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ABSTRACT 
The hardware-inspired volume user interface model that is in 
use across all of today’s operating systems is the source of 
several usability issues. One of them is that restoring the vol-
ume of a muted application can require an inappropriately 
long troubleshooting process: in addition to manipulating the 
application’s volume and mute controls, users may also have 
to visit the system’s volume control panel to find and adjust 
additional controls there. The “flat” volume control model 
presented in this paper eliminates this and other problems by 
hiding the hardware-oriented volume model from the user. 
Using the flat model, users use one slider per application to 
indicate how loud they want the respective applications to 
play; the slider then internally adjusts all hardware volume 
variables necessary to obtain the requested output. By offer-
ing a single point of control for each application, the flat 
model simplifies controlling application volume and restoring 
muted applications. In our studies, participants completed all 
four volume control and mixing tasks faster and with less 
error when using the flat model than when using the existing 
hardware-oriented volume control model. Participants also 
indicated a subjective preference for the flat model over 
the existing model. 
Categories & Subject Descriptors: H5.2 [Information inter-
faces and presentation]: User Interfaces. - Graphical user in-
terfaces. 
General Terms: Human Factors, Design. 
Keywords: Audio, sound, volume control, user interface.blutwurst 

INTRODUCTION 
Imagine the following scenario. In the middle of a presenta-
tion, the presenter tries to play a video clip. When hitting 
‘play’ on the software video player, the video starts playing 
but the audio remains silent. In order to fix the problem, the 
presenter cranks up the volume slider in the video player, but 
without success. When realizing that it may not be the player 
causing the problem, the presenter opens the system’s volume 
control panel and finds the state shown in Figure 1. The pre-
senter notices that the “master volume” slider (labeled “Vol-
ume Control”, 5) is set to zero, which would explain why the 
sound did not play. The presenter then cranks the slider all 

the way up, but still, nothing. After examining the corre-
sponding mute checkbox (6) and the state of the wave volume 
slider (3) the presenter notices that the wave channel is muted 
(4). Unchecking this “Mute” checkbox finally allows the au-
dio to play (although the audio now plays much louder than 
intended, as the application volume and wave volume sliders 
were set to their maximum values during the troubleshooting 
process.) 
The problem we are addressing in this paper is that this proc-
ess takes more time and effort than necessary. 

a

 
Figure 1: Current volume control model: application 
audio output is only active when its volume slider (1) 
and wave and master sliders in the control panel (3, 5) 
are set to non-zero values and the three mute check 
boxes (2, 4, 6) are unchecked. 

A look under the hood 
We claim that the described problem is caused by the fact 
that existing volume control interfaces expose the volume 
control structure of the computer’s sound card to the user. As 
shown in Figure 2, the volume variables in today’s systems 
form a hierarchy. Before a sound produced by an application 
reaches the speakers, it is affected by all sliders and mute 
widgets in the path between that application and the speakers. 
The actual loudness of an application (we will use the term 
“loudness” to describe the final audio level that is sent to the 
speakers and “volume” for internal volume variables) is the 
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product of all volume variables along the path1. Determining 
how loud an application actually plays thus requires users to 
read all volume variables along the path and mentally multi-
ply them. 
An application is muted whenever at least one of the multi-
plied volume variables along its path is zero, i.e., a slider set 
to zero or a checked mute button, no matter what the state of 
the other variables in the signal path. Detecting that therefore 
requires checking all these variables. Restoring a muted ap-
plication requires restoring all muted volume variables along 
the path. These cases may also require users to access the 
system’s volume control panel. 

mutemute

mute

master
volume

media
player

mute

speakers

…

…
wave
channel

master

sound card channel

application  
Figure 2: In the existing, hierarchical volume control 
model (here MS Windows XP™), application sound 
volume is reduced at up to six points along the signal 
path (plus the volume knob at the speakers). 

While we will use muting as our main scenario throughout 
the paper, there are other volume control tasks that are com-
plicated by the hierarchical model. The hierarchical model 
makes it difficult to set an application to a known loudness, as 
this can require changing multiple variables along the path. 
Also the task of making an application louder can become 
complicated; in cases where the application volume maxes 
out, users need to increase the master volume instead, which 
in turn has a side effect on the loudness of other applications. 
We will return to these scenarios later in this paper and also 
in the user study section. 
Even though some of today’s operating systems use a simpli-
fied interface, e.g., one that hides the sound card channel 
layer (e.g. Apple Macintosh), they all have the notion of a 
master volume. Thus, the described problem exists across 
platforms. 
What to do? 
This hierarchical model and the resulting multiplicative vol-
ume model have desirable properties from an engineering 
point of view. For example, they offer a wide dynamic range 

                                                           
1 In addition, there is often an analog knob on the speakers, which 

is typically not controllable via software on today’s average PC. 

and, properly setup, can maximize the signal-to-noise ratio. 
However, exposing this architecture to computer users results 
in complexity that, over time, can lead to additional user ef-
fort and error conditions. The professional sound mixing 
equipment that first used this type of hierarchical volume 
control model was designed by and for audio experts, but 
today’s typical computer users do not typically fall into this 
category.  
We therefore propose a new volume control interface 
model—one that hides the internal hierarchical structure of 
the sound card from the user. As we show in this paper, this 
allows users to monitor and control the loudness of applica-
tions more efficiently and especially solves the muting prob-
lem. At the same time, the proposed model matches and 
sometimes outperforms the sound quality the traditional 
model offers. We begin by presenting a walkthrough of the 
flat model and its user interface. Then we briefly look at the 
related work, followed by details about design and implemen-
tation of the flat volume control model and methods for han-
dling legacy issues. Finally, we present the results of the stud-
ies we conducted and conclude with a discussion of our find-
ings. 
FLAT VOLUME CONTROL 
The main benefit of the flat model is that it manages the vol-
ume hierarchy for the user. This is realized by changing the 
semantics of all volume sliders in the system to solely repre-
sent loudness. Under the traditional model the volume slider 
in Windows Media Player defined a single link in Media 
Player’s volume path; in our redesign as a loudness slider it 
now defines how loud Media Player plays, i.e. the value of 
Media Player’s volume path as a whole. By manipulating the 
loudness slider, users indicate how loud they want Media 
Player to play, but without defining how this is supposed to 
be accomplished. It is the loudness slider itself that then de-
termines the best way of realizing the requested loudness in 
terms of hardware volume variables and that makes the nec-
essary changes. This delegation reduces the user’s load and 
obtains equal or better audio quality, as the slider automati-
cally optimizes the system’s signal-to-noise ratio. We will 
describe the algorithms that accomplish this in detail in the 
implementation section. 
If we redrew the diagram from Figure 2 for the flat model, we 
would see that the sound card channel and master layers are 
gone; application loudness widgets are now directly con-
nected to the speakers. The hierarchy has been replaced with 
a flat structure—thus the name of our approach. 
The flat volume control panel 
When switching to the flat model, the semantics of all volume 
control widgets across the system change, including those 
located in the volume control panel. This requires some 
changes in the control panel’s user interface. Figure 3 shows 
a screenshot of our volume control panel prototype. This con-
trol panel allows users to perform three types of interactions. 
First, sliders, one per application, allow users to adjust the 
loudness of the respective application. Second, the “all appli-
cations” thumbwheel allows users to adjust the loudness of all 
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applications at once. “Spinning” the wheel makes all applica-
tion sliders move up and down, as illustrated by Figure 4. 
Third, clicking the “mute all” pushbutton visibly brings all 
sliders to zero and makes the mute button change its label to 
“restore all”. Clicking the mute button again restores the val-
ues of all sliders to their previous states. 

thumbwheelmute

application loudness

 
Figure 3: The flat volume control panel. Application 
sliders represent the loudness of that application. 
Thumbwheel and mute affect all application sliders. 

a b

c d  
Figure 4: Adjusting the volume of all applications at 
once using the thumbwheel. (a b) Dragging the wheel 
to the right makes all sliders go up proportionally. When 
the first slider maxes out all sliders stop; this preserves 
the volume mix. (b c) dragging it to the left makes all 
sliders go down proportionally until they all hit zero. 
(c d) Clicking the “restore all” push button restores to 
the last non-zero setting. 

It is essential to the flat user interface, that widgets cannot 
only be manipulated directly, but that they also track the 
value of the variable they represent and update themselves if 
that value changes. This is necessary because the loudness 
represented by one widget can be affected by another widget. 
Clicking “mute all”, for example, can change the value of all 
other loudness variables in the system. Using widgets that 
continuously check the variable they represent assures that 
the state of the interface remains consistent. As an example, 
when the user operates a loudness slider in an application, the 
corresponding slider in the control panel moves in sync and 
vice versa. Moving the thumbwheel has an impact on the 
loudness of many applications and consequently, all sliders 
representing application volume move—in the control panel 
(Figure 4a b), as well as in the applications. When an appli-
cation’s mute button is clicked, the loudness slider of that 
application jumps to zero and when mute is clicked again the 
slider restores itself. Whenever an application ends up having 
zero loudness, its mute button reflects that by changing its 
state accordingly. If all applications have zero loudness, e.g., 
because the thumbwheel was spun all the way down (Figure 
4b c), the main mute changes its state to reflect that. Any 
way of unmuting the system, whether it is hitting “restore all” 
(Figure 4c d) or dragging an application loudness slider up, 
restores the mute button’s “mute all” face. 
The flat model solves the muting problem 
In the traditional volume control model, the loudness of any 
application may be reduced by other volume variables, such 
as the master volume. Sliders therefore only mean “the loud-
ness of this application is at most x”. In the flat model, how-
ever, sliders mean “the loudness of this application is x”. In 
the state shown in Figure 3, for example, 3D Pinball is play-
ing at about 80% loudness, Windows Media Player at ~40%. 
One of the main benefits of this paradigm switch is that it 
solves the muting problem. Detecting that an application is 
muted becomes straightforward; an application is muted if 
and only if its loudness slider points to zero. Restoring a 
muted application is equally straightforward. Any muted ap-
plication can be restored by dragging the application slider 
up—the slider will adjust all volume variables necessary. As 
a result, the need to access the control panel and to check 
multiple widgets is eliminated. 
The flat model also addresses the two other scenarios men-
tioned earlier. First, since loudness sliders can increase chan-
nel and master volume variables when necessary, users can 
now always access the full possible range of output loudness 
from inside their applications. Second, the flat model estab-
lishes a fixed mapping between slider state and loudness, 
which allows users to set an application to any known loud-
ness, such as “the loudness for giving slide presentations in 
this conference room”, by setting its slider to a remembered 
position. 
RELATED WORK 
Sound is in wide use in human-computer interaction. Sound 
allows for eyes free interactions. Since users can detect 
sounds rapidly, sound was found highly effective for monitor-
ing applications [11] as well as various types of notification 
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[20]. In other areas, sound has been used to make VR envi-
ronments [14] and reading more immersive [2], and to help 
improve the usability of devices, e.g., by helping users navi-
gate hierarchical structures [5], acquire buttons on small 
screen devices [4], or recognize the functions of products 
[12]. 
Along with pitch, location, and semantic context, sound vol-
ume is one of the main cues that help users distinguish sound 
sources [19]. Controlling volume therefore plays a major role 
in audio-only media spaces [18], where volume has been used 
to denote proximity between participants in conversations [1]. 
Various interface strategies have been suggested for control-
ling volume, such as hand gestures [7, 10], bar code read-
ers [13], or physical widgets connected to a computer [8]. A 
broad interest in controlling volume in a convenient way has 
created a market for such products (e.g. [9]). 
The widgets deployed in the volume control interfaces pre-
sented in this paper have been studied in various contexts. 
Interaction techniques inspired by a paint metaphor have been 
proposed as means for efficiently manipulating larger num-
bers of sliders [3]. The design of mute buttons is subject to 
the discussion of how to visualize the state of a button [15, 6]. 
Thumbwheel widgets have been used to enter variables on an 
infinite range, e.g. in flight simulation [16] and 3D viewers 
(e.g., examinerViewer, www.sgi.com). 

THE DESIGN OF THE FLAT VOLUME CONTROL PANEL 
In this section, we take a closer look at the design shown in 
Figure 3 and point out design alternatives. Before we focus 
on the widgets that form the interface of the flat architecture, 
we give a quick overview of other aspects of the flat control 
panel (Figure 3), i.e., the changes that make it different from 
the Windows XP control panel shown in Figure 2. These 
changes are independent of the flat concept, so they may also 
be applied to a non-flat control panel or removed from the 
flat control panel altogether. 
General design changes 
First, the control panel shown in Figure 3 does not expose 
sound card channels, such as “wave”. The primary reason for 
that is that today virtually all PC sounds go through the wave 
channel, so that all other channels have become obsolete. 
Hiding channels reduces clutter and brings this dialog up to 
par with the Apple Macintosh, the designers of which chose 
not to expose sound card channels in the first place. Note that 
the flat volume control concept works with volume hierar-
chies of any depth, so it remains applicable even if sound 
card channel volume was exposed. 
As an alternative to sound card channels, and unlike the Win-
dows XP control panel, the flat panel lists “Now Playing and 
Recently Playing Sounds”, i.e., applications. This provides 
users with direct access to application loudness even includ-
ing applications that do not offer volume control in the appli-
cation itself, such as the 3D Pinball game in Figure 3. The 
implementation section of this paper explains how this is im-
plemented using so-called ‘shims’. 
Finally, the control panel was uncluttered by moving applica-
tion-specific mute buttons and all balance sliders into an “ad-

vanced mode” panel. Layout and graphical design were 
changed as well. 
The thumbwheel and the mute button visuals 
Figure 5a shows a design alternative we explored, called 
flood mark design. The input capabilities of this widget are 
equivalent to the thumbwheel shown earlier. However, this 
design offers additional functionality by providing a flood 
mark, a vertical line that always remains in touch with the 
knob of the loudest application. The flood mark gives users a 
visual indication for the current overall loudness of their sys-
tem. The attempt to drag an application slider beyond the 
flood mark makes the flood mark slider go up in parallel 
(Figure 5a b, the topmost of the three sliders was dragged 
up); lowering the loudest application makes the flood mark 
slider follow until it hits the knob of another application 
slider. Adjusting the flood mark slider itself scales all applica-
tion sliders proportionally (Figure 5b c). 
Despite the flood mark design’s potential for contributing to a 
more powerful interface, we chose to pursue the thumbwheel 
design when early usability testing indicated that the addi-
tional information provided by the flood mark made this de-
sign slower to learn and read than the thumbwheel design. 
Also, some users who had extensive experience with the tra-
ditional volume control panel falsely identified the slider as a 
traditional master volume slider, which caused them to read 
application loudness incorrectly. 

a

b

c  
Figure 5: The ‘flood-mark’ on the control panel design 
allows users to read how loud their system is. 

The point behind using a thumbwheel is that thumbwheels 
allow users to manipulate a variable without the state of that 
variable being exposed; for our purposes, the thumbwheel is 
basically a slider with the knob being deliberately hidden. In 
our design, this reduces the cognitive load for the user and 
avoids the risk of misinterpretation. The flat model provides 
visual feedback by moving application sliders instead. 
Our initial concerns that Windows users would be unfamiliar 
with thumbwheels went away during our usability study (see 
the respective section). Our participants seemed to be fairly 
familiar with thumbwheels, which might be explained by the 
fact that many consumer devices, such as cell phones, Sony 
PDAs, and Microsoft mice utilize them. 
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The visual design motivation of the “Mute all” button is simi-
lar to the thumbwheel. Since all relevant loudness informa-
tion is contained in the application sliders, there is no need 
for users to read the state of the mute button. In order to dis-
courage users from reading the button, we gave it the visual 
appeal of a push button—a widget that, unlike checkboxes, is 
generally used as a pure input widget [15]. 

IMPLEMENTATION AND ALGORITHMS 
Adjusting the loudness of a single application can require the 
flat system to apply changes to a larger number of volume 
variables in the underlying volume variable hierarchy. Imag-
ine, for example, that, while the overall system is muted, a 
user unmutes an application by dragging its application slider 
up. This requires the flat system to deactivate the main mute, 
but to prevent other applications from starting to play as well 
the flat system also needs to mute all other applications. In 
this section, we describe the system design and algorithms 
that accomplish this. 
Components: In order to be able to make global adjustments, 
all loudness computation is done from within a central pro-
gram that maintains back-and-forth communication with all 
loudness widgets, whether in the volume control panel or an 
application. This communication is built into a customized 
loudness slider; applications that use that slider are automati-
cally loudness-enabled. 
Data structures: All computation is based on two main data 
structures, i.e., hardware-oriented volume and flat loudness. 
Hardware-oriented volume is a tree structure that contains the 
variables shown in Figure 2; mute is represented as variables 
that take on the values 0% and 100%. Flat loudness uses the 
same hierarchical structure, but different semantics. Leaves in 
the tree represent application loudness; nodes are defined as 
the maximum of their children. Leaves and nodes determine 
the value of the interface widgets each of them is associated 
with. By definition, a mute widget is muted if the associated 
variable is zero. 
When the flat system is launched, it reads the hardware vol-
ume state and converts it to flat format. From then on, volume 
is managed in flat format. Whenever loudness is adjusted, the 
flat format is translated to hardware-oriented format and sent 
to the system’s audio API in order to make the changes audi-
ble. 
Algorithms: Hardware-oriented volume is converted to flat 
loudness by multiplying node values by their parent’s value in 
a top-down traversal and then setting all nodes to the 
maximum of the values of their child nodes in a bottom-up 
traversal. The back conversion is done by dividing all node 
values by their parent’s value in a top-down traversal. When 
the user adjusts the loudness of some node, the flat structure 
preserves its consistency by repairing the path from the node 
to the root, as well as the node’s sub tree.  
Note that this algorithm explains all the behavior described in 
the interface walkthrough, such as the tight coupling between 
mute and sliders or the behavior of the flood mark, which is 
simply coupled to master volume. The hardware-oriented 
volume states created by this algorithm have the following 

properties. The master volume is always minimized, the wave 
channel is set to a constant 100%, all other channels are 
muted, and application volume variables are always maxi-
mized. This optimizes the system’s signal-to-noise ratio—
better than a typical user might configure. 
The current status of our implementation is that the volume 
control panel shown in Figure 7 is implemented in Windows 
native code, while the add-ons required for the flat volume 
control model are implemented as prototype code (Macrome-
dia Flash) to allow for more efficient experimentation with 
different algorithms and interfaces. 

DEALING WITH LEGACY ISSUES 
Implementing the full extent of the flat volume control model 
requires the participation of applications and volume control 
panel. This would suggest that introducing the flat model 
would face a huge hurdle, as it is unlikely that a user would 
upgrade the operating system and all applications at the same 
time. Fortunately, this hurdle can be overcome by the use of 
application ‘shims’ and ‘flood mark sliders’. 

Legacy applications in a flat system 
The handling of legacy applications depends on their volume 
control capabilities. Applications that produce sound, but 
offer no volume control interface are particularly easy, as the 
flat system can simply manage loudness for them. Legacy 
applications with internal volume control interface need to be 
kept in sync with the flat system. While the flat system cannot 
control user interface elements inside the legacy application 
(volume control widget inside the application may therefore 
at times reflect an incorrect loudness value), the flat system 
can still control the application’s volume and thus apply the 
flat model. For that purpose, the flat system uses so-called 
application compatibility shims. Shims are callback functions 
inserted into the get and set volume functions that applica-
tions call. While shims are active, legacy applications effec-
tively communicate with the flat system rather than the sound 
hardware, which allows the flat system to manage loudness 
for the application. This also allows the user to adjust the 
application’s loudness through the control panel. 

Flat applications in legacy operating system 
The opposite case, a flat application running in a legacy sys-
tem, is of particular interest, as it allows deploying the pre-
sented concepts on a per-application basis—an easier step 
than adoption on an operating system-wide scale.  
The slider inside a flat-enabled application always represents 
loudness, also when running in a legacy operating system. If 
necessary, the slider itself now increases the system’s master 
volume and mute to achieve the requested loudness. The only 
difference compared to a full flat implementation is that the 
flat application cannot establish the shim mechanism and thus 
cannot prevent other applications from getting louder in that 
case. In order to warn users of this side effect, sliders may 
optionally display a little horizontal line across the slider 
(Figure 6a) to indicate: “Dragging the knob beyond this line 
will increase the loudness of all other applications.” This line 
is called flood mark—vaguely related to the flood mark con-
trol panel design presented earlier (but not subject to its us-
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ability issues). Dragging the slider knob beyond the flood 
mark drags the flood mark with it (Figure 6b c). Dragging 
the knob back down leaves the master volume unchanged 
(Figure 6c d). This prevents reducing the loudness of one 
application from reducing the loudness of or muting others. 
Flood marks can be complemented with a handle, shown as a 
small rectangle attached to the flood mark. By dragging the 
flood mark users adjust the master volume directly (Figure 
6d e). 

a b c d e  
Figure 6: (a) A flood mark slider consists of a slider and 
a flood mark that warns users “exceeding this loudness 
will increase the loudness of other apps”, (b-e) walk-
through. 

PILOT STUDY 
Before conducting our actual user study, we carried out a 
pilot study to get a first impression of the learnability and 
usability of the flat volume control concept and our control 
panel prototype and to identify potential usability bottlenecks. 
Moreover, we wanted to get a general sense of whether the 
flat volume concept combined with the other design changes 
described earlier were perceived as improvements over the 
volume control panel of the currently most widely used oper-
ating system. We therefore compared our flat volume proto-
type with the volume control interface of Microsoft Windows 
XP. 
The XP interface was implemented as a Windows XP system 
running three sound sources—Windows media player, 3D 
Pinball, and Windows new message notifications. The flat 
interface offered identical functionality, but its sliders repre-
sented loudness and it used the control panel shown in Figure 
3 in a desktop with matching visuals (Figure 7 shows a 
screenshot of that desktop, but with a different control panel). 
Desktop, control panel, and all relevant application function-
ality were simulated using Macromedia Flash. Both interfaces 
were run on a PC running Windows XP on a 20” LCD screen 
at 1024x768 pixel resolution. 
Seven participants were recruited from the larger Puget 
Sound area. All were fairly experienced Windows users and 
had used their PCs for sound and audio purposes, e.g., play-
ing music via ripped format, listening to internet radio, etc. 
All participants were familiar with the standard Windows XP 
volume control panel. 
During the study, participants received verbal instructions via 
a voice connection and we observed the participant’s actions 
from behind a two-way mirror. Participants received no train-
ing. We started by asking participants to make the PC, which 
was currently muted, play sounds. Then we asked them to 
increase the volume of the CD. Next, we called them on the 

phone, on which we hinted that we couldn’t hear them very 
well and if necessary prompted them to turn down the vol-
ume. After the phone call ended we asked them to restore the 
volume. We then asked them to turn all volume up or down a 
little. After participants had completed this walkthrough, we 
encouraged them to explore the volume control panel and 
application volume controls at their own pace. Then we re-
peated the same sequence with the other interface. At the end 
of the study, we interviewed participants and assessed their 
comprehension of the involved interface elements. The study 
lasted about 30 minutes. 
Results 
All seven participants were able to complete all tasks in-
volved in the walkthrough with either interface. It was ob-
served that participants had no trouble operating the flat inter-
face, despite their lack of familiarly with this interface style. 
The flat interface received a number of positive comments. 
Most relevant for this study, all participants recognized and 
liked the functionality of the thumbwheel and the fact that it 
raised or lowered the volume sliders of all applications in 
unison. When explicitly asked whether the fact that sliders 
moved at different speeds (this was caused by the propor-
tional slider motion, see Figure 4a b) would be strange, 
participants disagreed and stated that this behavior was logi-
cal and intuitive. The additional changes were well received 
as well. All seven participants liked the fact that the flat con-
trol panel listed applications instead of the sound card chan-
nels. The application volume sliders were considered useful 
for adjusting the volume of the Pinball game, which by itself 
offered no volume control. 
The main shortcoming of the flat interface mentioned by the 
participants was the discoverability of the thumbwheel. All 
participants discovered the functionality of the wheel, but 6 
out of 7 did not touch it during their initial exploration of the 
control panel; in most cases, not until the part of the experi-
ment were we asked them to “turn everything up a little”. In 
subsequent prototypes, we have addressed this issue by add-
ing a brief 10-pixel back and forth rotation animation to the 
wheel when the control panel opens. 
All seven participants expressed a strong preference for the 
flat interface. While this did not clearly tell us which aspect 
of the new control panel was responsible for the preference, it 
indicated that the design of our control panel as a whole was 
on the right track. 

USER STUDY 
With the improved thumbwheel design, we conducted a for-
mal user study to isolate and evaluate only the flat volume 
control aspects. We did this by comparing the flat interface 
with a system that was visually and functionally identical, but 
used the traditional hierarchical volume control system in-
stead (Figure 7). 
Our hypothesis was that participants would troubleshoot vol-
ume control, restore volume, and increase volume faster 
when using the flat interface. This should result in higher 
subjective satisfaction for that interface. However, we ex-
pected the flat interface to score lower in terms of learnabil-
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ity, as some participants would be already familiar with the 
concept behind the control interface while the flat concept 
would be new to them. 
Interfaces: The flat interface used in this study was identical 
to the flat interface in the pilot study reported in the previous 
section, but it used the improved thumbwheel. The control 
interface (Figure 7) was identical to the flat interface except 
that it implemented the traditional hierarchical volume con-
trol model. Its sliders represented volume not loudness and its 
control panel offered a master volume slider and a main mute 
checkbox instead of the thumbwheel and mute push button 
offered by the flat interface. The control interface’s control 
panel also exposed per-application mute checkboxes. This 
was necessary to allow users to notice and unmute applica-
tions that had been muted from within the application. The 
flat interface did not need to expose these, as the flat model 
manages mute indirectly through the loudness widgets. Be-
sides this, both interfaces used the same visuals (Figure 7 vs. 
Figure 3). 

 
Figure 7: The experimental environment used in the pi-
lot study and the user study, here with the volume con-
trol panel of the control interface. 

Participants: Seven participants were recruited from the lar-
ger Puget Sound area. Each participant had access to a Win-
dows PC in their place of residence and used it at least once a 
month. Actual computer tenure and level of expertise varied 
from “casual user” to “skilled daily PC user”. All participants 
indicated that they had some experience listening to sounds or 
music on the PC and all had adjusted the sound level of their 
PC multiple times in the past either through software or hard-
ware controls. 
Procedure: Each interface was evaluated in two steps. To 
assess the learnability of the interfaces, participants first com-
pleted the same walkthrough procedure that we had used in 
the pilot study. At the end of this part, participants were 
quizzed about the interface’s functionality. Then participants 
completed four qualitative tasks as described below and filled 
out a questionnaire. Then they repeated the same procedure 
with the other interface. Interface and task order were coun-
terbalanced. The entire study lasted about 1 hour. 

Tasks: In all tasks, trials started by participants clicking a 
button labeled “start”, adjusting volume either in media 
player or the control panel, and completing the trial by hitting 
the space key. Each task consisted of four training and eight 
timed trials. 
1. Unmute task. The participant’s task was to make Media 
Player’s audio play from a muted state. The Media Player 
was muted by its application volume being zero or muted, the 
master volume being zero or muted, or any combination 
thereof.  
2. Restore task. Participants found the volume/loudness set-
tings initialized to a randomly chosen reference setting mak-
ing Media Player play at reference loudness. The participants 
task was to hit a button labeled “randomize” that changed the 
volume settings and then to bring back the loudness of Media 
Player to this trial’s reference loudness. 
3. Maximize-one task. The participant’s task was to maximize 
the loudness of Media Player, while affecting the volume of 
all other applications as little as possible. 
4. Maximize-all task. The participant’s task was to make the 
PC play as loud as possible, while affecting the relative mix 
between applications as little as possible.  

Results 
Task completion time: Confirming our first hypothesis, sub-
jects achieved significantly better task completion times in all 
four tasks when using the flat interface (Figure 8). All differ-
ences between interfaces were significant at p<0.01. 
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Figure 8: Average task completion times in milliseconds 
(and Std. Error of Mean) 

A 2 (flat v. control) x 4 (4 tasks) repeated measures Analysis 
of Variance (RM ANOVA) was carried out on the task time 
data. We observed a significant main effect for Interface, 
F(1,18)=23.8, p<0.01. However, there was no significant 
effect for Task or the interaction. The control interface was 
consistently slower than the flat interface for input across all 
tasks. 
Error rate: For each of the four tasks, participants produced 
lower error rates when using the flat interface than when us-
ing the control interface (Table 1). Due to the different nature 
of the four tasks, error was computed differently for each 
task. Unmute task: number of cases where Media Player was 
not successfully unmuted. Restore task: percentage the en-
tered loudness was off with respect to reference loudness. 
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Max one: percentage the loudness of the other two applica-
tions was off from their starting loudness. Max all: percent-
age the loudness of the other two applications was off from 
the loudness that would have preserved the mix. Paired t-tests 
for interface showed significant effects for restore, t(6)= 3.70, 
p< 0.01 and max one t(6)= 4.39, p< 0.01 and borderline sig-
nificance for max all, t(6)= 2.37, p< 0.06. 
 
task flat interface control interface 
unmute 2 of 64 5 of 64 
restore 4.4% (1.1%) 11.8% (2.6%) 
max one 0.4% (0.4%) 27.7% (6.1%) 
max all 1.0% (0.7%) 8.4% (2.7%) 

Table 1: Error rate (and Std. Error of Mean) 

Subjective satisfaction: On a five-point Likert scale (1 = 
strongly disagree, 5 = strongly agree), average ratings on 
learnability (“self explanatory”, “simple”, and “clear”) ranged 
between 3.9 and 4.3 out of five for both interfaces. “Making 
changes was simple” was rated 4.6 out of 5 for the flat inter-
face vs. 3.6 for control and “Making changes was efficient” 
was rated 4.3 for flat vs. 3.4 for control, but none of the dif-
ferences where statistically significant. When asked, 5 of the 
7 participants indicated specific trouble on certain tasks when 
using the control interface. The restore task seemed particu-
larly hard with this interface. Participants reported no prob-
lems for the flat interface. 
In the final ranking, the majority of subjects (5/7) indicated a 
preference for the flat interface over the control. 

DISCUSSION AND CONCLUSIONS 
Overall, our user study confirmed our hypotheses and pro-
vided the evidence that the flat volume control model leads to 
actual time savings when troubleshooting audio, as well as 
subjective preference over the existing hierarchical volume 
control model. While these time savings are a clear indication 
for the usefulness of the flat system, the results of the walk-
through part of the study are at least as important. Unlike the 
quantitative part, which required participants to solve the 
same volume control problem repeatedly and thus measured 
how long it takes users to execute a troubleshooting interac-
tion, the walkthrough required participants to solve volume 
control problems. The virtual absence of complications dur-
ing this part of the study indicates the probably most valuable 
benefit of the flat model: the flat model prevents users’ vol-
ume control needs from becoming problems in the first place. 
As future work, we plan to explore in how far the concepts 
described in this paper transfer to other application areas, 
such as sound studio equipment or even non-audio applica-
tions, such as multi-stage gamma corrections. 
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