We examined menu augmented soft keyboards in three
phases. First, we simulated their use with models based on
Fitts’ law and previously published data on menu selection
performance. Then, we verified the modeling result in an
experiment that measured the text entry capacity of the
user’s motor system with and without the menu. Finally, we
undertook a longitudinal experiment where the users’
performance was measured in a somewhat realistic task.
Before reporting the results, we explain our menu-
augmented soft keyboard in more detail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

423

MENU-AUGMENTED SOFT KEYBOARD

The Basic Idea
A soft keyboard with a menu is shown in Figure 1. When
the user sets the stylus down on a key (“l” in Figure 1), the
corresponding character is entered. After that the user has
two choices: to lift the stylus, or to do a marking-menu
selection to enter another character.

Marking menus [7] are radial menus that pop up after a
delay. The user selects a menu item by moving on it and
then lifting the stylus. It is not necessary to wait for the
menu to pop up. The selection can be done immediately by
drawing the gesture as if the menu were visible.

The savings in stylus travel are illustrated in Figure 2. The
upper part shows the stylus movements without the menu
and the lower part with the menu on the left side of Figure
3. The text written in the example is “happy”. In both cases
writing starts by landing the stylus on “H”. Then, if the
menu is not available, the stylus is lifted and moved over
“A”. When the menu is available, “A” is selected by sliding
the stylus down from “H”. Another big saving occurs in the
end when the long P-Y movement is replaced by selecting
Y from the southwestern menu slice.

The menu does not interfere with normal use of the soft
keyboard. Users that do not want to use it can ignore it.

Menu Design
Throughout this paper we use menus with vowels, space
and backspace in them. According to the digraph frequency

table in [17] the English vowels and space constitute 49.9%
of English text. However, because two consecutive
characters cannot be entered using the menu, the menu on
the left side of Figure 3 can be used to enter about 35% of
the text (note that this means that about 54% of taps on the
keyboard end in a menu selection).

Instead of vowels the menu could be populated with, the
most frequent characters. This tends to increase the
frequency of digraphs with both characters in the menu,
which means that one of the characters cannot be entered
using the menu. Only about 26% of characters can be
entered using the menu on the right in Figure 3.

Possibly more optimal menus than the one on the left in
Figure 3 can be constructed. However, we expected the
vowels, backspace and space to be an easy combination to
remember and therefore better than many others.

Each key could have its own popup menu with the most
probable following characters. In practice this leads to
difficulties in learning to utilize the menu as exemplified by
the Fluctuating Optimal Character Layout (FOCL) work [1,
9]. In an attempt to reap most of the benefits of the menu
without the disadvantages we decided to experiment with a
system where the menu is always the same.

We chose the breadth of the menu based on the results of
Kurtenbach et al. [7] and McQueen et al. [15]. Eight slice
menus seemed optimal because a greater number leads to
degradation of both selection speed and error rate.

MODEL

Goal and Method of Modeling
The purpose of the modeling was to reveal the relationship
between the motor efficiency of a soft keyboard with a
menu and without it. The results were two-fold. First, we
found a limit under which the menu selection time has to be
in order to yield performance benefits. Second, we used
previously measured menu selection times to compute the
difference that we can expect the menu to make in text
entry rate.

Models based on Fitts’ law assume that the motor control
over the stylus is the bottleneck that limits the user’s
performance. Consequently the results are applicable only
to nearly perfectly trained expert user populations. We
accepted this limitation and explored the non-expert
performance experimentally.

Figure 1. A QWERTY soft keyboard with a menu.

Figure 2. Stylus travel without a menu and with it when
writing “happy”.

A

U
O I

EY

space

E

S

O
H A

TN

spaceback-
space

Figure 3. A menu with vowels (left) and an alternative design

with the most frequent characters (right).

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

424

We used the five keyboard layouts shown in Figure 4. Two
of them were designed for two-handed use (Dvorak [2] and
QWERTY) and three for stylus tapping (FITALY [19],
OPTI II [12], and ATOMIK [21]).

QWERTY is the most popular of these layouts. It is the
default layout on almost all systems that have a soft
keyboard. The other layouts are research prototypes or
commercially available systems with limited success. The
dominant position of the QWERTY layout means that the
immediate usefulness of menu-augmentation depends on
whether it improves text entry rates with QWERTY.

Both traditional soft keyboard optimization and menu-
augmentation aim to reduce stylus travel. It is interesting to
compare the effectiveness of these methods and to see
whether optimized soft keyboard layouts can be further
improved by adding the menu.

Fitts-digraph Model
Elementary keyboard optimization work was discussed by
Card et al. [3] (example 5, p. 56), but the digraph table for
modeling text entry was added later by Soukoreff and
MacKenzie [17]. The Fitts-digraph model is widely used
[11, 12, 13, 16, 21, 22, 23] tool for modeling expert stylus
tapping performance.

The model works by breaking writing into elemental
pointing tasks and then modeling each of these with Fitts’
law. While the basic rationale of the model is generally
accepted, some details of it vary in the literature. Our
choices regarding these details were as follows:

Fitts’ law formula: We used the Shannon formulation
introduced by MacKenzie [8]. That is, movement time
equals to a + b log2 (A / W + 1).

Key repeat: We modeled repeating taps on the same key
with the same Fitts’ law equation as taps on different keys.
Because the distance to be traveled is zero, the repeat taps
are modeled with the intercept (a) value of the formula
above. Repeating key presses are rather rare (1.9% in the
table by Soukoreff and MacKenzie [17]). Thus, repeat key
handling does not have a large effect on the results.

Intercept value: Sometimes the Fitts’ law intercept value is
set to zero [12, 13, 17], sometimes it is measured from
experimental data [23]. We used a non-zero intercept. This
fits with our choice of key repeat modeling.

Multiple key instances: Some layouts have more than one
instance of the same key. The assumption is that the user
chooses the closest one. Our model used the target key and
the preceding key to decide which instance to choose.

Wide keys: Some keys have a significantly elongated
shape. This means that using the center point of the key as
the Fitts’ law target in the model produces unrealistic
results. We split the wide keys into several keys with width
equal to that of the smallest key in the keyboard. As
described above, the model selected the one that is closest
to the preceding key.

Key position and shape: Our choices of key positions and
shapes can be seen in Figure 4. One of the most notable
choices is the shape of keys in ATOMIK. Originally they
were hexagonal. Our version with rectangular keys is based
on the version shown in Figure 26 by Zhai et al. [21].

Menu Selection Model
Entering a pair of characters using the menu for the second
one consists of two phases. First, the stylus is moved from a
starting point onto the key of the first character. Second, it
is dragged over one of the menu slices and lifted.

One way to model this is to use Fitts’ Law for both phases
(as, for example, in [16]). Unfortunately, the phases have
interactions that limit the accuracy of this approach. For
example Venolia and Neiberg [20] observed that there were
differences in the overall task completion times depending
on both the menu item direction and the location of the
stylus on the keyboard. For example menu selection to the
southeast was faster in the southeastern part of the
keyboard.

Although menus have been studied extensively, most
published results are either on mouse or keyboard use, or
only report total selection times after a stimulus. Since we
did not have data that would have allowed accurate
treatment of all the subtleties, we used a constant movement
time that was the same for all menu selections.

Although we used a simplified menu selection model, we
still needed to know the size of the stylus movements

Figure 4. The keyboard layouts used in this study (from top
Dvorak, QWERTY, FITALY, OPTI II, and ATOMIK)

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

425

because we needed a starting point for the following
movement. We set the menu radius to be twice the width of
a regular key in our keyboards. The endpoint of the menu
selection was in the middle of the menu slice. These
parameters are reasonable because the menu slices were big
enough to contain the labels and users might be inclined to
aim at the center of the menu item.

Model Implementation
We built our model in the form of simulation software. It
uses keyboard and menu layout descriptions, Fitts’ law
model, menu selection model, and text files to simulate
stylus movement over the keyboard. The simulator was
implemented in Java.

In summary, the model knows two primitive actions:
tapping a key (modeled with Fitts’ law), and menu selection
(modeled by a constant time move to the center of the
appropriate menu slice). It reads a text stream character by
character and performs the keyboard actions needed for
replicating the text.

MODELING RESULTS AND DISCUSSION

Upper Limit for Menu Selection Time
A simple way to estimate whether the menu can make text
entry faster is to find out how long a menu selection can
take and still yield performance benefit. If the numbers look
good, further work is warranted. To find this limit we
selected values for Fitts’ law intercept and slope and ran our
simulation software using a small text corpus (published by
MacKenzie and Soukoreff [10]) to find out how long
entering that text took without the menu functionality. Then
we ran several more simulations with the menu enabled
with varying menu selection time to do a binary search for
the point where the menu no longer helped.

To observe how the crossover point behaves under different
Fitts’ law coefficients, we ran the simulation software to
find a 20 by 20 matrix of the crossover points with both
coefficients (a and b) ranging from 0 to 0.19.

This produced results like the one shown in Figure 5. Given
values for Fitts’ law intercept (a) and slope (b), the menu
selection time needs to be below the plane in Figure 5 to
save time. The plane is described by the equation t = a+bk.
Where t is the critical menu selection time, a and b are the
Fitts’ law coefficients used as simulation parameters, and k
is a coefficient whose value depends on the keyboard and

menu layout. The values for k with the simulated keyboard
layouts are shown in Table 1. These values let us compute
estimates for the upper limit of useful menu selection time.
As an example we used the Fitts’ law coefficients measured
by Zhai et al. [23] as shown in Table 1.

Text Entry Rate
To find out how much the menu speeds up text entry, we
turned back to the simulator. We used the menu selection
times measured by McQueen et al. [15]. They report times
broken down to preparation time and scripting time.
Preparation time means the time when the stylus is not
touching the display. This portion is modeled by the Fitts’
law part of our model. Scripting time means the time
between the stylus landing and lifting. This is roughly
equivalent to the menu selection time component in our
model. The results of McQueen et al. are for a 12-slice pie
menu. The accuracy constraints in our 8-slice menu are
lower allowing higher selection speed with the same error
rate. The scripting time reported by McQueen et al. is 0.3
seconds in the beginning of the experiment of twenty 15-
minute sessions and about 0.16 seconds at the end.

We used the number measured by the end of the experiment
because we were modeling expert performance.
Simulations with this menu selection time and the Fitts’ law
coefficients by Zhai et al. [23] gives the numbers shown in
Table 2. The differences are substantial enough to show in
experimental results at least with the Dvorak and QWERTY
layouts.

0
0.19

0

0.19

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

b

a

Figure 5. The upper limit for useful menu selection time for the

QWERTY layout.

Table 1. Values for k and the upper limit of useful menu
selection time for five keyboard layouts.

Keyboard k Upper limit
Dvorak 2.61 0.083 + 0.127 x 2.61 = 0.41 s
QWERTY 2.08 0.083 + 0.127 x 2.08 = 0.35 s
OPTI II 1.35 0.083 + 0.127 x 1.35 = 0.25 s
ATOMIK 1.21 0.083 + 0.127 x 1.21 = 0.24 s
FITALY 1.18 0.083 + 0.127 x 1.18 = 0.23 s

Table 2. Simulated text entry rates with and without the menu.

 Text entry rate (words per minute)
Keyboard No menu Menu Difference
Dvorak 33.9 46.5 12.6 (37%)
QWERTY 36.7 46.3 9.6 (26%)
OPTI II 43.8 50.2 6.4 (15%)
ATOMIK 44.2 49.5 5.5 (12%)
FITALY 44.7 49.8 5.1 (11%)

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

426

The rank order of the keyboards in the no menu condition
in Table 2 differs from previously published results. This is
a matter of some concern. As detailed above, our modeling
assumptions differ from previous work for example in the
handling of the space keys. In addition, the previously
published results have been computed using different text
corpora. All the used corpora are argued to be
representative of typical English but small differences do
exist.

EXPERIMENT 1
To do a reality check on our modeling results, we compared
character entry speeds experimentally in two conditions:
with a plain keyboard and with a menu-augmented
keyboard.

Method

Participants
12 participants (8 male, 4 female) were recruited from
within our research unit. The age of the participants ranged
from 23 to 34 years (mean 26, SD=3.2). All were
experienced computer users who had seen and operated a
computer with a stylus. None, however, had used soft
keyboard for text entry for extended periods. Similarly none
had hands-on experience with marking menus.

Apparatus
We used an Acer TravelMate C102Ti laptop running
Microsoft Windows XP TabletPC Edition. The stylus
functionality in this model is implemented using a Wacom
10.4” module with the styli sensed using electromagnetic
resonance. We used a stylus that is approximately the size
of a regular ballpoint pen (140 mm long and 8 mm thick).
The computer and stylus are shown in Figure 6.

The software was written in Java. Because mouse events
are inherently unreliable in Windows (some get dropped if
the computer is busy), and we did not find a way to access

the Microsoft pen API from Java, we implemented the
experimental software as a module in a text input
architecture [5] that uses C++ code to access DirectInput8
API. The timestamps in the DirectInput events are
propagated through the system. This excludes possible
delay and delay jitter due to Java garbage collection and
scheduling.

The display of our software is shown in Figure 7. During
the experiment the window was maximized to fill the whole
screen. The mouse cursor was not shown over the
keyboard. The width of the alphabet keys and the height of
all keys was approximately 4.9 mm. A popular trick in soft
keyboards is to show small keys that have a larger active
area. This fools the users to aim more accurately at the
center of the key. We utilized this trick too. The active
areas of the keys fill the whole keyboard, but the graphical
representations are separated by small gaps as seen in
Figure 7. The calibration error between the stylus tip and
the measured coordinates was typically low. The largest
errors over the keyboard were in the order of 1.5 mm.

Procedure and Design
To make the task cognitively easy, patterns of 2-4
characters were entered repetitively. There were a total of
30 different patterns. Each pattern was repeated 11 times in
a string like the one shown in Figure 7. The patterns were
chosen to represent a wide range of key distances on the
QWERTY layout and varying movement directions. The
patterns also required the use of all of the menu items. Each
participant entered the block of 30 patterns four times: once
for practice and once for data collection with and without
the menu. The order of the menu conditions was balanced
between subjects but the order of the patterns within a block
was always the one shown in Figure 8.

The software accepted only correct input. Incorrect
characters caused a sound to be played. Upon hearing the
sound a participant had to either keep entering the pattern to
resynchronize on the next repetition or stop, find the error,
and enter the correct character.

The design was within subjects with one factor with two
levels (menu and no menu). The dependent variable was the
time spent per character.

Figure 6. The computer and stylus used in the experiments.

 Figure 7. The task display in the pattern task.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

427

Results

Data Considerations
Data for pattern instances with errors in them were
excluded because we were interested in fluent and correct
performance only. The average exclusion rate varied
between participants and patterns. However, at least 4 out
of the 10 possible (the first one was always excluded)
repetitions per pattern per participant were correct. On
average 95% of the repetitions were included.

Time Per Character
The per character timing results are shown in figure 8.
Using the menu seemed to pay off, except when the
distance between the keys in the no menu condition was
very small. Even then using the menu was approximately
equally fast. With the simple patterns that allowed menu
use (“pa”-“no” in Figure 8) the time for the menuless
condition varied depending on the distance between the
keys. When the menu was used the time per character was
around 200 milliseconds varying only slightly depending on
the menu item chosen.

In the more complex patterns (“pal”-“päl” and “pala”-
“pälä”) the difference between the conditions was smaller.
The task began to become cognitively difficult thus
increasing the task time in a way that does not reflect the
motor demands of the task.

In real text entry tasks the performance bottleneck is almost
completely on the cognitive side. Especially in the
beginning when users have to attend to planning of the
menu selections. Therefore, our results so far have not
really proven the value of adding a menu to soft keyboards.
We have merely seen that when motor performance is the
bottleneck, the menu helps. This is why we needed to
conduct another experiment.

EXPERIMENT 2
The goal of the second experiment was to find an estimate
for how long it takes for users learn the menu usage well
enough to take advantage of the smaller motor load.

Method

Participants
6 volunteers (5 male, 1 female) were recruited from our
research unit. The ages ranged from 23 to 30 years
(mean=25.5, SD=2.7). All were experienced computer
users, but none were regular soft keyboard users. None of
the participants were native speakers of English, but all had
a good skill and used English in their daily work.

Apparatus
The hardware and software used in experiment 2 was the
same as in experiment 1 except that the menu was partially
optimized using the data measured for the two-character
patterns in experiment 1. As shown in Figure 9, backspace
and space are in the leftmost and rightmost slices. The
vowels have been re-located according to their frequency so
that the most frequent “e” is in the fastest remaining
location and the least frequent “y” is in the slowest location.

Procedure and Design
The experiment consisted of 20 sessions per participant.
Each session consisted of two 15-minute sub-sessions. One
of these was for text entry with the plain QWERTY soft-
keyboard and the other for using the same keyboard with
the menu enabled. The order of the sub-sessions was
reversed for each session to reduce the effect of learning
and fatigue towards the end of the session.

The task was to enter the presented phrase as fast as
possible while making as few errors as possible and then to
press the enter key. Pressing the enter key erased the
written text and caused a new phrase to be randomly
selected and presented. The phrase set we used was a
modified version of the set of 500 English phrases

0

100

200

300

400

500

600

700

pp pa pe py pu pi po p_ pä lo m
i

ko no pa
l

pe
l

py
l

pu
l

pi
l

po
l

p_
l

pä
l pl

pa
la

pe
le

py
ly

pu
lu pi
li

po
lo

p_
l_

pä
lä

pattern

tim
e

pe
r c

ha
ra

ct
er

 (m
s) menu no menu

Figure 8. Mean time per character for the 30 patterns in the experiment (error bars show ± one standard deviation).

Figure 9. The menu used in experiment 2.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

428

published by MacKenzie and Soukoreff [10]. The
modifications consisted of adding upper case characters and
punctuation to where it seemed grammatically appropriate.

The design of the experiment was a within subjects
repeated measures design with session (1-20) and the
availability of the menu (menu, no menu) as independent
factors.

Results
Because the task could be accomplished without using the
menu, we needed to verify that the participants actually
used the menu in the menu condition. The percentage of
characters entered using the menu rose from 23% during
the first session to 29% by the last session. Thus, the menu
was indeed used in the menu condition.

The two systems were not equally fast (F1,5=29.0, p<0.01).
As seen in Figure 10 the menuless system was initially
faster. The effect of the session was also significant
(F19,95=66.2, p<0.0001) indicating that performance
improved over time. The interaction of system and session
was significant as well (F19,95=30.4, p<0.0001) meaning that
that learning progressed at different rates on different
systems. In the end both systems were approximately
equally fast. The best-fitting power curves in Figure 10
suggest that had the experiment continued the system with
the menu might have overtaken the menuless system in
speed.

For error rate calculations we used the MSD/KSDPC
approach of Soukoreff and MacKenzie [18]. Corrections
while writing were allowed. Thus, comparing the presented
and transcribed text using the minimum string distance
(MSD) reveals only those errors that were left after
corrections. This is why the ratio of needed characters and
executed keystrokes needs to be computed. This measure is
called Keystrokes per character (KSPC). Larger KSPC
means more error correction activity. ANOVAs on MSD
and KSPC figures revealed no significant differences
between the systems or significant effects of session or the
interactions of these. The mean error rate after corrections

was 0.96% for the menu condition and 0.59% for the no
menu condition. The corresponding KSPC values were
1.097 and 1.094.

Figure 11 shows the time spent per character broken down
into time spent with the stylus down (downtime) and stylus
up (uptime) for three different situations. First, when the
menu is used (menu), second, when the menu is available,
but not used for this character (tap), and third when menu is
not available (no menu tap). This breakdown reveals that by
the end of the experiment all downtimes are short (95- 151
ms). The big differences are in uptimes. The uptime of the
menuless condition (no menu tap) is much lower than in the
menu condition (menu and tap). Apparently the users were
spending more time (170 ms more) in planning their next
move when the menu was available.

DISCUSSION AND CONCLUSIONS
Based on our simulations of user users’ motor behavior it
seemed that adding a marking menu to a soft keyboard
would speed up text entry. A measurement of character
entry speed in a simplified test situation supported this
finding. Finally, a longitudinal experiment with a more
realistic text entry task showed that the simulation results
may hold for expert users, but reaching that level of
expertise takes a long time. This should not be taken as a
very discouraging finding. All text entry systems require
extensive user learning. In comparison to some other
speedy text entry systems, adding the menu seems attractive
because it is compatible with traditional soft keyboarding.
Users who do not want to use the menu do not need to
know that it exists.

The menu design needs to be further explored. There may
be better menu designs than the vowel menu we used. An
appropriate size for the menu and the central “dead zone”
should be found. Also, backspace in the menu was found to
be useless. Something useful should take its place.

A menu-augmented soft keyboard needs some empty space
around it so that all menu items can be selected even after
landing on the peripheral keys. Whether this is acceptable

y = 17.833x0.1166

R2 = 0.9837

y = 9.8911x0.314

R2 = 0.9968

0
5

10
15
20
25
30
35

0 10 20 30
session

te
xt

 e
nt

ry
 r

at
e

(w
pm

)

menu
no menu

Figure 10. Average text entry rate and extrapolations
up to session 30 as a function of the session number.

0
200
400
600
800

1000
1200

0 5 10 15 20
session

tim
e

(m
s)

menu downtime menu uptime
tap downtime tap uptime
no menu tap downtime no menu tap uptime

Figure 11. Average per character stylus down and
stylus up durations.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

429

in small devices remains to be seen. Some of the
surrounding space can be used for placing infrequently used
keys such as function keys and numeric keys that are
unlikely to be followed by a menu selection.

The text entry rates we measured in experiment 2 were
lower than others have reported. For example MacKenzie
and Zhang [12] reported QWERTY tapping rates up to 40
wpm in a similar experiment. Possible reasons for the
difference include our use of upper and lower case
characters and punctuation as well as not allowing breaks
during the half-sessions, allowing corrections, having non-
native speakers writing English, a larger phrase set
(MacKenzie and Zhang had 70 phrases), and shorter
training sessions.

In conclusion, the menu-augmented soft keyboard is likely
to be faster in expert use with the QWERTY layout.
Because the QWERTY layout is widely used and the menu
does not harm its normal operation, it may be worthwhile to
add the menu to future soft keyboard implementations.

ACKNOWLEDGMENTS
We thank Grigori Evreinov for the seminal discussions and
Scott MacKenzie for comments in early phases of the
project. This work was funded by the Tampere Graduate
School on Information Science and Engineering (TISE) and
Academy of Finland (grant 73987).

REFERENCES
1. Bellman, T., and MacKenzie, I. S. A probabilistic

character layout strategy for mobile text entry. Proc.
Graphics Interface '98, Canadian Information
Processing Society (1998), 168-176.

2. Brooks, M., Introducing the Dvorak Keyboard.
http://www.mwbrooks.com/dvorak/

3. Card, S. K., Moran, T. P., and Newell, A. The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum (1983).

4. Gnatenko, V. Multi-directional Input Keypad (the MIK)
- text input solution for mobile devices.
http://www.vitgn.com/

5. Isokoski, P., and Raisamo, R. Architecture for Personal
Text Entry Methods, in Morten Borup Harning and Jean
Vanderdonckt (Eds.), Closing the Gap: Software
Engineering and Human-Computer Interaction, IFIP (
2003), 1-8. http://www.se-hci.org/bridging/interact/

6. Jhaveri, N. Two Characters per Stroke – A Novel Pen-
Based Text Input Technique, in Grigori Evreinov (ed.),
New Interaction Techniques 2003 (Report B-2003-5),
Department of Computer and Information Sciences,
University of Tampere (2003) 10-15.
http://www.cs.uta.fi/reports/bsarja/B-2003-5.pdf

7. Kurtenbach, G., and Buxton, W. The limits of expert
performance using hierarchic marking menus. Proc. of
INTERCHI 1993, ACM Press (1993), 482-487.

8. MacKenzie, I. S. A note on the information-theoretic
basis for Fitts' law. Journal of Motor Behavior, 21
(1989), 323-330.

9. MacKenzie, I. S. Mobile text entry using three keys,
Proc. NordiCHI 2002, ACM Press (2002), 27-34.

10. MacKenzie, I. S., and Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. Ext. Abstracts
CHI2003, ACM Press (2003), 754-755.

11. MacKenzie, I. S., and Soukoreff, R. W. Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction, 17 (2002), 147-
198.

12. MacKenzie, I. S., and Zhang, S. Z. The design and
evaluation of a high performance soft keyboard. Proc.
CHI '99, ACM Press (1999), 25-31.

13. MacKenzie, I. S., Zhang, S. X., and Soukoreff, R. W.
Text entry using soft keyboards. Behaviour &
Information Technology, 18 (1999), 235-244.

14. Masui, T. An Efficient Text Input Method for Pen-based
Computers, Proc. CHI ’98, ACM Press (1998), 328-
335.

15. McQueen, C., MacKenzie, I. S., and Zhang, S. X. An
extended study of numeric entry on pen-based
computers. Proc. Graphics Interface '95, Canadian
Information Processing Society (1995), 215-222.

16. Nesbat S. B. Fast, Full Text Entry Using a Physical or
Virtual 12-Button Keypad.
http://www.exideas.com/ME/whitepaper.pdf

17. Soukoreff, R. W., and MacKenzie, I. S. Theoretical
upper and lower bounds on typing speeds using a stylus
and soft keyboard. Behaviour & Information
Technology, 14 (1995), 370-379.

18. Soukoreff, R. W., & MacKenzie, I. S. Measuring errors
in text entry tasks: An application of the Levenshtein
string distance statistic. Ext. Abstracts CHI2001, ACM
Press (2001), 319-320.

19. The Fitaly Keyboard
http://www.fitaly.com/fitaly/fitaly.htm

20. Venolia, D., and Neiberg, F. T-cube: A Fast, Self-
Disclosing Pen-Based Alphabet. Proc. CHI ‘94, ACM
Press (1994), 263 - 270.

21. Zhai, S., Hunter, M., and Smith, B.A. Performance
Optimization of Virtual Keyboards, Human-Computer
Interaction, 17 (2002), 229-270.

22. Zhai, S., Hunter, M., and Smith, B. A. The Metropolis
keyboard - An exploration of quantitative techniques for
virtual keyboard design, Proc. UIST 2000, CHI Letters
2(2), ACM Press (2000), 119-128.

23. Zhai, S., Sue, A., and Accot, J. Movement Model, Hits
Distribution and Learning in Virtual Keyboarding, Proc.
CHI 2002, CHI Letters 4(1), ACM Press (2002), 17- 24.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

430

