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ABSTRACT 
Context-aware applications are applications that implicitly 
take their context of use into account by adapting to changes 
in a user's activities and environments. No one has more 
intimate knowledge about these activities and environments 
than end-users themselves. Currently there is no support for 
end-users to build context-aware applications for these 
dynamic settings. To address this issue, we present a 
CAPpella, a programming by demonstration Context-Aware 
Prototyping environment intended for end-users. Users 
"program" their desired context-aware behavior (situation 
and associated action) in situ, without writing any code, by 
demonstrating it to a CAPpella and by annotating the 
relevant portions of the demonstration. Using a meeting and 
medicine-taking scenario, we illustrate how a user can 
demonstrate different behaviors to a CAPpella. We describe 
a CAPpella's underlying system to explain how it supports 
users in building behaviors and present a study of 14 end-
users to illustrate its feasibility and usability. 
Categories & Subject Descriptors: H.5.2 [Information 
Interfaces and Presentation]: User Interfaces – graphical 
user interfaces, prototyping; D.1.7 [Programming 
Techniques]: Visual Programming; G.3. [Probability and 
Statistics]: time series analysis 
General Terms: Human Factors, Design 
Keywords: Context-aware computing, programming-by-
demonstration, end-user programming, statistical machine 
learning 

INTRODUCTION 
Twelve years ago, Mark Weiser introduced the idea of 
ubiquitous computing or ubicomp, where computing moves 
off the desktop and into the environment [26]. An important 
component of ubicomp is context-awareness, where 
applications can dynamically adapt to changes in the user’s 
activities and environments. Common context-aware 
applications include tour guides [1] and smart environments 

[2,17]. While there has been much research in context-aware 
computing, most of it has been focused on building 
infrastructures to support programmers in building 
applications and on the applications themselves [2,3,4,20,22], 
despite the tremendous value in empowering end-users to 
build applications.  
In this paper, we describe a CAPpella, a system designed to 
empower end-users in building these types of applications. 
But why focus on end-users? First, end-users have more in- 
depth knowledge about their activities environments than any 
developer. Second, if only a developer can control system 
behavior, the user will be unable to evolve the system when 
her environments or activities change. Finally, in a context-
aware application, most system action is based on implicitly 
sensed and interpreted information about the user. Therefore, 
the potential for designing a system that performs the wrong 
action and seriously annoys users is quite high. This calls for 
a system that can be placed in the hands of users so they can 
build and configure an application to do what they want 
when they want it. 
Currently, to develop a context-aware application, developers 
have two options: They may create what is essentially a rule-
based system composed from individual components and 
sensors (the “avoid intelligence” camp [3,4,20]), or they may 
build a recognition-based system (the “use intelligence” 
camp [2,22]) and focus their efforts on integrating sensed 
data to interpret user intent and actions.  
Both of these approaches are inaccessible to end-users. The 
majority of research has been in the “avoid intelligence” 
camp, where toolkits that only support programmers have 
been built. These toolkits require large amounts of code to 
develop simple context-aware behaviors: sensed situations 
with associated actions. Obviously this is not realistic for 
most users, as they have tremendous difficulty programming 
a VCR or a setback thermostat (a configurable device for 
setting temperature for different times of day) [8]. In the “use 
intelligence” camp, recognizers are often handcrafted over a 
period of days, weeks or even months in an attempt to 
optimize recognition performance. It is far beyond the ability 
of most programmers, let alone end-users, to specify and tune 
the features that go into a recognizer.  
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Because of this, only programmers can build context-aware 
applications, with end-users having little control over how 
these applications behave. Very little emphasis has been 
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placed on empowering end-users to build their own context-
aware applications. Past work has explored support for end-
user control using the rule-based approach [7,11,24]. This is 
a valid approach, but is limited to situations where a user can 
be reasonably expected to come up with a static, well-
specified rule in a timely fashion that accurately describes the 
desired context-aware behavior.  

 
Figure 1: Design process for context-aware behaviors in a 
CAPpella. User actions shown with dark shading and system 
actions are shown with light shading. 

This paper focuses instead on empowering users to build 
context-aware applications that depend on intelligence – 
making inferences based on sensed information about the 
environment. To address the issues introduced above, we 
present a CAPpella1, a Context-Aware Prototyping 
environment for end-users to build applications without 
writing any code. a CAPpella uses a combination of machine 
learning and user input to support the building  of context-
aware applications through programming by demonstration. 
Specifically, a user of a CAPpella demonstrates a context-
aware behavior that includes both a situation and an 
associated action (Figure 1). She uses a GUI to indicate what 
portions of the demonstration are relevant to the behavior and 
trains a CAPpella on this behavior over time by giving 
multiple examples. Once trained, she can run a CAPpella, 
and it will enact the demonstrated behavior: performing the 
demonstrated action whenever it detects the demonstrated 
situation. 
Programming by demonstration (PBD) is not the only 
approach available to empower end-users, however we 
believe it offers long-term potential for supporting dynamic 
and complex behaviors and we investigate that potential in 
this paper. PBD allows end-users to build context-aware 
behaviors in a situated manner that would otherwise be too 

complex or time consuming to build. a CAPpella requires no 
writing of code and supports the building of behaviors that 
cannot be neatly articulated as a simple rule.  
The key idea behind a CAPpella is that it does not require 
end-users to have any expertise in creating recognizers, but 
instead creates recognizers for them, leveraging off their 
natural abilities to understand their own behaviors and their 
ability to express those behaviors. Consider the example of a 
meeting. A context-aware behavior could be: when a meeting 
occurs, load the most recently used presentation file [25] and 
launch a notes-taking application. A meeting can be defined 
in a number of different ways, taking into account the 
number of people present, their location, the presence of a 
conversation, etc. Ask five people to define a meeting and 
you will get five different answers. But ask five people to 
watch a video of a meeting and, more often than not, all five 
will have similar insights about what features comprised the 
meeting and when the meeting started and ended: a classic 
case of recall vs. recognition. This feature specification is the 
essence behind a CAPpella.  
The next section surveys previous research in the areas of 
context-aware computing, end user programming and 
programming by demonstration, providing further motivation 
for our work. In the following sections we present an 
example scenario and describe how users can use a CAPpella 
to build context-aware behaviors. We then describe the user 
interface and underlying machine learning system that 
supports end-users. We demonstrate the viability of our 
approach by using a CAPpella to learn a meeting-based 
behavior and a medicine-taking behavior. We also describe 
the results of a user study that show a CAPpella is a useful 
and usable tool. Our work with a CAPpella is an exploration 
that demonstrates the feasibility of a programming by 
demonstration approach for building context-aware 
behaviors. We conclude this paper with a discussion of the 
current limitations of the approach and provide future 
directions for this research. 

RELATED WORK 
Pattern recognition is a very difficult problem and there is a 
whole field of research that investigates how to build systems 
that can recognize, or classify, patterns of interest [5]. 
Recognizing human activity is a rapidly growing sub-field 
and has become more prominent in the HCI community of 
late [10,19,] While most research focuses on techniques for 
programmers to build useful recognizers, there are a number 
of systems that investigate the idea of putting a human “in the 
loop” to build pattern recognizers. 

Scott et al. study the utility of having humans “in the loop” 
for optimization problems and show that this is a useful 
approach as long as users are focused on tasks that humans 
excel at, including identifying useful areas of the search 
space [23]. Interactive Evolutionary Computation is an 
optimization method where users are asked to subjectively 
evaluate the output of a machine learning system [14]. The 

                                                           
1 a cappella is a musical term that means without accompaniment. 
We named our system a CAPella because it empowers the user to 
act without the accompaniment of a programmer. 
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machine learning system optimizes its learning to obtain the 
output preferred by the user.  

Traditionally, programming by demonstration systems have 
focused on supporting visually-based tasks such as filing 
email and web browsing [15]. Although our domain is 
different, we were motivated by this work and its use of 
mixed-initiative and active learning. The mixed-initiative 
approach uses agents and graphical widgets to obtain input 
from a user, to both help a recognizer improve its recognition 
ability and to resolve ambiguity [9,16]. Similarly, active 
learning systems make queries to the user or perform 
experiments to gather data that are expected to maximize 
performance [27]. Active learners demonstrated significant 
decreases in the amount of data required to achieve the 
equivalent performance of passive learners.  

Similarly, in a CAPpella, the user provides data to the 
machine learning system, focusing the learning system on her 
input. We show that this approach requires small amounts of 
time and data to produce reasonable activity recognizers. 
Two systems that take a similar approach to ours and have 
provided us with tremendous inspiration are the Neural 
Network House and Crayons. 

The Neural Network House is an adaptive system that 
controls the utilities (lighting, heating, etc.) in a house, 
inferring appropriate behaviors by observing the inhabitants 
of the house [17]. In this work, Mozer points out that subtle 
statistical behavior patterns can be exploited to control the 
adaptive system in the house. If the system turns the lights to 
a particular lighting level as an occupant enters the room, the 
system learns about the occupant’s preferences through her 
behaviors. If she adjusts the lighting, it learns that she prefers 
a different lighting level than it chose and adjusts its model of 
the user accordingly. While this is an interesting approach, in 
order to recognize complex behaviors like a meeting, 
additional user input beyond this reinforcement learning is 
required to guide the recognition system. 
Crayons was another source of inspiration for a CAPpella. It 
uses interactive machine learning to allow end users to create 
an image classifier [6]. Users provide images to classify and 
then annotate the images by coloring them, indicating the 
areas an image classifier should look for. Fails and Olsen 
showed that users could very quickly create a variety of 
image classifiers (e.g., skin and laser pointer detectors) with 
Crayons. The image classifiers built can be used in a camera-
based application. Crayons opens up the space of image-
based recognizers to end-users in the same way that a 
CAPpella opens up the space of recognizer-based context-
aware applications to end-users. 
While there has been work in leveraging user input to 
improve machine learning, there is no system that supports 
end users in creating recognizers of interesting context-aware 
behaviors. In our work, we leverage off of much of the work 
discussed here, using a human “in the loop” to reduce the 
amount of data and time required to build useful context-
aware behaviors. a CAPpella empowers end-users to create 

context-aware behaviors that would otherwise require 
considerable programming expertise.  
The next section presents an example of how one uses a 
CAPpella to build a context-aware behavior and to 
demonstrate the usefulness of the tool. We will revisit this 
example as we describe the details of a CAPpella. 

EXAMPLE APPLICATION 
Here, we describe how users interact with a CAPpella to 
create such an example behavior, a meeting. One can 
imagine a meeting scenario where a user is having a phone 
meeting and she wants to turn the lights on and launch an 
application to record notes from the meeting. Such a scenario 
is quite common and is often repeated in workplace 
environments. The user wants her smart environment to 
recognize that she is in a meeting, but cannot easily define 
the conditions that comprise a meeting. Current systems 
support the a priori creation of a static, and therefore likely 
brittle, heuristic that when true, indicates a meeting is 
occurring. When a meeting is recognized, they perform the 
desired actions. Instead, users can now use a CAPpella to 
specify context-aware behaviors in situ.  

 
Figure 2: a CAPpella user interface being trained for a meeting. 
The user has selected a start and end time and deselected the 
location and RFID data streams. The actions shown are turning 
the lights on and off, and starting the notes recording program.  
When our user is ready to create a context-aware behavior, 
she starts a CAPpella’s recording system. This captures data 
from all the sensors that are available to the system: video 
camera, microphone, radio frequency identification system 
(RFID), a switch that indicates whether the phone is in use, 
and instrumented actuators to detect actions such as logging 
in and logging out of a computer, sending an email, turning 
on or off a light, etc. She starts her meeting and performs the 
actions she would like her smart environment to perform on 
her behalf. When the meeting is over, she stops the recording 
system and uses a CAPpella’s user interface to view what 
was recorded. The user interface, shown in Figure 2, displays 
the data streams that were recorded and allows the user to 
play them back.  
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Event detection The user interface is divided into three parts. In the left 
frame, there is a video player that allows the user to view the 
recorded video and listen to the recorded audio. In the right 
frame at the top, the user can view events detected in the 
recorded sensor data, and on the bottom, she can view actions 
that she took during the recorded session. After viewing the 
captured data, she can annotate the data: selecting the 
streams of information she considers to be relevant to the 
behavior being created and the actions she wants a CAPpella 
to perform on her behalf. She sets a start and end time for all 
the streams to indicate when the behavior started and when it 
ended, as shown in Figure 2. 

When the user stops the recording system, the sensors stop 
sensing and event detection on the data logs begin. Event 
detection is the process of deriving higher-level events from 
the raw data produced by the video camera and microphone, 
and any other sensor that does not directly produce higher-
level events. For each frame of the captured video, the 
number of people in the scene and their x-y location within 
the video are detected and added to the event log. For each 
sample of captured audio, the volume level and a 
determination of whether there is someone talking are output. 
Additional detection could be added, but this was sufficient 
to investigate our approach.  When she is finished pruning the data, she can train a 

CAPpella on this data. The user repeats this process a small 
number of times over a period of days or weeks and 
improves a CAPpella’s ability to recognize this behavior 
with the new data. In each subsequent iteration, the user can 
first test a CAPpella’s ability to recognize the demonstrated 
behavior on the newly annotated data to see how well it 
performs, and if necessary, train it on this additional data. If 
desired, she can go back and view previously trained data 
and re-test the updated recognizer against it. When a 
CAPpella has improved enough that it recognizes captured 
data correctly on a regular basis, the user tells it to constantly 
collect data. It then looks for the “programmed” situation (i.e. 
a meeting) in the live data, and when detected, it performs the 
specified actions on her behalf.  

Visual events 
To determine the number of people in a scene and their 
location, we built a simplified implementation of a multi-
hypothesis framework – Bramble [13]. Bramble uses a 
weighted mixture of Gaussian densities to determine the 
likelihood that a part of the scene belongs to the foreground 
(i.e. is something that has been added to the scene) or the 
background (i.e. is something that existed in the scene before 
people entered it). When a CAPpella is installed, a 
background model is created (either by the installers, or by 
the end-users themselves using a tool we provide.) by 
capturing a number of short video clips containing only the 
background under a number of different lighting conditions 
(to improve robustness). Foreground models are also created 
for different numbers of people to improve the visual event 
detection system’s ability to detect people and their location 
in captured video. When the visual event detection system 
examines the user’s captured video data, it uses 
CONDENSATION, a particle-filtering framework. This is a 
technique that hypothesizes the existence of objects of 
interest in multiple locations and uses comparisons of video 
frames to the foreground and background model to confirm 
these hypotheses [12]. When all the hypotheses have been 
checked with respect to the observed image, the number of 
people in the scene and their location are estimated on the 
basis of the most likely hypothesis. These estimates are then 
written to a new timestamped log file. While we provide a 
tool to support end-users in creating event detectors for the 
number of people and their location, one could imagine using 
Crayons to allow them to perform this task more easily. 

To summarize, a user first records a behavior – situation and 
action – that she wants a CAPpella to learn. She selects 
relevant events from the recording and uses them to train. 
After a sufficient number of training examples have been 
provided, she tells a CAPpella to recognize the situation, and 
when it does, it performs the demonstrated actions.  

A CAPPELLA DESIGN 
Here, we describe the design of a CAPpella and show how it 
supports programming of context-aware behaviors by 
demonstration. a CAPpella has 4 main components: a 
recording system, an event detection, a user interface and a 
machine learning system. We discuss them in detail here. 

Recording System 
In order for a user to demonstrate a context-aware behavior, a 
CAPpella must have multimodal sensing capability to 
capture both the situation and the action that should be taken. 
a CAPpella currently uses an overhead video camera, a 
microphone, RFID antennas and tags, and a switch that 
detects whether a phone is in use to capture events that occur 
during the demonstration of the situation. It uses an 
instrumented light switch, an audio alarm and an 
instrumented computer (for login, logout, sending email, 
loading recently used files and for capturing user notes) to 
capture events that occur during the demonstration of the 
action. It is easy to add additional sensors to a CAPpella and 
we have plans to do so. However, these sensors are sufficient 
to investigate the feasibility of our approach. When the user 
starts the recording, the sensors begin storing time-stamped 
data into separate logs, one for each sensor. 

Audio events 
To determine whether people are talking in a scene, we 
provide a tool that helps a user capture audio clips of ambient 
sound and talking. The tool takes these clips and uses a K-
Means clustering analysis [5] to model these conditions. The 
captured audio file is compared to the two clusters (talking 
and not talking) to determine which of the two clusters or 
conditions it is closer to. The results of this comparison are 
output to a new timestamped log file. 

User interface 
a CAPpella’s user interface drew inspiration from 
commercial tools that display and let users interact with 
multiple streams of information such as Apple iMovieTM and 
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Adobe Premiere®. The user interface was designed 
iteratively, starting with a paper prototype and implementing 
multiple versions, with evaluations at each stage. The paper 
prototypes tested three different representations of logged 
data: cell-based, where each cell showed the numerical value 
of the sensor; strips-based, where data with the same 
numerical value were grouped together; and icon-based, 
where icons were used to abstractly represent sensor data and 
color, size and density of icons were used to encode 
information. We also created variations to test whether users 
preferred to view logged data with time represented 
horizontally or vertically.  
We gave our paper prototypes to three users and asked them 
to select the relevant features of a sample demonstration: a 
user is talking with a friend in a lab and then leaves the room 
for lunch. As the user leaves the room, he turns the light off. 
The paper prototypes represented the streams of information 
that a sensor-augmented environment could capture: the 
number of people and their locations in the scene, phone 
ringing, conversation over the phone between the people in 
the scene, the user logging in and out of his computer and 
turning off the lights as he leaves the room with his friend. 
Users were asked to select the relevant features of the scene 
using the prototypes.  
Overall users preferred the horizontal view of the data to the 
vertical view. While the vertical view afforded more natural 
horizontal scrolling, most of the data streams were more 
easily read horizontally (e.g. audio). The users disliked the 
icon-based view because it represented the data too abstractly 
and they wanted to know the numerical values. They had 
mixed feelings about the strips-based and cell-based views. 
Two users preferred the strips-based view because it 
provided a cleaner interface and made it easier to locate 
transitions in the data. The third user preferred the cell-based 
view because it showed the delineation of events more 
clearly, which is useful for selecting multiple events.  
The two views also engendered different selection behaviors. 
One user only chose transitions (i.e. events where data 
changed from one value to another), one user only chose 
intervals (i.e. not focusing on transitions but selecting events 
with the same value), and the third chose both. To support 
the selection of both, we combined the views, labeling 
transitions and delineating discrete events.  
The interface is shown in Figure 2. It consists of two main 
panels, an events panel for viewing the captured events and a 
player panel for watching and listening to the captured audio 
and video. The events panel displays the events and actions 
captured and recognized by a CAPpella. Events are displayed 
at the top of the panel and actions are displayed at the 
bottom. Different types of events and actions are represented 
in different ways (Figure 2). Currently a CAPpella renders 
six different abstract types of data, based on feedback from 
our paper prototype users. Boolean data such as whether the 
phone is in use or not is rendered with colors and labels. 
Integer data such as the number of people in a scene, and real 
number data such as sound level are represented as line 

graphs. Multiple point events such as the location of people 
in a scene are represented as points on a Cartesian plane. 
Unlike the other data types, this data requires horizontal as 
well as vertical space to represent it. Because of this, the 
resolution at which this data is rendered is less than the other 
data types. Multiple string events such as actions are 
represented with icons – hovering the mouse over each icon 
reveals the string that it represents. We created a specific 
representation for RFID events because it did not fit one of 
the other categories. They are represented as multiple line 
graphs that can have values of on or off.  
Users select streams relevant to the demonstrated behavior, 
by clicking on the event checkboxes. A zoom slider on the 
right side of the panel allows users to inspect and select 
events at a finer granularity (e.g. Figure 3).  

 

 
Figure 3: Zooming on event streams: zoomed out view on top 
and zoomed in view on bottom. 
We built two versions of this interface. One supports the 
selection of any number of sets of events within an event 
stream and across event streams (e.g. choose time 1-5 and 
10-17 for stream 1 and 2-7, 14-25 and 30-40 for stream 2). 
While this interface was adequate for investigating the ability 
of a CAPpella to support programming by demonstration of 
context-aware behaviors, informal tests with users made it 
clear that providing so much flexibility in selecting features 
may be too complicated. In our validation section, we will 
discuss how we used this interface ourselves to illustrate a 
CAPpella’s usefulness. A second and simpler interface we 
created that only allowed users to select a single start time 
and end time that applied to all selected streams, as was 
described in our initial meeting scenario. In our validation 
section, we will discuss a user study we performed with this 
version. 

 Figure 4: Synchronized playhead and time marker. 
The player panel shown in Figure 4 allows a user to playback 
the captured video, audio and event streams (Fig. 4). The 
playhead in the player panel is synchronized with a time 
marker in the event panel, helping users to relate detected 
events in different streams. 

Machine learning system 
Once the user is done selecting the events he believes is 
relevant to the behavior being demonstrated, he sends this 
data to a CAPpella’s machine learning system for testing or 
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training. In the former case, the user indicates the name of the 
behavior the data should be tested against and a CAPpella 
responds with an indication of whether the behavior was 
recognized or not. In the latter case, the user indicates the 
name of the behavior to train and a CAPpella updates its 
model for this behavior with the new data. 
In either case, the data being used is a collection of time 
series data. For its machine learning system, a CAPpella uses 
a Dynamic Bayesian Network (DBN) framework [18], a 
popular inference extraction stochastic framework for 
modeling time series data. In particular, we use a DBN 
equivalent of Hidden Markov Models (HMMs) [21] to 
support activity recognition. While HMMs are essentially a 
particular instance of DBNs, they do not offer the scalability 
or generality of DBNs. The data the user selects is combined 
into a single stream of observations, with an observation at a 
given time represented as a tuple containing data from each 
of the selected event streams. When disjoint time intervals 
are selected for different event streams, null data are entered 
for streams not selected, to indicate to the machine learning 
system that those event streams are to be ignored during 
these time intervals.  
The output of a DBN is a probability distribution over its 
hidden states (e.g. whether a meeting is taking place or not). 
We turn this into a deterministic recognizer by creating two 
models from the user’s input, one for the demonstrated 
activity (e.g. a meeting is occurring) and one for when the 
activity is not taking place (e.g. a meeting is not occurring). 
Both models are compared against test data and the model 
that produces the higher likelihood wins out. This 
comparison occurs continuously using a sliding window of 
10 seconds. At every second, the system compares the output 
of the two models taking into account the data from the 
previous 10 seconds and these comparisons are filtered to 
remove noise. The entire process results in a short lag in 
producing results, which we try to optimize in future work. 
For many machine learning systems, a recognizer must be 
hand-created by an expert for each activity that is being 
recognized. The key to a CAPpella is that the user does not 
need to know about or understand any of the technical details 
of the DBNs. All of this can be hidden from the user. Instead, 
with a CAPpella, a user can simply select the event streams 
and the events within them that she thinks are relevant to the 
behavior being trained with the DBNs. The user can create 
behavior models, train them and test data against them, 
without needing to learn the details of the models and the 
DBNs being used. 

VALIDATION: CASE STUDIES 
In the previous section, we described all the components of a 
CAPpella. In this section, we demonstrate through two case 
studies and a user study that a CAPpella can support users in 
programming context-aware behaviors by demonstration. 
The case studies illustrate how we, as designers of the 
system, can use a CAPpella to recognize two common 
situations, meetings and medicine taking, and perform 
demonstrated actions on behalf of the user. The user study 

shows how end-users are able to create and train effective 
models of a meeting using a CAPpella.  

Case Study 1: Meeting Scenario 
To investigate a CAPpella’s programming by demonstration 
approach, we tested it on the meeting scenario described in 
our example application. Using a CAPpella’s recorder 
system, we collected 90 samples of data: 30 of which 
contained 2 people having a meeting, 15 of which contained 
2 people who were not having a meeting, 30 of which 
contained 1 person having a meeting (on the telephone) and 
15 of which contained 1 person not having a meeting. Each 
video was between 1.5 and 5 minutes long. The videos were 
partially scripted as we asked the subjects in the videos to act 
out a meeting. The videos contained sufficient variety: 
different people in different locations within the scene, 
moving through the scene at different times, varying levels of 
audio and variety in the phone being used. There is additional 
variability added by the event detection system. We 
randomly chose 15 of the 2-person meeting samples and, 
using the a CAPpella interface, selected data we considered 
relevant to a meeting situation. For this study, we used the 
initial, more complex interface, which allowed us to select 
different time series of data from different data streams. We 
used this data to create and train models using a CAPpella.  
We trained 15 different models, the first based off the first 
training sample, the second based off the first and second 
training samples, and so on. We repeated this in creating a 
new set of models for the 1-person meeting samples. We did 
this to determine the number of demonstrations needed to 
create a robust model with a CAPpella: approximately 6 
(Figure 5). Training a model with a new demonstration took 
approximately 8 seconds with our data samples. 

 
Figure 5: Learning curves for the meeting scenario models. 

 1P M 1P NM 2P M 2P NM 
1P M 93.3% 6.6% 0% 0% 
1P NM 13.3% 86.6% 0% 0% 
2P M 0% 0% 80.0% 20% 
2P NM 0% 6.6% 6.6% 86.6% 

Table 1. Confusion matrix of actual classification of test data for 
the meeting scenario models: P=person, M=meeting, NM=non-

meeting. 
We then tested our (stable) models against our test set: 15 2-
person (2-P) meetings, 15 2-P non-meetings, 15 1-person (1-
P) meetings, and 15 1-P non-meetings. The confusion matrix 
showing our results is in Table 1. A correct classification 
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occurs when the model correctly indicates that a meeting is 
occurring in the time interval specified by the user. The 1-P 
meeting recognizer recognized 1-P meetings in 93.3% of the 
test cases, and performed slightly worse in detecting 1-P non-
meetings. The 2-P meeting recognizer recognized 2-P 
meetings in 80% of the test cases, performing slightly better 
in 2-P non-meeting cases.  

Case Study 2: Medicine Taking Scenario 
We tested a CAPpella on a second scenario, to show that it 
can be used with different scenarios without requiring a 
developer to build entirely new machine learning 
frameworks. In this scenario, we built a model of a user 
taking medicine with 5 demonstrations. If the user takes their 
medicine, the activity is logged into their medical journal. If 
they do not take their medicine by a certain time, an audio 
alarm goes off reminding them to take it. In this scenario, we 
used the same sensor modalities as in the previous scenario. 
RFID tags were attached to both the user and the medicine, 
with an RFID reader attached to the medicine cabinet. It was 
assumed that if the user picked up the medicine bottle, they 
took their medicine. In an ideal case, a weight sensor would 
be used to detect a change in bottle weight. The audio alarm 
and journal logging are PC applications, instrumented to 
collect interaction data.  
Once again we captured a number of data samples, some 
with the user entering the scene and taking or not taking their 
medicine. While the number of people in the scene was 
important (i.e. at least one person), the RFID events were 
used to determine that the right user was in the scene and that 
it was she who picked up the medicine bottle. This is a 
behavior that could be built with a simple if-then rule, 
however we use this scenario to illustrate that a CAPpella 
can be used for a range of complex behaviors, without 
requiring any change to the underlying system. Because the 
situation is straightforward, a CAPpella is able to detect 
whether the user has taken his medicine with than 98% 
accuracy and records it to a log each time. If the user does 
not take his medicine, a CAPpella sets off an audio alarm. 
Summary of Case Studies 
These results show the validity of the a CAPpella approach. 
With a small number of demonstrations, we could build 
models that performed quite well, detecting between 80% 
and 93.3% of meetings taking place and close to 100% of 
medicine-taking situations. In the test mode, when these 
behaviors are recognized, a CAPpella controls actuators in 
the environment to perform actions demonstrated by the user: 
turning on the lights, launching the note recording program 
and setting off alarms and logging records. 

VALIDATION: USER STUDY 
To further validate a CAPpella’s ability to support end-users 
in creating context-aware behaviors by demonstration, we 
conducted a user study with 14 participants. In particular, we 
studied how effectively users were able to create models of 
meeting behavior in a CAPpella. 
Our participants were not computer scientists, but had a 
variety of backgrounds including actors, special education 

teachers and students, with ages ranging from 18 to 60. We 
spent 5 minutes with each user in a tutorial on using the a 
CAPpella interface and describing their task. We randomly 
chose three 2-person meeting data samples and three 1-
person data samples from the samples collected for the initial 
case study. We gave these to our users in random orders and 
asked each one to select the event streams relevant to a 
meeting and to select the time when the meeting began and 
when the meeting ended. There was no feedback provided to 
the user about their choices either between samples or after 
all samples were used. 
This user study was not intended to test a CAPpella as a 
complete system. Instead, it was focused on testing end 
user’s ability to use the interface on previously captured data 
to create effective models. To simplify the task and to 
investigate the differences between the models created with 
the two different interfaces, we used the constrained interface 
for this user study. This interface only allows users to select 
relevant event streams and a single start and end time. The 
more complex interface allows users to select relevant event 
streams and any number of sets of events within an event 
stream and across streams.  
With the data from each user, we created a series of models 
to determine how effective users could be in creating models 
with the a CAPpella interface. We then tested the 60 video 
clips (15 clips each of 1-P meeting, 1-P non-meeting, 2-P 
meeting, 2-P non-meeting) on these models. Averaging 
across all 14 users, the 1-P meeting models created 
accurately detected 1-P meetings and 1-P non-meetings in 
67.2% of the trials (std. dev. of 2.7%). Individual users’ 
models ranged from 59.5% to 73.3% accuracy. The 2-P 
meeting models had a 55.5% success rate (std. dev. of 5.2%). 
Individual users’ models ranged from 50.0% to 78.6% 
accuracy. 
Despite the low results in the 2-person condition, the user 
study shows that a CAPpella is effective in allowing users to 
create models. In each of the 1-person and 2-person cases, 
only 3 training sets were used to create models. As we saw in 
our initial case study, approximately 5-6 training sets are 
required for a reasonable model. In the 1-person condition, 
the results were quite high and were improving as the number 
of training sets increased (correlation coefficient > 0.4), as 
expected. In the 2-person condition, the results were much 
poorer, but were still improving with the number of training 
sets (correlation coefficient > 0.4). Another explanation for 
the poorer overall data, when compared with our case study, 
includes the fact that the data they were viewing was not their 
own but was of people and locations they had never seen 
before, potentially causing them to be more random in the 
features they selected for meeting-relevance. In addition, it is 
possible that selecting only a start time and an end time and 
the appropriate event streams produces less reliable results.  
The a CAPpella user interface appeared to have a shallow 
learning curve. Users did not require much assistance in 
using the interface during the study and their speed increased 
as they annotated more demonstrations. While they 
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suggested improvements to the interface (e.g. making the 
selection of start and end times easier), overall, users reported 
that the system was easy to use.  

CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a CAPpella, a Context-Aware 
Prototyping environment. a CAPpella supports end-users in 
programming by demonstration recognition-based context-
aware behaviors. It opens up the space of context-aware 
computing to end-users, allowing them to build in situ 
dynamic behaviors that would otherwise be too complex or 
time-consuming to produce in a rule-based system. Users do 
not need any expertise in creating recognizers. Instead, a 
CAPpella takes care of the details of creating the recognizer, 
using input from the user to determine what it should 
recognize. It allows users to demonstrate interesting 
behaviors a small number of times and learns from these 
demonstrations. A user performs a demonstration of a 
situation and associated action(s) and annotates the captured 
events, helping a CAPpella learn. When a CAPpella 
recognizes the demonstrated situation, it performs the 
demonstrated actions.  
We validated the feasibility of our approach in a CAPpella in 
two ways. First, we used it to build 2 common behaviors, for 
a meeting and a medicine-taking scenario. We then tested a 
CAPpella’s ability to support end-users in creating models 
with a small number of demonstrations, with 14 end-users 
creating models for the meeting scenario. This study showed 
that users both liked the system and were able to successfully 
create models with it. While creating more interesting multi-
person models is more difficult than single-person models, a 
CAPpella’s approach is promising. 
a CAPpella is an investigation into supporting programming 
by demonstration of context-aware behaviors. While we were 
successful in this investigation, we see room for 
improvements and further exploration. We plan to use a 
CAPpella to build a wide variety of scenarios and to perform 
a more thorough evaluation with end users. We would also 
like to experiment with allowing users to specify more 
information (e.g. temporal ordering of events and actions) in 
creating behavior models. We would also like to investigate 
the scalability of a CAPpella, in supporting multiple 
recognizers simultaneously and in supporting multiple users 
in multiple locations with more sensors. The data used in this 
system is of much higher dimensionality than for traditional 
desktop uses of PBD. This requires more examples and more 
data be provided to our machine learning system. We are 
interested in improving our algorithms to reduce the number 
of examples required to model desired behaviors. Finally, we 
are interested in using the recognizers built in a CAPpella as 
part of the event detection system, This will allow users to 
build behaviors on top of already trained recognizers. 
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