
Papier-Mâché: Toolkit Support for Tangible Input 
Scott R. Klemmer, Jack Li, James Lin 

Group for User Interface Research 
Computer Science Division 

University of California 
Berkeley, CA 94720-1776, USA 

srk@cs.berkeley.edu 

James A. Landay 
DUB Group 

Computer Science & Engineering 
University of Washington 

Seattle, WA 98195-2350, USA 
landay@cs.washington.edu 

 
Abstract 
Tangible user interfaces (TUIs) augment the physical world 
by integrating digital information with everyday physical 
objects. Currently, building these UIs requires “getting down 
and dirty” with input technologies such as computer vision. 
Consequently, only a small cadre of technology experts can 
currently build these UIs. Based on a literature review and 
structured interviews with nine TUI researchers, we created 
Papier-Mâché, a toolkit for building tangible interfaces using 
computer vision, electronic tags, and barcodes. Papier-Mâché 
introduces a high-level event model for working with these 
technologies that facilitates technology portability. For 
example, an application can be prototyped with computer 
vision and deployed with RFID. We present an evaluation of 
our toolkit with six class projects and a user study with seven 
programmers, finding the input abstractions, technology 
portability, and monitoring window to be highly effective. 

Categories & Subject Descriptors: D.2.2 [Software 
Engineering]: Design Tools and Techniques — software 
libraries; user interfaces. H.5.1 [Information Interfaces]: 
Multimedia Information Systems —artificial, augmented, and 
virtual realities. H.5.2 [Information Interfaces]: User 
Interfaces — input devices and strategies; interaction styles; 
prototyping; user-centered design. I.4.9 [Image Processing 
and Computer Vision]: Applications. 

Keywords: tangible interfaces, computer vision, barcode, 
RFID, augmented reality, toolkits, API design 

INTRODUCTION 
Tangible user interfaces (TUIs) augment the physical world 
by integrating digital information with everyday physical 
objects [14]. Generally, TUIs provide physical input that 
controls graphical or audio output. Developing tangible in-
terfaces is problematic because programmers are responsible 
for acquiring and abstracting physical input. This is difficult, 
time-consuming, and requires a high level of technical 
expertise in a field very different from user interface de-

velopment — especially with computer vision. These diffi-
culties echo the experiences of developing GUIs 20 years ago. 
An early GUI toolkit, MacApp, reduced application 
development time by a factor of five [23]. Similar reductions 
in development time, with corresponding increases in 
software reliability [10] and technology portability, can be 
achieved by a toolkit supporting tangible interaction. 

This paper presents Papier-Mâché, a toolkit that lowers the 
threshold for developing tangible user interfaces. It enables 
programmers who are not input hardware experts to develop 
TUIs, as GUI toolkits have enabled programmers who are not 
graphics hardware experts to build GUIs. Papier-Mâché’s 
library supports several types of physical input: computer 
vision (web and video cameras, the file system, and TWAIN), 
RFID, and barcodes (1D EAN, 2D PDF417, and 2D CyberCode 

[28]). Through technology-independent input abstractions, 
Papier-Mâché also improves application flexibility, allowing 
developers to retarget an application to a different input 
technology with minimal code changes. 

A significant difficulty in debugging is the limited visibility 
of application behavior [4] (§ 7.2). The novel hardware used 
in tangible interfaces and the algorithmic complexity of 
computer vision exacerbate this problem. To facilitate 
debugging, Papier-Mâché provides application developers a 
monitoring window displaying the current input objects, 
image input and processing, and behaviors being created or 
invoked. The monitoring window also provides Wizard of 
Oz (WOz) generation and removal of input; it is the first 
post-WIMP toolkit to offer this facility. WOz control is useful 
for simulating hardware when it is not available, and for 
reproducing scenarios during development and debugging. 

The design of Papier-Mâché has been deeply influenced by 
our experience in building physical interfaces over the past 
several years. This experiential knowledge is very powerful 

— toolkit designers with prior experience building relevant 
applications are in a much better position to design truly 
useful abstractions [22] (§ 2.1). As part of our user-centered 
design process, we also leveraged the experiential knowledge 
of others, conducting structured interviews with nine 
researchers who have built tangible interfaces. 

In addition to its toolkit contributions, this paper introduces 
two methodological contributions. This is the first paper to 
mploy fieldwork as a methodological basis for toolkit 
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design. A toolkit is software where the “user interface” is an 
API, and the users are programmers. To our knowledge, this 
paper is also the first to employ a laboratory study as a 
method of evaluating an API as a user interface. (There have 
been studies of programming languages and environments, 
e.g., [27]). 

In this paper, we first summarize our literature review and 
interviews that informed Papier-Mâché. Next we discuss 
Papier-Mâché’s architecture. We then present the results of 
our two evaluations. We close with related work on TUI 
taxonomies and ubiquitous computing toolkits. 

INSPIRING TANGIBLE INTERFACES 
To better understand the domain of tangible interfaces, we 
conducted a literature survey of existing systems employing 
paper and other everyday objects as input. The twenty-four 
representative applications fall into four broad categories: 
spatial, topological, associative, and forms. 

In spatial applications, users collaboratively create and in-
teract with information in a Cartesian plane. These applica-
tions include augmented walls, whiteboards, and tables. A 
majority of these applications use computer vision, often in 
conjunction with image capture. Collaborage, a spatial 
application, connects information on physical walls “with 
electronic information, such as a physical In/Out board 
connected to a people-locator database” [21] (see Figure 1). 

Topological applications use the relationships between 
physical objects to control application objects such as media 
files or PowerPoint slides [25]. Paper Flight Strips [18] 
augments flight controllers’ current work practice of using 
paper strips by capturing and displaying information to the 
controllers as the strips are passed around. 

With associative applications, physical objects serve as an 
index or “physical hyperlink” to digital media. Durrell 
Bishop’s marble answering machine [14] (see Figure 2) 
deposits a physical marble with an embedded electronic tag 
each time a message is left. To play a message, one picks up 
the marble and drops it into an indentation in the machine. 
Most associative applications employ either barcodes or 
electronic tags. 

Forms applications provide batch processing of paper 
interactions. The Paper PDA [12] is a set of paper templates 
for a day planner. Users work with the planner in a traditional 
manner, then scan or fax the pages to electronically 

synchronize handwritten changes with the electronic data. 
Synchronization also executes actions such as sending hand-
written email. 

These twenty-four applications share much functionality with 
each other, including: 
• Physical input for arranging electronic content 
• Physical input for invoking actions (e.g., media access) 
• Electronic capture of physical structures 
• Coordinating physical input and graphical output 
• An add, update, remove event structure — these events 

should contain information about the input (such as size 
and color), and should be easily extensible 

In all of these applications, feedback is either graphical or 
auditory. Graphical feedback is sometimes geo-referenced 
(overlaying the physical input, e.g., [17, 20]), sometimes 
collocated but on a separate display [16, 25], and sometimes 
non-collocated (e.g., Collaborage’s In/Out web page [21]). 
For this reason, we have concentrated our current research 
efforts on input support. This taxonomy omits haptic and 
mechatronic user interfaces (which do provide physical 
output), as these UIs are not the focus of our research. 

STRUCTURED INTERVIEWS WITH TUI DESIGNERS 
As part of our user-centered design process, we conducted 
structured interviews with nine researchers who have built 
tangible interfaces. We conducted these interviews in person 
at the workplaces of researchers who were near our 
university, and over the phone or via an email survey 
otherwise. These researchers employed a variety of sensing 
techniques including vision, RF and capacitance sensors, and 
barcodes. Here, we summarize the findings that most directly 
influenced the toolkit architecture. We concentrate on the 
difficulties they encountered, where tools could have 
smoothed the process. 

No Small Matter of Programming 
By definition, tangible interfaces employ novel hardware. A 
general theme among interviewees was that acquiring and 
abstracting input was the most time consuming and 
challenging piece of application development. This is not 
only, as the cliché goes, a “small matter of programming.” 
Acquisition and abstraction of physical input, especially with 
computer vision, requires a high level of technical expertise 
in a field very different from user interface development. In 
each of the three projects that employed computer vision, the 
team included a vision expert. Even with an expert, vision 

  
Figure 1. Collaborage [21], a spatial TUI where physical walls such as an in/out 
board (left) can be captured for online display (right). 

 
Figure 2. The marble answering machine [14], an 
associative TUI, uses marbles as a physical index 
to recorded answering machine messages. 
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proved challenging. In the words of one vision researcher, 
“getting down and dirty with the pixels” was difficult and 
time consuming. 

Writing code without the help of a toolkit yielded applica-
tions that were unreliable, brittle, or both. This discouraged 
experimentation, change, and improvement, limiting 
researchers’ ability to conduct user evaluation, especially 
longitudinal studies. One interviewee avoided these studies 
because his team lacked the resources to “add all the bells 
and whistles” that make a system usable. 

The Appropriate Abstraction is Events, not Widgets 
Model-View-Controller (MVC) [26] is a software design 
pattern for developing GUIs. In MVC-style user interfaces, a 
controller (input abstraction) sends input events to a model 
(application logic), and the model sends application events to 
a view. The view-controller combination is called a widget. 
While some post-WIMP toolkits have hoped to provide an 
analogue to widgets (e.g., the Context Toolkit [5]), in practice 
toolkit support for the view (output) is distinct from toolkit 
support for the controller (input), and with good reason: a 
particular piece of input can be used for many different types 
of output. Interactors [24] extends MVC with higher-level 
input events. This higher-level API shields application 
developers from implementation details such as windowing 
systems. Papier-Mâché’s event structure and associations 
provide a similarly high level of abstraction, allowing 
developers to talk about objects, events, and behavior at a 
semantic level, e.g., “for each Post-it note the camera sees, 
the application should create a web page.” 

Authoring Behavior: Associations and Classifications 
Tangible interfaces couple physical input with electronic 
behavior; for example, a marble represents an answering 
machine message [14]. This coupling implies both a classifi-
cation describing the general case (marbles = messages), and 
an association describing each specific case (RFID tag 73 = 
“Hi, this is Aaron, please call me back”). While our inter-
viewees provided these metaphors very clearly in English, 
not everyone felt they were implemented as clearly in soft-
ware. Several interviewees wished they had a more flexible 
method of defining associations, making it easier to change 
the input technology and to explore alternative interactions 
for a given input technology. 

Importance of Feedback for Users and Developers 
Good feedback is a central tenet of user interface design. 
Feedback is particularly important to developers, because the 
complexity of their task is so high. One researcher found that, 
“One key issue was that sensing errors were pretty 
mysterious from the users’ perspective.” Providing visual 
feedback about the system’s perception of tracked objects 
helped users compensate for tracking errors. 

Debugging is one of the most difficult parts of application 
development, largely because of the limited visibility of 
dynamic application behavior [4]. The novel hardware used 
in tangible UIs, and the algorithmic complexity of computer 
vision, only exacerbate this problem. One interviewee had 

“the lingering impression that the system must be broken, 
when in fact the system was just being slow because we were 
pushing the limits of computation speed.”  

THE PAPIER-MÂCHÉ ARCHITECTURE 
Our interviews and literature survey showed us that toolkit 
support for tangible input should support: 
• Many simultaneous input objects 
• Input at the object level, not the pixel level 
• Application portability across multiple input technologies 
• Uniform events across the multiple input technologies, 

supporting easy application retargeting 
• Classifying input and associating it with application 

behavior 
• Feedback for end users 
• Visualizations helping programmers understand what 

objects were created and why, and the effect of events 
Papier-Mâché is an open-source Java toolkit written using the 
Java Media Framework (JMF) and Advanced Imaging (JAI) 
APIs. JMF supports any camera with a standard driver, from 
inexpensive webcams to high-quality 1394 cameras. We 
explain the Papier-Mâché architecture using two examples: 
1) an RFID implementation of Bishop’s marble answering 
machine [14], and 2) a simplified version of PARC’s 
Collaborage [21] using computer vision and barcodes. For 
each of these applications, a developer has two primary tasks: 
declaring the input that she is interested in and mapping input 
to application behavior via associations. 

Input Abstraction and Event Generation 
Papier-Mâché represents physical objects as Phobs. The 
input layer acquires sensor input, interprets it, and generates 
the Phobs. A developer is responsible for selecting input 
types, such as RFID or vision. She is not responsible for 
discovering the input devices attached to the computer, 
establishing a connection to them, or generating events from 
the input. These “accidental steps” are not only time-
consuming, but require substantial hardware and computer 
vision expertise, a field very different from user interface 
development. For example, the marble answering machine 
developer adds her application logic as a listener to an RFID 
reader but does not need to manage a connection to the 
hardware. Similarly, the Collaborage developer tells Papier-
Mâché that he is interested in receiving computer vision 
events with a video camera as the source. 

Event generation 
Once the developer has selected an input source, Papier-
Mâché generates events representing the addition, updating, 
and removal of objects from a sensor’s view. Event types are 
consistent across all technologies. Providing high-level 
events substantially lowers the application development 
threshold and facilitates technology portability. 

While all technologies fire the same events, different tech-
nologies provide different types of information about the 
physical objects they sense. RFID provides only the tag and 
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reader IDs. Vision provides much more information: the size, 
location, orientation, bounding box, and mean color of 
objects. (Size, location, and orientation are computed using 
image moments [9].) Because this set is commonly useful, 
but not exhaustive, VisionPhobs support extensibility: 
each stores a reference to the image the object was found in. 
Application developers can use this for additional processing. 
Barcodes contain their ID, their type (EAN, PDF417, or 
CyberCode [28]), and a reference to the barcode image, pro-
viding vision information such as location and orientation. 

Generating RFID events requires minimal inference. Each 
reader provides events about tags currently placed on it. 
When a tag is placed on a reader, Papier-Mâché generates a 
phobAdded event. Each subsequent sensing of the tag 
generates a phobUpdated event. If the reader does not 
report a tag’s presence within a certain amount of time, 
Papier-Mâché infers that the tag has been removed, 
generating a phobRemoved event. This technique was 
introduced by [31]. RFID events contain both the tag ID and 
the reader ID. Applications can use either or both of these 
pieces of information to determine application behavior. 

Image analysis 
Generating vision events requires much more interpretation 
of the input. Image analysis in Papier-Mâché has three 
phases: 1) camera calibration, 2) image segmentation, and 3) 
event creation and dispatching. The contribution of our 
research is not in the domain of recognition algorithms; the 
vision techniques we use are drawn from the literature. 
Additionally, each of these processing steps can be 
overridden by application developers if they are so inclined. 

We have implemented camera calibration using perspective 
correction — an efficient method that most contemporary 
graphics hardware, and the JAI library, provide as a primitive. 
(More computationally expensive and precise methods exist, 
see [8], Chapters 1 – 3 for an excellent overview of the theory 
and methods.) 

The segmentation step partitions an image into objects and 
background. (See [8], Chapters 14 – 16 for an overview of 
image segmentation.) We employ edge detection to generate 
a bi-level image where white pixels represent object 
boundaries and all other pixels are black. Labeled foreground 
pixels are grouped into objects (segments) using the 
connected components algorithm [13]. We create a 
VisionPhob for each object. At each time step, the vision 
system fires a phobAdded event for new objects, a 
phobUpdated event for previously seen objects, and a 
phobRemoved event for objects no longer visible. 

Associations and Classifications 
Tangible interfaces couple physical input with electronic 
behavior. In the In/Out board, a barcode ID represents a 
person, and its location represents whether they are in or out. 
Developers author these representation mappings by 
implementing an AssociationFactory, which listens to 
events from the input sources. The factory receives a callback 
to create a new representation instance (e.g., audio message) 
for each new Phob. Association elements can be either nouns 
or actions [7]. Nouns (such as audio clips and web pages) 
represent content; they can be the selection focus of an 
application. Actions (such as fast-forward and rewind) 
control the current selection focus. 

Program Monitoring: Application State Display 
Papier-Mâché provides application developers a monitoring 
window (see Figure 3). It displays the current input objects, 
image input and processing, and behaviors being created or 
invoked with the association map. 

Current objects and vision I/O 
At the left-hand side of the monitoring window, Papier-
Mâché displays a tree of all current input technologies, 
PhobProducers, and Phobs. This allows developers to see 
the current state of the system. Each Phob appears in the 
hierarchy beneath the generator that sensed it. The Phob 
displays a summary of its properties; VisionPhobs also 
ave a circular icon showing their color.  

 
Figure 3. The monitoring window. In the 1st column, each current object appears in the hierarchy beneath the generator that sensed 
it. The 2nd column displays the vision input and output. The 3rd column displays classifiers (in this figure, RFID  tags are associated 
with audio clips, and vision objects with graphical analogues). The red pen is selected in all three columns. The barcode recognizer is 
displayed in the top-right, and audio output is displayed on the bottom-right. 

CHI 2004  ׀  Paper 24-29 April  ׀  Vienna, Austria 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
h

 Volume 6, Number 1 402



Raw camera input is displayed at the top of the second pane. 
At the bottom of the second pane is the processed image; it 
displays each object’s outline, bounding box, and orientation 
axis. Clicking on an object in either the “Current Phobs” 
view or the vision view highlights it in both views. 

Wizard of Oz control 
Papier-Mâché is the first post-WIMP toolkit to offer Wizard of 
Oz (WOz) generation and removal of input. This control is 
provided by the add and remove buttons at the bottom of the 
monitoring window; pressing these buttons causes the 
appropriate PhobProducer to fire an add or remove event, 
exactly as if it had come from the sensor. For computer 
vision, pressing add generates a Phob with a reference to the 
camera’s current image. This WOz control is useful when 
hardware is not available, and for reproducing scenarios 
during development and debugging.  

Performance 
On contemporary hardware, Papier-Mâché runs at interactive 
rates. On a dual Pentium III computer running Windows XP, 
the vision system runs at 5 frames per second without 
monitoring, and 4.5 FPS with monitoring, at a CPU load of 
80%. With the vision system and two RFID readers, the 
performance is 3 FPS. The performance is more than 
sufficient for forms and associative applications, and suffi-
cient for topological and spatial applications with discrete 
events. Where tangible input provides a continuous, inter-
active control, current performance may be acceptable, but a 
minimum of 10 FPS is required for these controls to feel truly 
interactive [2]. Of the 24 applications we surveyed, five 
required this continuous direct manipulation. These 
performance numbers should be considered lower bounds on 
performance, as our code is entirely unoptimized. 

Lowering the Threshold: A Simple Application 
The following Java code comprises the complete source for a 
simple application that graphically displays the objects found 
by the vision system. It is only four lines of code, three of 
which are constructor calls. 
Have the vision system generate objects from camera input. 
1 PhobProducer prod = new VisionPhobProducer 
(new CameraImageSource()); 

Set up a map that associates each object seen by the camera 
with a JPanel. 
2 AssociationFactory factory = new 
VisualAnalogueFactory(new PMacheWindow( 
gen, CALIBRATE), JPanel.class); 

3 AssociationMap assocMap = new 
AssociationMap(factory); 

Attach the map to the camera which will create, update, and 
remove JPanels according to what the camera sees. 
4 gen.addPhobListener(assocMap); 

EVALUATION 
In this section, we first discuss existing evaluation methods 
for toolkits. We then describe two evaluations of Papier-
Mâché: use of the toolkit to build a group of class projects, 
and an informal laboratory evaluation. 

Discussion of Evaluation Methods 
Very little, if any, research has been published on evaluating 
a toolkit’s API as a user interface. However, in designing API 
evaluation methods, we can draw inspiration from both the 
software engineering and the empirical studies of 
programmers communities. 

Common evaluation metrics in the software engineering 
community include performance, reliability, and lines of 
code needed to produce an application. (For an excellent 
review of metric-based evaluation, see [3].) While these met-
rics are important, they do not address the end-user 
experience of software development. 

The empirical studies of programmers community has 
identified several desirable properties of programming 
languages that we believe are also relevant for evaluating a 
toolkit such as Papier-Mâché: 

• Ease of use. Programming languages and toolkits should 
be evaluated on how readable programs using the toolkit 
are by other programmers, how learnable the toolkit is, 
how convenient it is for expressing certain algorithms, and 
how comprehensible it is to novice users [29] (p. 1). 

• Facilitating reuse. A development tool should provide 
solutions to common sub-problems, and frameworks that 
are reusable in “similar big problems” [4] (Ch. 4), 
minimizing the amount of application code. 

• Schemas yield similar code. In our user study, we looked 
for similarity of code structure — both between 
programmers and for the same programmer across tasks. 
This code similarity implies that programmers employ a 
common schema (design pattern) to generate the solutions. 
This is desirable because it minimizes design errors, 
facilitates collaboration, and makes maintaining the code 
of others easier [4], (§ 5.2.1). From this perspective, the 
success of a toolkit is judged by the extent to which it is 
leveraged to generate the solution. 

Applications Using Papier-Mâché in Coursework 
Spring 2003, graduate human-computer interaction 
Two groups in the Spring 2003 offering of the graduate HCI 
class at our university built projects using Papier-Mâché. 

Physical Macros is a topological TUI for programming mac-
ros, such as “actions” in Adobe Photoshop. In this system, 
users compose physical function blocks that represent image 
editing functions. When examining their code, we found that 
presenting geo-referenced visual feedback was a substantial 
portion of the code. We then realized that many of our 
inspiring applications, including The Designers’ Outpost 
[17], also require this feature. For this reason, we introduced 
the concept of associations. 

SiteView (see Figure 4) is a spatial TUI for controlling home 
automation systems. On a floor plan of a room, users create 
rules by manipulating physical icons representing conditions 
and actions. The system provides feedback about how rules 
will affect the environment by projecting photographs onto a 
vertical display. SiteView employs a ceiling-mounted camera 
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to find the location and orientation of the thermostat and the 
light bulbs, and three RFID sensors for parameter input 
(weather, day of week, and time). 

The thermostat is distinguished by size; the bulbs are dis-
tinguished by size and color. In general, the system worked 
well, but human hands were occasionally picked up. This 
inspired our addition of an event filter that removes objects in 
motion. With this in place, human hands do not interfere with 
recognition. SiteView is roughly 3000 lines of code; of this 
only about 30 lines access Papier-Mâché. As a point of 
comparison, the Designers’ Outpost [17], using OpenCV, 
required several thousand lines of vision code to provide 
comparable functionality. We consider this substantial 
reduction in code to be a success of the API. 

Fall 2003, ubiquitous computing 
Four students in the Fall 2003 offering of a graduate course 
on ubiquitous computing at our university used Papier-
Mâché for a one week mini-project. The goals of the mini-
projects were tracking laser pointers, capturing Post-it notes 
on a whiteboard, invoking behaviors such as launching a web 
browser or email reader, and reading product barcodes. 

These programmers were impressed with the ease of writing 
an application using Papier-Mâché. One student was amazed 
that, “It took only a single line of code to set up a working 
vision system!” Another student remarked, “Papier-Mâché 
had a clear, useful, and easy-to-understand API. The ease 
with which you could get a camera and basic object tracking 
set up was extremely nice.” 

The students also extended the toolkit in compelling ways. 
One student’s extension to the monitoring system played a 
tone whenever an object was recognized, mapping the size of 
the recognized object to the tone’s pitch. This provided 
lightweight monitoring feedback to the recognition process. 

These projects also unearthed some shortcomings of the 
current vision algorithms. For example, the system tended to 
lose track of an object and then immediately find it again, 
causing the undesired firing of phobRemoved and 
phobAdded events. One student observed that vision 
algorithms are inherently ambiguous and requested better 
ways of dealing with the ambiguity. 

In-lab Evaluation 
We conducted an informal, controlled evaluation of Papier-

Mâché to learn about the usefulness of our input abstractions, 
event layer, and monitoring window. Seven graduate students 
in our university’s computer science department participated 
in the study: 1 in graphics, 3 in programming languages, 2 in 
systems, and 1 in AI. (We excluded HCI students due to 
potential conflicts of interest, and theory students because 
their background is less appropriate.) All participants had 
experience programming in Java. 

We began each evaluation session by demonstrating an 
application associating RFID tags with audio clips, including 
an explanation of the monitoring window. We then asked the 
participant to read a user manual of the system. Next, we 
gave participants a warm-up task and two full tasks. The 
evaluation was conducted in our lab on a dual Pentium II 
running Windows XP with the Eclipse IDE. We verbally 
answered questions about Java and Eclipse; for toolkit 
questions we referred participants to the user manual and 
online Javadoc. We asked participants to “think aloud” about 
what they were doing, and we videotaped the sessions and 
saved participants’ Java code for further review. 

The warm-up task was to change an application that finds red 
objects so that it finds blue objects. The first full task was to 
change an In/Out board written using computer vision to use 
RFID tags instead. The second full task was to write an 
application that used RFID tags to control a slideshow. One 
tag represented a directory of images; the two other tags 
represented next and previous operations. 

Results 
Every participant completed every task, though not without 
moments of difficulty. We take this to be a success of the 
API. In our first task, participants converted an In/Out board 
from vision to RFID in a mean time of 31 minutes using a 
mean of 19 lines of code. This shows that technology 
portability is quite possible. 

Participants appreciated the ease with which input could be 
handled. In addition to their verbal enthusiasm, we noted that 
no one spent time looking up how to connect to hardware, 
how input was recognized, or how events were generated. In 
our second task, participants authored an RFID-based image 
browser in a mean time of 33 minutes using a mean of 38 
lines of code. Note that participants on average wrote code 
twice as fast in the second task as in the first, indicating that 
they became familiar with the toolkit. Two of the participants 
directly copied code; one said, “So this is like the marble 
answering machine [in the user’s manual].” 

Ironically, the warm-up task—changing a colored-object 
finder from red to blue — proved to be the most challenging. 
The problem was that the classifier took a color parameter 
represented in a luminance-based color space (IHS), highly 
effective for image analysis but not intuitive to most 
computer scientists, who are used to the RGB color space. 
Participants had difficulty even though we explained that the 
color space was IHS, not RGB. Once a color in the proper 
color space was found, it took less than a minute to make the 
change. Ideally, these parameters should not be specified 

    
Figure 4. SiteView, a spatial UI for end-user control of home 
a
p
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textually at all. We are currently researching techniques for 
visual authoring of associations and classifications. 

Overall, participants found the monitoring window to be very 
useful. For the warm-up task, they used it to understand the 
(confusing) color classifier. For the In/Out board task, they 
used the monitoring window to get information about the 
attached RFID readers. Participants also used the monitoring 
window to verify that the input was not the source of errors 
in their code. 

We also uncovered several usability issues. The most glaring 
was an inconsistency in naming related elements: the 
superclass was named PhobGenerator, a subclass 
RFIDReader, and the accessor method getSource. Other 
points of confusion highlighted places where our 
documentation was insufficient. We have since addressed 
these usability issues by improving the API, documentation, 
and method names based on the feedback from this study. 

RELATED WORK 
We present related work in TUI taxonomies and ubiquitous 
computing toolkits. Papier-Mâché is heavily inspired by the 
projects described in this section. A general distinction 
between our work and prior work is that this is the first paper 
to employ fieldwork as a methodological basis for toolkit de-
sign and use a laboratory study as a method of evaluating an 
API as a user interface. 

Emerging Frameworks for Tangible User Interfaces 
Ullmer and Ishii [30] provide an excellent taxonomy of ex-
isting tangible interfaces. We have drawn heavily on both 
this taxonomy and the innovative ideas of their Tangible 
Media Group in creating our list of inspirational applications. 
They also propose MCRpd as analogue to MVC for physical 
UIs. The difference is that the view is split into two 
components: Rp, the physical representation, and Rd, the 
digital representation. However, from an implementation 
standpoint, it is unclear whether explicitly separating physi-
cal and digital outputs is beneficial. In fact, for reasons of 
application portability, it is important that the event layer be 
agnostic to whether the implementation is physical or digital 
(e.g., for studies, it would be useful to create and compare 
physical and electronic versions of an application). Also, the 
approach is untested: no tools or applications have been built 
explicitly using the MCRpd approach. 

Ubiquitous Computing Toolkits 
The work most related to Papier-Mâché is Phidgets [11]. 
Phidgets are physical widgets: programmable ActiveX 
controls that encapsulate communication with USB-attached 
physical devices, such as a switch or motor. Phidgets are a 
great step towards toolkits for tangible interfaces. The 
graphical ActiveX controls, like our monitoring window, 
provide an electronic representation of physical state. How-
ever, Phidgets and Papier-Mâché address different classes of 
tangible interfaces. Phidgets primarily support tethered, 
mechatronic TUIs that can be composed of powered, wired 
sensors (e.g., a pressure sensor) and actuators (e.g., a motor). 

Papier-Mâché supports TUI input from untethered, passive 
objects, often requiring computer vision. 

Papier-Mâché provides stronger support for the “insides of 
the application” than Phidgets. Phidgets facilitates the 
development of widget-like physical controls (such as 
buttons and sliders), but provides no support for the creation, 
editing, capture, and analysis of physical input, which Papier-
Mâché supports.  

IStuff [1] introduces compelling extensions to the Phidgets 
concept, primarily support for wireless devices. IStuff 
provides fast remapping of input devices into the iRoom 
framework, enabling standard GUIs to be controlled by novel 
input technologies. There are two main differences in our 
research agenda: First, like Phidgets, iStuff targets 
mechatronic tangible interfaces, rather than augmented paper 
tangible interfaces. For example, it is not possible to build 
computer vision applications using iStuff or Phidgets. 
Second, iStuff offers novel control of existing applications, 
while Papier-Mâché does not. Unlike iStuff applications, the 
tangible interfaces Papier-Mâché supports do not use a GUI 
input model.  

Fails and Olsen have implemented a highly successful 
system for end-user training of vision recognizers, Image 
Processing with Crayons [6]. It enables users to draw on 
training images, selecting image areas (e.g., hands or note-
cards) that they would like the vision system to recognize. 
They employ decision trees as their classification algorithm, 
using pixel-level features. The resulting recognizers can be 
serialized for incorporation into standard Java software. 
Crayons complements our work well, offering a compelling 
interaction technique for designating objects of interest. 
Papier-Mâché’s recognition methods (e.g., edge detection 
and perspective correction) are higher-level than the pixel-
level processing employed by Crayons. We also offer higher-
level object information (e.g., orientation and aspect ratio), 
and most importantly, an event mechanism for fluidly 
integrating vision events into applications. Papier-Mâché’s 
classifiers also supports ambiguity [19], an important feature 
unavailable in Crayons. 

The Context Toolkit (CTK) [5] makes context-aware applica-
tions easier to build. We find this work inspiring for two 
reasons. First, it is one of the most rigorous and widely used 
post-WIMP toolkits to date. Second, it does not just provide a 
software interface to physical sensors (a la Phidgets), it 
“separates the acquisition and representation of context from 
the delivery and reaction to context by a context-aware 
application.” Papier-Mâché provides more monitoring and 
WOz facilities than CTK, and it supports interactive tangible 
interfaces, which CTK does not. 

The ARToolKit [15] provides support for building applica-
tions that present geo-referenced 3D graphics overlaid on 
cards marked with a thick black square. The ARToolKit 
provides support for 3D graphics; Papier-Mâché does not. 
The ARToolKit does not provide general information about 
objects in the camera’s view, only the 3D location and ori-
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entation of marker cards. It is not a general input toolkit; it is 
tailored for recognizing marker cards and presenting geo-
referenced 3D graphics through a head-mounted display. 

CONCLUSIONS AND FUTURE WORK 
We have presented Papier-Mâché, a toolkit for building 
tangible interfaces using computer vision, electronic tags, and 
barcodes. Our event-based model for working with these 
types of input facilitates technology portability. From our 
literature review and interviews, we learned what 
functionality Papier-Mâché should provide. Class projects 
showed us how easy it was to apply Papier-Mâché to a 
variety of systems. A user study validated that even first-time 
users could build tangible interfaces and easily adapt 
applications to another technology.  

Currently, we are extending WOz support and researching 
techniques for visually authoring associations and classifi-
cations. We plan to optimize the vision system, extending 
support to applications that demand lower latency. We are 
actively seeking more users, and we are researching 
improved methods for evaluating the usefulness of toolkits 
like Papier-Mâché. Papier-Mâché is open-source software 
available at http://guir.berkeley.edu/papier-mache. 
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