
Papier-Mâché: Toolkit Support for Tangible Input
Scott R. Klemmer, Jack Li, James Lin

Group for User Interface Research
Computer Science Division

University of California
Berkeley, CA 94720-1776, USA

srk@cs.berkeley.edu

James A. Landay
DUB Group

Computer Science & Engineering
University of Washington

Seattle, WA 98195-2350, USA
landay@cs.washington.edu

Abstract
Tangible user interfaces (TUIs) augment the physical world
by integrating digital information with everyday physical
objects. Currently, building these UIs requires “getting down
and dirty” with input technologies such as computer vision.
Consequently, only a small cadre of technology experts can
currently build these UIs. Based on a literature review and
structured interviews with nine TUI researchers, we created
Papier-Mâché, a toolkit for building tangible interfaces using
computer vision, electronic tags, and barcodes. Papier-Mâché
introduces a high-level event model for working with these
technologies that facilitates technology portability. For
example, an application can be prototyped with computer
vision and deployed with RFID. We present an evaluation of
our toolkit with six class projects and a user study with seven
programmers, finding the input abstractions, technology
portability, and monitoring window to be highly effective.

Categories & Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques — software
libraries; user interfaces. H.5.1 [Information Interfaces]:
Multimedia Information Systems —artificial, augmented, and
virtual realities. H.5.2 [Information Interfaces]: User
Interfaces — input devices and strategies; interaction styles;
prototyping; user-centered design. I.4.9 [Image Processing
and Computer Vision]: Applications.

Keywords: tangible interfaces, computer vision, barcode,
RFID, augmented reality, toolkits, API design

INTRODUCTION
Tangible user interfaces (TUIs) augment the physical world
by integrating digital information with everyday physical
objects [14]. Generally, TUIs provide physical input that
controls graphical or audio output. Developing tangible in-
terfaces is problematic because programmers are responsible
for acquiring and abstracting physical input. This is difficult,
time-consuming, and requires a high level of technical
expertise in a field very different from user interface de-

velopment — especially with computer vision. These diffi-
culties echo the experiences of developing GUIs 20 years ago.
An early GUI toolkit, MacApp, reduced application
development time by a factor of five [23]. Similar reductions
in development time, with corresponding increases in
software reliability [10] and technology portability, can be
achieved by a toolkit supporting tangible interaction.

This paper presents Papier-Mâché, a toolkit that lowers the
threshold for developing tangible user interfaces. It enables
programmers who are not input hardware experts to develop
TUIs, as GUI toolkits have enabled programmers who are not
graphics hardware experts to build GUIs. Papier-Mâché’s
library supports several types of physical input: computer
vision (web and video cameras, the file system, and TWAIN),
RFID, and barcodes (1D EAN, 2D PDF417, and 2D CyberCode

[28]). Through technology-independent input abstractions,
Papier-Mâché also improves application flexibility, allowing
developers to retarget an application to a different input
technology with minimal code changes.

A significant difficulty in debugging is the limited visibility
of application behavior [4] (§ 7.2). The novel hardware used
in tangible interfaces and the algorithmic complexity of
computer vision exacerbate this problem. To facilitate
debugging, Papier-Mâché provides application developers a
monitoring window displaying the current input objects,
image input and processing, and behaviors being created or
invoked. The monitoring window also provides Wizard of
Oz (WOz) generation and removal of input; it is the first
post-WIMP toolkit to offer this facility. WOz control is useful
for simulating hardware when it is not available, and for
reproducing scenarios during development and debugging.

The design of Papier-Mâché has been deeply influenced by
our experience in building physical interfaces over the past
several years. This experiential knowledge is very powerful

— toolkit designers with prior experience building relevant
applications are in a much better position to design truly
useful abstractions [22] (§ 2.1). As part of our user-centered
design process, we also leveraged the experiential knowledge
of others, conducting structured interviews with nine
researchers who have built tangible interfaces.

In addition to its toolkit contributions, this paper introduces
two methodological contributions. This is the first paper to
mploy fieldwork as a methodological basis for toolkit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

eCopyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

 Volume 6, Number 1 399

design. A toolkit is software where the “user interface” is an
API, and the users are programmers. To our knowledge, this
paper is also the first to employ a laboratory study as a
method of evaluating an API as a user interface. (There have
been studies of programming languages and environments,
e.g., [27]).

In this paper, we first summarize our literature review and
interviews that informed Papier-Mâché. Next we discuss
Papier-Mâché’s architecture. We then present the results of
our two evaluations. We close with related work on TUI
taxonomies and ubiquitous computing toolkits.

INSPIRING TANGIBLE INTERFACES
To better understand the domain of tangible interfaces, we
conducted a literature survey of existing systems employing
paper and other everyday objects as input. The twenty-four
representative applications fall into four broad categories:
spatial, topological, associative, and forms.

In spatial applications, users collaboratively create and in-
teract with information in a Cartesian plane. These applica-
tions include augmented walls, whiteboards, and tables. A
majority of these applications use computer vision, often in
conjunction with image capture. Collaborage, a spatial
application, connects information on physical walls “with
electronic information, such as a physical In/Out board
connected to a people-locator database” [21] (see Figure 1).

Topological applications use the relationships between
physical objects to control application objects such as media
files or PowerPoint slides [25]. Paper Flight Strips [18]
augments flight controllers’ current work practice of using
paper strips by capturing and displaying information to the
controllers as the strips are passed around.

With associative applications, physical objects serve as an
index or “physical hyperlink” to digital media. Durrell
Bishop’s marble answering machine [14] (see Figure 2)
deposits a physical marble with an embedded electronic tag
each time a message is left. To play a message, one picks up
the marble and drops it into an indentation in the machine.
Most associative applications employ either barcodes or
electronic tags.

Forms applications provide batch processing of paper
interactions. The Paper PDA [12] is a set of paper templates
for a day planner. Users work with the planner in a traditional
manner, then scan or fax the pages to electronically

synchronize handwritten changes with the electronic data.
Synchronization also executes actions such as sending hand-
written email.

These twenty-four applications share much functionality with
each other, including:
• Physical input for arranging electronic content
• Physical input for invoking actions (e.g., media access)
• Electronic capture of physical structures
• Coordinating physical input and graphical output
• An add, update, remove event structure — these events

should contain information about the input (such as size
and color), and should be easily extensible

In all of these applications, feedback is either graphical or
auditory. Graphical feedback is sometimes geo-referenced
(overlaying the physical input, e.g., [17, 20]), sometimes
collocated but on a separate display [16, 25], and sometimes
non-collocated (e.g., Collaborage’s In/Out web page [21]).
For this reason, we have concentrated our current research
efforts on input support. This taxonomy omits haptic and
mechatronic user interfaces (which do provide physical
output), as these UIs are not the focus of our research.

STRUCTURED INTERVIEWS WITH TUI DESIGNERS
As part of our user-centered design process, we conducted
structured interviews with nine researchers who have built
tangible interfaces. We conducted these interviews in person
at the workplaces of researchers who were near our
university, and over the phone or via an email survey
otherwise. These researchers employed a variety of sensing
techniques including vision, RF and capacitance sensors, and
barcodes. Here, we summarize the findings that most directly
influenced the toolkit architecture. We concentrate on the
difficulties they encountered, where tools could have
smoothed the process.

No Small Matter of Programming
By definition, tangible interfaces employ novel hardware. A
general theme among interviewees was that acquiring and
abstracting input was the most time consuming and
challenging piece of application development. This is not
only, as the cliché goes, a “small matter of programming.”
Acquisition and abstraction of physical input, especially with
computer vision, requires a high level of technical expertise
in a field very different from user interface development. In
each of the three projects that employed computer vision, the
team included a vision expert. Even with an expert, vision

Figure 1. Collaborage [21], a spatial TUI where physical walls such as an in/out
board (left) can be captured for online display (right).

Figure 2. The marble answering machine [14], an
associative TUI, uses marbles as a physical index
to recorded answering machine messages.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

400

proved challenging. In the words of one vision researcher,
“getting down and dirty with the pixels” was difficult and
time consuming.

Writing code without the help of a toolkit yielded applica-
tions that were unreliable, brittle, or both. This discouraged
experimentation, change, and improvement, limiting
researchers’ ability to conduct user evaluation, especially
longitudinal studies. One interviewee avoided these studies
because his team lacked the resources to “add all the bells
and whistles” that make a system usable.

The Appropriate Abstraction is Events, not Widgets
Model-View-Controller (MVC) [26] is a software design
pattern for developing GUIs. In MVC-style user interfaces, a
controller (input abstraction) sends input events to a model
(application logic), and the model sends application events to
a view. The view-controller combination is called a widget.
While some post-WIMP toolkits have hoped to provide an
analogue to widgets (e.g., the Context Toolkit [5]), in practice
toolkit support for the view (output) is distinct from toolkit
support for the controller (input), and with good reason: a
particular piece of input can be used for many different types
of output. Interactors [24] extends MVC with higher-level
input events. This higher-level API shields application
developers from implementation details such as windowing
systems. Papier-Mâché’s event structure and associations
provide a similarly high level of abstraction, allowing
developers to talk about objects, events, and behavior at a
semantic level, e.g., “for each Post-it note the camera sees,
the application should create a web page.”

Authoring Behavior: Associations and Classifications
Tangible interfaces couple physical input with electronic
behavior; for example, a marble represents an answering
machine message [14]. This coupling implies both a classifi-
cation describing the general case (marbles = messages), and
an association describing each specific case (RFID tag 73 =
“Hi, this is Aaron, please call me back”). While our inter-
viewees provided these metaphors very clearly in English,
not everyone felt they were implemented as clearly in soft-
ware. Several interviewees wished they had a more flexible
method of defining associations, making it easier to change
the input technology and to explore alternative interactions
for a given input technology.

Importance of Feedback for Users and Developers
Good feedback is a central tenet of user interface design.
Feedback is particularly important to developers, because the
complexity of their task is so high. One researcher found that,
“One key issue was that sensing errors were pretty
mysterious from the users’ perspective.” Providing visual
feedback about the system’s perception of tracked objects
helped users compensate for tracking errors.

Debugging is one of the most difficult parts of application
development, largely because of the limited visibility of
dynamic application behavior [4]. The novel hardware used
in tangible UIs, and the algorithmic complexity of computer
vision, only exacerbate this problem. One interviewee had

“the lingering impression that the system must be broken,
when in fact the system was just being slow because we were
pushing the limits of computation speed.”

THE PAPIER-MÂCHÉ ARCHITECTURE
Our interviews and literature survey showed us that toolkit
support for tangible input should support:
• Many simultaneous input objects
• Input at the object level, not the pixel level
• Application portability across multiple input technologies
• Uniform events across the multiple input technologies,

supporting easy application retargeting
• Classifying input and associating it with application

behavior
• Feedback for end users
• Visualizations helping programmers understand what

objects were created and why, and the effect of events
Papier-Mâché is an open-source Java toolkit written using the
Java Media Framework (JMF) and Advanced Imaging (JAI)
APIs. JMF supports any camera with a standard driver, from
inexpensive webcams to high-quality 1394 cameras. We
explain the Papier-Mâché architecture using two examples:
1) an RFID implementation of Bishop’s marble answering
machine [14], and 2) a simplified version of PARC’s
Collaborage [21] using computer vision and barcodes. For
each of these applications, a developer has two primary tasks:
declaring the input that she is interested in and mapping input
to application behavior via associations.

Input Abstraction and Event Generation
Papier-Mâché represents physical objects as Phobs. The
input layer acquires sensor input, interprets it, and generates
the Phobs. A developer is responsible for selecting input
types, such as RFID or vision. She is not responsible for
discovering the input devices attached to the computer,
establishing a connection to them, or generating events from
the input. These “accidental steps” are not only time-
consuming, but require substantial hardware and computer
vision expertise, a field very different from user interface
development. For example, the marble answering machine
developer adds her application logic as a listener to an RFID
reader but does not need to manage a connection to the
hardware. Similarly, the Collaborage developer tells Papier-
Mâché that he is interested in receiving computer vision
events with a video camera as the source.

Event generation
Once the developer has selected an input source, Papier-
Mâché generates events representing the addition, updating,
and removal of objects from a sensor’s view. Event types are
consistent across all technologies. Providing high-level
events substantially lowers the application development
threshold and facilitates technology portability.

While all technologies fire the same events, different tech-
nologies provide different types of information about the
physical objects they sense. RFID provides only the tag and

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

401

reader IDs. Vision provides much more information: the size,
location, orientation, bounding box, and mean color of
objects. (Size, location, and orientation are computed using
image moments [9].) Because this set is commonly useful,
but not exhaustive, VisionPhobs support extensibility:
each stores a reference to the image the object was found in.
Application developers can use this for additional processing.
Barcodes contain their ID, their type (EAN, PDF417, or
CyberCode [28]), and a reference to the barcode image, pro-
viding vision information such as location and orientation.

Generating RFID events requires minimal inference. Each
reader provides events about tags currently placed on it.
When a tag is placed on a reader, Papier-Mâché generates a
phobAdded event. Each subsequent sensing of the tag
generates a phobUpdated event. If the reader does not
report a tag’s presence within a certain amount of time,
Papier-Mâché infers that the tag has been removed,
generating a phobRemoved event. This technique was
introduced by [31]. RFID events contain both the tag ID and
the reader ID. Applications can use either or both of these
pieces of information to determine application behavior.

Image analysis
Generating vision events requires much more interpretation
of the input. Image analysis in Papier-Mâché has three
phases: 1) camera calibration, 2) image segmentation, and 3)
event creation and dispatching. The contribution of our
research is not in the domain of recognition algorithms; the
vision techniques we use are drawn from the literature.
Additionally, each of these processing steps can be
overridden by application developers if they are so inclined.

We have implemented camera calibration using perspective
correction — an efficient method that most contemporary
graphics hardware, and the JAI library, provide as a primitive.
(More computationally expensive and precise methods exist,
see [8], Chapters 1 – 3 for an excellent overview of the theory
and methods.)

The segmentation step partitions an image into objects and
background. (See [8], Chapters 14 – 16 for an overview of
image segmentation.) We employ edge detection to generate
a bi-level image where white pixels represent object
boundaries and all other pixels are black. Labeled foreground
pixels are grouped into objects (segments) using the
connected components algorithm [13]. We create a
VisionPhob for each object. At each time step, the vision
system fires a phobAdded event for new objects, a
phobUpdated event for previously seen objects, and a
phobRemoved event for objects no longer visible.

Associations and Classifications
Tangible interfaces couple physical input with electronic
behavior. In the In/Out board, a barcode ID represents a
person, and its location represents whether they are in or out.
Developers author these representation mappings by
implementing an AssociationFactory, which listens to
events from the input sources. The factory receives a callback
to create a new representation instance (e.g., audio message)
for each new Phob. Association elements can be either nouns
or actions [7]. Nouns (such as audio clips and web pages)
represent content; they can be the selection focus of an
application. Actions (such as fast-forward and rewind)
control the current selection focus.

Program Monitoring: Application State Display
Papier-Mâché provides application developers a monitoring
window (see Figure 3). It displays the current input objects,
image input and processing, and behaviors being created or
invoked with the association map.

Current objects and vision I/O
At the left-hand side of the monitoring window, Papier-
Mâché displays a tree of all current input technologies,
PhobProducers, and Phobs. This allows developers to see
the current state of the system. Each Phob appears in the
hierarchy beneath the generator that sensed it. The Phob
displays a summary of its properties; VisionPhobs also
ave a circular icon showing their color.

Figure 3. The monitoring window. In the 1st column, each current object appears in the hierarchy beneath the generator that sensed
it. The 2nd column displays the vision input and output. The 3rd column displays classifiers (in this figure, RFID tags are associated
with audio clips, and vision objects with graphical analogues). The red pen is selected in all three columns. The barcode recognizer is
displayed in the top-right, and audio output is displayed on the bottom-right.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

h

 Volume 6, Number 1 402

Raw camera input is displayed at the top of the second pane.
At the bottom of the second pane is the processed image; it
displays each object’s outline, bounding box, and orientation
axis. Clicking on an object in either the “Current Phobs”
view or the vision view highlights it in both views.

Wizard of Oz control
Papier-Mâché is the first post-WIMP toolkit to offer Wizard of
Oz (WOz) generation and removal of input. This control is
provided by the add and remove buttons at the bottom of the
monitoring window; pressing these buttons causes the
appropriate PhobProducer to fire an add or remove event,
exactly as if it had come from the sensor. For computer
vision, pressing add generates a Phob with a reference to the
camera’s current image. This WOz control is useful when
hardware is not available, and for reproducing scenarios
during development and debugging.

Performance
On contemporary hardware, Papier-Mâché runs at interactive
rates. On a dual Pentium III computer running Windows XP,
the vision system runs at 5 frames per second without
monitoring, and 4.5 FPS with monitoring, at a CPU load of
80%. With the vision system and two RFID readers, the
performance is 3 FPS. The performance is more than
sufficient for forms and associative applications, and suffi-
cient for topological and spatial applications with discrete
events. Where tangible input provides a continuous, inter-
active control, current performance may be acceptable, but a
minimum of 10 FPS is required for these controls to feel truly
interactive [2]. Of the 24 applications we surveyed, five
required this continuous direct manipulation. These
performance numbers should be considered lower bounds on
performance, as our code is entirely unoptimized.

Lowering the Threshold: A Simple Application
The following Java code comprises the complete source for a
simple application that graphically displays the objects found
by the vision system. It is only four lines of code, three of
which are constructor calls.
Have the vision system generate objects from camera input.
1 PhobProducer prod = new VisionPhobProducer
(new CameraImageSource());

Set up a map that associates each object seen by the camera
with a JPanel.
2 AssociationFactory factory = new
VisualAnalogueFactory(new PMacheWindow(
gen, CALIBRATE), JPanel.class);

3 AssociationMap assocMap = new
AssociationMap(factory);

Attach the map to the camera which will create, update, and
remove JPanels according to what the camera sees.
4 gen.addPhobListener(assocMap);

EVALUATION
In this section, we first discuss existing evaluation methods
for toolkits. We then describe two evaluations of Papier-
Mâché: use of the toolkit to build a group of class projects,
and an informal laboratory evaluation.

Discussion of Evaluation Methods
Very little, if any, research has been published on evaluating
a toolkit’s API as a user interface. However, in designing API
evaluation methods, we can draw inspiration from both the
software engineering and the empirical studies of
programmers communities.

Common evaluation metrics in the software engineering
community include performance, reliability, and lines of
code needed to produce an application. (For an excellent
review of metric-based evaluation, see [3].) While these met-
rics are important, they do not address the end-user
experience of software development.

The empirical studies of programmers community has
identified several desirable properties of programming
languages that we believe are also relevant for evaluating a
toolkit such as Papier-Mâché:

• Ease of use. Programming languages and toolkits should
be evaluated on how readable programs using the toolkit
are by other programmers, how learnable the toolkit is,
how convenient it is for expressing certain algorithms, and
how comprehensible it is to novice users [29] (p. 1).

• Facilitating reuse. A development tool should provide
solutions to common sub-problems, and frameworks that
are reusable in “similar big problems” [4] (Ch. 4),
minimizing the amount of application code.

• Schemas yield similar code. In our user study, we looked
for similarity of code structure — both between
programmers and for the same programmer across tasks.
This code similarity implies that programmers employ a
common schema (design pattern) to generate the solutions.
This is desirable because it minimizes design errors,
facilitates collaboration, and makes maintaining the code
of others easier [4], (§ 5.2.1). From this perspective, the
success of a toolkit is judged by the extent to which it is
leveraged to generate the solution.

Applications Using Papier-Mâché in Coursework
Spring 2003, graduate human-computer interaction
Two groups in the Spring 2003 offering of the graduate HCI
class at our university built projects using Papier-Mâché.

Physical Macros is a topological TUI for programming mac-
ros, such as “actions” in Adobe Photoshop. In this system,
users compose physical function blocks that represent image
editing functions. When examining their code, we found that
presenting geo-referenced visual feedback was a substantial
portion of the code. We then realized that many of our
inspiring applications, including The Designers’ Outpost
[17], also require this feature. For this reason, we introduced
the concept of associations.

SiteView (see Figure 4) is a spatial TUI for controlling home
automation systems. On a floor plan of a room, users create
rules by manipulating physical icons representing conditions
and actions. The system provides feedback about how rules
will affect the environment by projecting photographs onto a
vertical display. SiteView employs a ceiling-mounted camera

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

403

to find the location and orientation of the thermostat and the
light bulbs, and three RFID sensors for parameter input
(weather, day of week, and time).

The thermostat is distinguished by size; the bulbs are dis-
tinguished by size and color. In general, the system worked
well, but human hands were occasionally picked up. This
inspired our addition of an event filter that removes objects in
motion. With this in place, human hands do not interfere with
recognition. SiteView is roughly 3000 lines of code; of this
only about 30 lines access Papier-Mâché. As a point of
comparison, the Designers’ Outpost [17], using OpenCV,
required several thousand lines of vision code to provide
comparable functionality. We consider this substantial
reduction in code to be a success of the API.

Fall 2003, ubiquitous computing
Four students in the Fall 2003 offering of a graduate course
on ubiquitous computing at our university used Papier-
Mâché for a one week mini-project. The goals of the mini-
projects were tracking laser pointers, capturing Post-it notes
on a whiteboard, invoking behaviors such as launching a web
browser or email reader, and reading product barcodes.

These programmers were impressed with the ease of writing
an application using Papier-Mâché. One student was amazed
that, “It took only a single line of code to set up a working
vision system!” Another student remarked, “Papier-Mâché
had a clear, useful, and easy-to-understand API. The ease
with which you could get a camera and basic object tracking
set up was extremely nice.”

The students also extended the toolkit in compelling ways.
One student’s extension to the monitoring system played a
tone whenever an object was recognized, mapping the size of
the recognized object to the tone’s pitch. This provided
lightweight monitoring feedback to the recognition process.

These projects also unearthed some shortcomings of the
current vision algorithms. For example, the system tended to
lose track of an object and then immediately find it again,
causing the undesired firing of phobRemoved and
phobAdded events. One student observed that vision
algorithms are inherently ambiguous and requested better
ways of dealing with the ambiguity.

In-lab Evaluation
We conducted an informal, controlled evaluation of Papier-

Mâché to learn about the usefulness of our input abstractions,
event layer, and monitoring window. Seven graduate students
in our university’s computer science department participated
in the study: 1 in graphics, 3 in programming languages, 2 in
systems, and 1 in AI. (We excluded HCI students due to
potential conflicts of interest, and theory students because
their background is less appropriate.) All participants had
experience programming in Java.

We began each evaluation session by demonstrating an
application associating RFID tags with audio clips, including
an explanation of the monitoring window. We then asked the
participant to read a user manual of the system. Next, we
gave participants a warm-up task and two full tasks. The
evaluation was conducted in our lab on a dual Pentium II
running Windows XP with the Eclipse IDE. We verbally
answered questions about Java and Eclipse; for toolkit
questions we referred participants to the user manual and
online Javadoc. We asked participants to “think aloud” about
what they were doing, and we videotaped the sessions and
saved participants’ Java code for further review.

The warm-up task was to change an application that finds red
objects so that it finds blue objects. The first full task was to
change an In/Out board written using computer vision to use
RFID tags instead. The second full task was to write an
application that used RFID tags to control a slideshow. One
tag represented a directory of images; the two other tags
represented next and previous operations.

Results
Every participant completed every task, though not without
moments of difficulty. We take this to be a success of the
API. In our first task, participants converted an In/Out board
from vision to RFID in a mean time of 31 minutes using a
mean of 19 lines of code. This shows that technology
portability is quite possible.

Participants appreciated the ease with which input could be
handled. In addition to their verbal enthusiasm, we noted that
no one spent time looking up how to connect to hardware,
how input was recognized, or how events were generated. In
our second task, participants authored an RFID-based image
browser in a mean time of 33 minutes using a mean of 38
lines of code. Note that participants on average wrote code
twice as fast in the second task as in the first, indicating that
they became familiar with the toolkit. Two of the participants
directly copied code; one said, “So this is like the marble
answering machine [in the user’s manual].”

Ironically, the warm-up task—changing a colored-object
finder from red to blue — proved to be the most challenging.
The problem was that the classifier took a color parameter
represented in a luminance-based color space (IHS), highly
effective for image analysis but not intuitive to most
computer scientists, who are used to the RGB color space.
Participants had difficulty even though we explained that the
color space was IHS, not RGB. Once a color in the proper
color space was found, it took less than a minute to make the
change. Ideally, these parameters should not be specified

Figure 4. SiteView, a spatial UI for end-user control of home
a
p

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

utomation systems. Left: A physical light-bulb icon on the floor-

lan, with projected feedback above. Right: The six physical icons.

 Volume 6, Number 1 404

textually at all. We are currently researching techniques for
visual authoring of associations and classifications.

Overall, participants found the monitoring window to be very
useful. For the warm-up task, they used it to understand the
(confusing) color classifier. For the In/Out board task, they
used the monitoring window to get information about the
attached RFID readers. Participants also used the monitoring
window to verify that the input was not the source of errors
in their code.

We also uncovered several usability issues. The most glaring
was an inconsistency in naming related elements: the
superclass was named PhobGenerator, a subclass
RFIDReader, and the accessor method getSource. Other
points of confusion highlighted places where our
documentation was insufficient. We have since addressed
these usability issues by improving the API, documentation,
and method names based on the feedback from this study.

RELATED WORK
We present related work in TUI taxonomies and ubiquitous
computing toolkits. Papier-Mâché is heavily inspired by the
projects described in this section. A general distinction
between our work and prior work is that this is the first paper
to employ fieldwork as a methodological basis for toolkit de-
sign and use a laboratory study as a method of evaluating an
API as a user interface.

Emerging Frameworks for Tangible User Interfaces
Ullmer and Ishii [30] provide an excellent taxonomy of ex-
isting tangible interfaces. We have drawn heavily on both
this taxonomy and the innovative ideas of their Tangible
Media Group in creating our list of inspirational applications.
They also propose MCRpd as analogue to MVC for physical
UIs. The difference is that the view is split into two
components: Rp, the physical representation, and Rd, the
digital representation. However, from an implementation
standpoint, it is unclear whether explicitly separating physi-
cal and digital outputs is beneficial. In fact, for reasons of
application portability, it is important that the event layer be
agnostic to whether the implementation is physical or digital
(e.g., for studies, it would be useful to create and compare
physical and electronic versions of an application). Also, the
approach is untested: no tools or applications have been built
explicitly using the MCRpd approach.

Ubiquitous Computing Toolkits
The work most related to Papier-Mâché is Phidgets [11].
Phidgets are physical widgets: programmable ActiveX
controls that encapsulate communication with USB-attached
physical devices, such as a switch or motor. Phidgets are a
great step towards toolkits for tangible interfaces. The
graphical ActiveX controls, like our monitoring window,
provide an electronic representation of physical state. How-
ever, Phidgets and Papier-Mâché address different classes of
tangible interfaces. Phidgets primarily support tethered,
mechatronic TUIs that can be composed of powered, wired
sensors (e.g., a pressure sensor) and actuators (e.g., a motor).

Papier-Mâché supports TUI input from untethered, passive
objects, often requiring computer vision.

Papier-Mâché provides stronger support for the “insides of
the application” than Phidgets. Phidgets facilitates the
development of widget-like physical controls (such as
buttons and sliders), but provides no support for the creation,
editing, capture, and analysis of physical input, which Papier-
Mâché supports.

IStuff [1] introduces compelling extensions to the Phidgets
concept, primarily support for wireless devices. IStuff
provides fast remapping of input devices into the iRoom
framework, enabling standard GUIs to be controlled by novel
input technologies. There are two main differences in our
research agenda: First, like Phidgets, iStuff targets
mechatronic tangible interfaces, rather than augmented paper
tangible interfaces. For example, it is not possible to build
computer vision applications using iStuff or Phidgets.
Second, iStuff offers novel control of existing applications,
while Papier-Mâché does not. Unlike iStuff applications, the
tangible interfaces Papier-Mâché supports do not use a GUI
input model.

Fails and Olsen have implemented a highly successful
system for end-user training of vision recognizers, Image
Processing with Crayons [6]. It enables users to draw on
training images, selecting image areas (e.g., hands or note-
cards) that they would like the vision system to recognize.
They employ decision trees as their classification algorithm,
using pixel-level features. The resulting recognizers can be
serialized for incorporation into standard Java software.
Crayons complements our work well, offering a compelling
interaction technique for designating objects of interest.
Papier-Mâché’s recognition methods (e.g., edge detection
and perspective correction) are higher-level than the pixel-
level processing employed by Crayons. We also offer higher-
level object information (e.g., orientation and aspect ratio),
and most importantly, an event mechanism for fluidly
integrating vision events into applications. Papier-Mâché’s
classifiers also supports ambiguity [19], an important feature
unavailable in Crayons.

The Context Toolkit (CTK) [5] makes context-aware applica-
tions easier to build. We find this work inspiring for two
reasons. First, it is one of the most rigorous and widely used
post-WIMP toolkits to date. Second, it does not just provide a
software interface to physical sensors (a la Phidgets), it
“separates the acquisition and representation of context from
the delivery and reaction to context by a context-aware
application.” Papier-Mâché provides more monitoring and
WOz facilities than CTK, and it supports interactive tangible
interfaces, which CTK does not.

The ARToolKit [15] provides support for building applica-
tions that present geo-referenced 3D graphics overlaid on
cards marked with a thick black square. The ARToolKit
provides support for 3D graphics; Papier-Mâché does not.
The ARToolKit does not provide general information about
objects in the camera’s view, only the 3D location and ori-

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

405

entation of marker cards. It is not a general input toolkit; it is
tailored for recognizing marker cards and presenting geo-
referenced 3D graphics through a head-mounted display.

CONCLUSIONS AND FUTURE WORK
We have presented Papier-Mâché, a toolkit for building
tangible interfaces using computer vision, electronic tags, and
barcodes. Our event-based model for working with these
types of input facilitates technology portability. From our
literature review and interviews, we learned what
functionality Papier-Mâché should provide. Class projects
showed us how easy it was to apply Papier-Mâché to a
variety of systems. A user study validated that even first-time
users could build tangible interfaces and easily adapt
applications to another technology.

Currently, we are extending WOz support and researching
techniques for visually authoring associations and classifi-
cations. We plan to optimize the vision system, extending
support to applications that demand lower latency. We are
actively seeking more users, and we are researching
improved methods for evaluating the usefulness of toolkits
like Papier-Mâché. Papier-Mâché is open-source software
available at http://guir.berkeley.edu/papier-mache.

REFERENCES
1 Ballagas, R., M. Ringel, et al., iStuff: a physical user interface

toolkit for ubiquitous computing environments. Human Factors
in Computing Systems, CHI Letters, 2003. 5(1): pp. 537 – 44.

2 Card, S.K., T.P. Moran, and A. Newell, Chapter 2: The Human
Information Processor, in The Psychology of Human-Computer
Interaction, Lawrence Erlbaum: Hillsdale. pp. 23 – 97, 1983.

3 Clements, P., R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Boston: Addison-
Wesley. 323 pp, 2002.

4 Détienne, F., Software Design — Cognitive Aspects. London:
Springer Verlag. 200 pp, 2001.

5 Dey, A.K., D. Salber, and G.D. Abowd, A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications. Human-Computer Interaction,
2001. 16(2-4): pp. 97 – 166.

6 Fails, J.A. and D.R. Olsen, A Design Tool for Camera-based
Interaction. Human Factors in Computing Systems, CHI Letters,
2003. 5(1): pp. 449 – 56.

7 Fishkin, K.P., T.P. Moran, and B.L. Harrison. Embodied User
Interfaces: Towards Invisible User Interfaces. Proc. Conf. on
Engineering for Human-Computer Interaction. pp. 1–18, 1998.

8 Forsyth, D.A. and J. Ponce, Computer Vision: A Modern
Approach. Upper Saddle River: Prentice Hall. 693 pp, 2003.

9 Freeman, W.T., D. Anderson, P. Beardsley, C. Dodge, et al.,
Computer vision for interactive computer graphics. IEEE
Computer Graphics and Applications, 1998. 18(3): pp. 42 – 53.

10 Grady, R.B., Practical Software Metrics for Project Management
and Process Improvement, Prentice Hall: Englewood Cliffs, NJ.
pp. 17, 1992.

11 Greenberg, S. and C. Fitchett, Phidgets: easy development of
physical interfaces through physical widgets. User Interface
Software & Technology, CHI Letters, 2001. 3(2): pp. 209 – 18.

12 Heiner, J.M., S.E. Hudson, and K. Tanaka, Linking and
messaging from real paper in the paper PDA. User Interface
Software & Technology, CHI Letters, 1999. 1(1): pp. 179 – 86.

13 Horn, B., Robot vision. Cambridge: MIT Press. 509 pp, 1986.
14 Ishii, H. and B. Ullmer. Tangible Bits: Human Factors in

Computing Systems. Proc. CHI: Human factors in computing
systems. pp. 234 – 41, 1997.

15 Kato, H., M. Billinghurst, and I. Poupyrev. ARToolKit.
University of Washington HIT Lab, 2000.
http://www.hitl.washington.edu/artoolkit/

16 Klemmer, S.R., J. Graham, G.J. Wolff, and J.A. Landay, Books
with Voices: Paper Transcripts as a Tangible Interface to Oral
Histories. Human Factors in Computing Systems, CHI Letters,
2003. 5(1): pp. 89 – 96.

17 Klemmer, S.R., M.W. Newman, R. Farrell, M. Bilezikjian, and
J.A. Landay, The Designers’ Outpost: A Tangible Interface for
Collaborative Web Site Design. User Interface Software and
Technology, CHI Letters, 2001. 3(2): pp. 1 – 10.

18 Mackay, W.E., A.-L. Fayard, L. Frobert, and L. Médini.
Reinventing the Familiar: Exploring an Augmented Reality
Design Space for Air Traffic Control. Proc. CHI: Human
Factors in Computing Systems. ACM Press. pp. 558 – 65, 1998.

19 Mankoff, J., S.E. Hudson, and G.D. Abowd, Providing
Integrated Toolkit-Level Support for Ambiguity in Recognition-
Based Interfaces. Human Factors in Computing Systems, CHI
Letters, 2000. 2(1): pp. 368 – 375.

20 McGee, D.R., P.R. Cohen, R.M. Wesson, and S. Horman,
Comparing paper and tangible, multimodal tools. Human
Factors in Computing Systems, CHI Letters, 2002. 4(1): pp. 407

– 414.
21 Moran, T.P., E. Saund, W. van Melle, A. Gujar, et al., Design

and Technology for Collaborage: Collaborative Collages of
Information on Physical Walls. UIST: User Interface Software
and Technology, CHI Letters, 1999. 1(1): pp. 197 – 206.

22 Myers, B., S.E. Hudson, and R. Pausch, Past, Present, and
Future of User Interface Software Tools. ACM Transactions on
Computer-Human Interaction, 2000. 7(1): pp. 3 – 28.

23 Myers, B. and M.B. Rosson. Survey on User Interface
Programming. Proc. CHI: Human Factors in Computing
Systems. ACM Press. pp. 195 – 202, 1992.

24 Myers, B.A., A new model for handling input. ACM Trans. on
Information Systems, 1990. 8(3): pp. 289 – 320.

25 Nelson, L., S. Ichimura, E.R. Pederson, and L. Adams. Palette: a
paper interface for giving presentations. Proc. CHI: Human
Factors in Computing Systems. ACM Press. pp. 354 – 61, 1999.

26 Olsen, D.R., Chapter 5: Basic Interaction, in Developing User
Interfaces, Morgan Kaufmann. pp. 132 – 62, 1998.

27 Pane, J., A Programming System for Children that is Designed
for Usability, Carnegie Mellon University, Pittsburgh, 2002.
http://www.cs.cmu.edu/~pane/thesis

28 Rekimoto, J. and Y. Ayatsuka. CyberCode: Designing
Augmented Reality Environments with Visual Tags. Proc.
Designing Augmented Reality Environments (DARE 2000).
ACM Press. pp. 1 – 10, 2000.

29 Shneiderman, B. Empirical Studies of Programmers: The
Territory, Paths, and Destinations. Proc. First Workshop on
Empirical Studies of Programmers. Ablex Pub. pp. 1 – 12, 1986.

30 Ullmer, B. and H. Ishii, Emerging Frameworks for Tangible
User Interfaces, in Human-Computer Interaction in the New
Millennium, Addison-Wesley. pp. 579 – 601, 2001.

31 Want, R., K.P. Fishkin, A. Gujar, and B.L. Harrison. Bridging
Physical and Virtual Worlds With Electronic Tags. Proc. CHI:
Human Factors in Computing Systems. ACM Press. pp. 370 – 77,
1999.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

406

