

Flat Volume Control: Improving Usability by Hiding
the Volume Control Hierarchy in the User Interface

Patrick Baudisch1, John Pruitt2, and Steve Ball3
1Microsoft Research, 2Microsoft MSX, 3Microsoft eHome

One Microsoft Way, Redmond, WA 98052, USA
{baudisch, jpruitt, stevebal}@microsoft.com

ABSTRACT
The hardware-inspired volume user interface model that is in
use across all of today’s operating systems is the source of
several usability issues. One of them is that restoring the vol-
ume of a muted application can require an inappropriately
long troubleshooting process: in addition to manipulating the
application’s volume and mute controls, users may also have
to visit the system’s volume control panel to find and adjust
additional controls there. The “flat” volume control model
presented in this paper eliminates this and other problems by
hiding the hardware-oriented volume model from the user.
Using the flat model, users use one slider per application to
indicate how loud they want the respective applications to
play; the slider then internally adjusts all hardware volume
variables necessary to obtain the requested output. By offer-
ing a single point of control for each application, the flat
model simplifies controlling application volume and restoring
muted applications. In our studies, participants completed all
four volume control and mixing tasks faster and with less
error when using the flat model than when using the existing
hardware-oriented volume control model. Participants also
indicated a subjective preference for the flat model over
the existing model.
Categories & Subject Descriptors: H5.2 [Information inter-
faces and presentation]: User Interfaces. - Graphical user in-
terfaces.
General Terms: Human Factors, Design.
Keywords: Audio, sound, volume control, user interface.blutwurst

INTRODUCTION
Imagine the following scenario. In the middle of a presenta-
tion, the presenter tries to play a video clip. When hitting
‘play’ on the software video player, the video starts playing
but the audio remains silent. In order to fix the problem, the
presenter cranks up the volume slider in the video player, but
without success. When realizing that it may not be the player
causing the problem, the presenter opens the system’s volume
control panel and finds the state shown in Figure 1. The pre-
senter notices that the “master volume” slider (labeled “Vol-
ume Control”, 5) is set to zero, which would explain why the
sound did not play. The presenter then cranks the slider all

the way up, but still, nothing. After examining the corre-
sponding mute checkbox (6) and the state of the wave volume
slider (3) the presenter notices that the wave channel is muted
(4). Unchecking this “Mute” checkbox finally allows the au-
dio to play (although the audio now plays much louder than
intended, as the application volume and wave volume sliders
were set to their maximum values during the troubleshooting
process.)
The problem we are addressing in this paper is that this proc-
ess takes more time and effort than necessary.

a

Figure 1: Current volume control model: application
audio output is only active when its volume slider (1)
and wave and master sliders in the control panel (3, 5)
are set to non-zero values and the three mute check
boxes (2, 4, 6) are unchecked.

A look under the hood
We claim that the described problem is caused by the fact
that existing volume control interfaces expose the volume
control structure of the computer’s sound card to the user. As
shown in Figure 2, the volume variables in today’s systems
form a hierarchy. Before a sound produced by an application
reaches the speakers, it is affected by all sliders and mute
widgets in the path between that application and the speakers.
The actual loudness of an application (we will use the term
“loudness” to describe the final audio level that is sent to the
speakers and “volume” for internal volume variables) is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

255

product of all volume variables along the path1. Determining
how loud an application actually plays thus requires users to
read all volume variables along the path and mentally multi-
ply them.
An application is muted whenever at least one of the multi-
plied volume variables along its path is zero, i.e., a slider set
to zero or a checked mute button, no matter what the state of
the other variables in the signal path. Detecting that therefore
requires checking all these variables. Restoring a muted ap-
plication requires restoring all muted volume variables along
the path. These cases may also require users to access the
system’s volume control panel.

mutemute

mute

master
volume

media
player

mute

speakers

…

…
wave
channel

master

sound card channel

application
Figure 2: In the existing, hierarchical volume control
model (here MS Windows XP™), application sound
volume is reduced at up to six points along the signal
path (plus the volume knob at the speakers).

While we will use muting as our main scenario throughout
the paper, there are other volume control tasks that are com-
plicated by the hierarchical model. The hierarchical model
makes it difficult to set an application to a known loudness, as
this can require changing multiple variables along the path.
Also the task of making an application louder can become
complicated; in cases where the application volume maxes
out, users need to increase the master volume instead, which
in turn has a side effect on the loudness of other applications.
We will return to these scenarios later in this paper and also
in the user study section.
Even though some of today’s operating systems use a simpli-
fied interface, e.g., one that hides the sound card channel
layer (e.g. Apple Macintosh), they all have the notion of a
master volume. Thus, the described problem exists across
platforms.
What to do?
This hierarchical model and the resulting multiplicative vol-
ume model have desirable properties from an engineering
point of view. For example, they offer a wide dynamic range

1 In addition, there is often an analog knob on the speakers, which

is typically not controllable via software on today’s average PC.

and, properly setup, can maximize the signal-to-noise ratio.
However, exposing this architecture to computer users results
in complexity that, over time, can lead to additional user ef-
fort and error conditions. The professional sound mixing
equipment that first used this type of hierarchical volume
control model was designed by and for audio experts, but
today’s typical computer users do not typically fall into this
category.
We therefore propose a new volume control interface
model—one that hides the internal hierarchical structure of
the sound card from the user. As we show in this paper, this
allows users to monitor and control the loudness of applica-
tions more efficiently and especially solves the muting prob-
lem. At the same time, the proposed model matches and
sometimes outperforms the sound quality the traditional
model offers. We begin by presenting a walkthrough of the
flat model and its user interface. Then we briefly look at the
related work, followed by details about design and implemen-
tation of the flat volume control model and methods for han-
dling legacy issues. Finally, we present the results of the stud-
ies we conducted and conclude with a discussion of our find-
ings.
FLAT VOLUME CONTROL
The main benefit of the flat model is that it manages the vol-
ume hierarchy for the user. This is realized by changing the
semantics of all volume sliders in the system to solely repre-
sent loudness. Under the traditional model the volume slider
in Windows Media Player defined a single link in Media
Player’s volume path; in our redesign as a loudness slider it
now defines how loud Media Player plays, i.e. the value of
Media Player’s volume path as a whole. By manipulating the
loudness slider, users indicate how loud they want Media
Player to play, but without defining how this is supposed to
be accomplished. It is the loudness slider itself that then de-
termines the best way of realizing the requested loudness in
terms of hardware volume variables and that makes the nec-
essary changes. This delegation reduces the user’s load and
obtains equal or better audio quality, as the slider automati-
cally optimizes the system’s signal-to-noise ratio. We will
describe the algorithms that accomplish this in detail in the
implementation section.
If we redrew the diagram from Figure 2 for the flat model, we
would see that the sound card channel and master layers are
gone; application loudness widgets are now directly con-
nected to the speakers. The hierarchy has been replaced with
a flat structure—thus the name of our approach.
The flat volume control panel
When switching to the flat model, the semantics of all volume
control widgets across the system change, including those
located in the volume control panel. This requires some
changes in the control panel’s user interface. Figure 3 shows
a screenshot of our volume control panel prototype. This con-
trol panel allows users to perform three types of interactions.
First, sliders, one per application, allow users to adjust the
loudness of the respective application. Second, the “all appli-
cations” thumbwheel allows users to adjust the loudness of all

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

256

applications at once. “Spinning” the wheel makes all applica-
tion sliders move up and down, as illustrated by Figure 4.
Third, clicking the “mute all” pushbutton visibly brings all
sliders to zero and makes the mute button change its label to
“restore all”. Clicking the mute button again restores the val-
ues of all sliders to their previous states.

thumbwheelmute

application loudness

Figure 3: The flat volume control panel. Application
sliders represent the loudness of that application.
Thumbwheel and mute affect all application sliders.

a b

c d
Figure 4: Adjusting the volume of all applications at
once using the thumbwheel. (a b) Dragging the wheel
to the right makes all sliders go up proportionally. When
the first slider maxes out all sliders stop; this preserves
the volume mix. (b c) dragging it to the left makes all
sliders go down proportionally until they all hit zero.
(c d) Clicking the “restore all” push button restores to
the last non-zero setting.

It is essential to the flat user interface, that widgets cannot
only be manipulated directly, but that they also track the
value of the variable they represent and update themselves if
that value changes. This is necessary because the loudness
represented by one widget can be affected by another widget.
Clicking “mute all”, for example, can change the value of all
other loudness variables in the system. Using widgets that
continuously check the variable they represent assures that
the state of the interface remains consistent. As an example,
when the user operates a loudness slider in an application, the
corresponding slider in the control panel moves in sync and
vice versa. Moving the thumbwheel has an impact on the
loudness of many applications and consequently, all sliders
representing application volume move—in the control panel
(Figure 4a b), as well as in the applications. When an appli-
cation’s mute button is clicked, the loudness slider of that
application jumps to zero and when mute is clicked again the
slider restores itself. Whenever an application ends up having
zero loudness, its mute button reflects that by changing its
state accordingly. If all applications have zero loudness, e.g.,
because the thumbwheel was spun all the way down (Figure
4b c), the main mute changes its state to reflect that. Any
way of unmuting the system, whether it is hitting “restore all”
(Figure 4c d) or dragging an application loudness slider up,
restores the mute button’s “mute all” face.
The flat model solves the muting problem
In the traditional volume control model, the loudness of any
application may be reduced by other volume variables, such
as the master volume. Sliders therefore only mean “the loud-
ness of this application is at most x”. In the flat model, how-
ever, sliders mean “the loudness of this application is x”. In
the state shown in Figure 3, for example, 3D Pinball is play-
ing at about 80% loudness, Windows Media Player at ~40%.
One of the main benefits of this paradigm switch is that it
solves the muting problem. Detecting that an application is
muted becomes straightforward; an application is muted if
and only if its loudness slider points to zero. Restoring a
muted application is equally straightforward. Any muted ap-
plication can be restored by dragging the application slider
up—the slider will adjust all volume variables necessary. As
a result, the need to access the control panel and to check
multiple widgets is eliminated.
The flat model also addresses the two other scenarios men-
tioned earlier. First, since loudness sliders can increase chan-
nel and master volume variables when necessary, users can
now always access the full possible range of output loudness
from inside their applications. Second, the flat model estab-
lishes a fixed mapping between slider state and loudness,
which allows users to set an application to any known loud-
ness, such as “the loudness for giving slide presentations in
this conference room”, by setting its slider to a remembered
position.
RELATED WORK
Sound is in wide use in human-computer interaction. Sound
allows for eyes free interactions. Since users can detect
sounds rapidly, sound was found highly effective for monitor-
ing applications [11] as well as various types of notification

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

257

[20]. In other areas, sound has been used to make VR envi-
ronments [14] and reading more immersive [2], and to help
improve the usability of devices, e.g., by helping users navi-
gate hierarchical structures [5], acquire buttons on small
screen devices [4], or recognize the functions of products
[12].
Along with pitch, location, and semantic context, sound vol-
ume is one of the main cues that help users distinguish sound
sources [19]. Controlling volume therefore plays a major role
in audio-only media spaces [18], where volume has been used
to denote proximity between participants in conversations [1].
Various interface strategies have been suggested for control-
ling volume, such as hand gestures [7, 10], bar code read-
ers [13], or physical widgets connected to a computer [8]. A
broad interest in controlling volume in a convenient way has
created a market for such products (e.g. [9]).
The widgets deployed in the volume control interfaces pre-
sented in this paper have been studied in various contexts.
Interaction techniques inspired by a paint metaphor have been
proposed as means for efficiently manipulating larger num-
bers of sliders [3]. The design of mute buttons is subject to
the discussion of how to visualize the state of a button [15, 6].
Thumbwheel widgets have been used to enter variables on an
infinite range, e.g. in flight simulation [16] and 3D viewers
(e.g., examinerViewer, www.sgi.com).

THE DESIGN OF THE FLAT VOLUME CONTROL PANEL
In this section, we take a closer look at the design shown in
Figure 3 and point out design alternatives. Before we focus
on the widgets that form the interface of the flat architecture,
we give a quick overview of other aspects of the flat control
panel (Figure 3), i.e., the changes that make it different from
the Windows XP control panel shown in Figure 2. These
changes are independent of the flat concept, so they may also
be applied to a non-flat control panel or removed from the
flat control panel altogether.
General design changes
First, the control panel shown in Figure 3 does not expose
sound card channels, such as “wave”. The primary reason for
that is that today virtually all PC sounds go through the wave
channel, so that all other channels have become obsolete.
Hiding channels reduces clutter and brings this dialog up to
par with the Apple Macintosh, the designers of which chose
not to expose sound card channels in the first place. Note that
the flat volume control concept works with volume hierar-
chies of any depth, so it remains applicable even if sound
card channel volume was exposed.
As an alternative to sound card channels, and unlike the Win-
dows XP control panel, the flat panel lists “Now Playing and
Recently Playing Sounds”, i.e., applications. This provides
users with direct access to application loudness even includ-
ing applications that do not offer volume control in the appli-
cation itself, such as the 3D Pinball game in Figure 3. The
implementation section of this paper explains how this is im-
plemented using so-called ‘shims’.
Finally, the control panel was uncluttered by moving applica-
tion-specific mute buttons and all balance sliders into an “ad-

vanced mode” panel. Layout and graphical design were
changed as well.
The thumbwheel and the mute button visuals
Figure 5a shows a design alternative we explored, called
flood mark design. The input capabilities of this widget are
equivalent to the thumbwheel shown earlier. However, this
design offers additional functionality by providing a flood
mark, a vertical line that always remains in touch with the
knob of the loudest application. The flood mark gives users a
visual indication for the current overall loudness of their sys-
tem. The attempt to drag an application slider beyond the
flood mark makes the flood mark slider go up in parallel
(Figure 5a b, the topmost of the three sliders was dragged
up); lowering the loudest application makes the flood mark
slider follow until it hits the knob of another application
slider. Adjusting the flood mark slider itself scales all applica-
tion sliders proportionally (Figure 5b c).
Despite the flood mark design’s potential for contributing to a
more powerful interface, we chose to pursue the thumbwheel
design when early usability testing indicated that the addi-
tional information provided by the flood mark made this de-
sign slower to learn and read than the thumbwheel design.
Also, some users who had extensive experience with the tra-
ditional volume control panel falsely identified the slider as a
traditional master volume slider, which caused them to read
application loudness incorrectly.

a

b

c
Figure 5: The ‘flood-mark’ on the control panel design
allows users to read how loud their system is.

The point behind using a thumbwheel is that thumbwheels
allow users to manipulate a variable without the state of that
variable being exposed; for our purposes, the thumbwheel is
basically a slider with the knob being deliberately hidden. In
our design, this reduces the cognitive load for the user and
avoids the risk of misinterpretation. The flat model provides
visual feedback by moving application sliders instead.
Our initial concerns that Windows users would be unfamiliar
with thumbwheels went away during our usability study (see
the respective section). Our participants seemed to be fairly
familiar with thumbwheels, which might be explained by the
fact that many consumer devices, such as cell phones, Sony
PDAs, and Microsoft mice utilize them.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

258

The visual design motivation of the “Mute all” button is simi-
lar to the thumbwheel. Since all relevant loudness informa-
tion is contained in the application sliders, there is no need
for users to read the state of the mute button. In order to dis-
courage users from reading the button, we gave it the visual
appeal of a push button—a widget that, unlike checkboxes, is
generally used as a pure input widget [15].

IMPLEMENTATION AND ALGORITHMS
Adjusting the loudness of a single application can require the
flat system to apply changes to a larger number of volume
variables in the underlying volume variable hierarchy. Imag-
ine, for example, that, while the overall system is muted, a
user unmutes an application by dragging its application slider
up. This requires the flat system to deactivate the main mute,
but to prevent other applications from starting to play as well
the flat system also needs to mute all other applications. In
this section, we describe the system design and algorithms
that accomplish this.
Components: In order to be able to make global adjustments,
all loudness computation is done from within a central pro-
gram that maintains back-and-forth communication with all
loudness widgets, whether in the volume control panel or an
application. This communication is built into a customized
loudness slider; applications that use that slider are automati-
cally loudness-enabled.
Data structures: All computation is based on two main data
structures, i.e., hardware-oriented volume and flat loudness.
Hardware-oriented volume is a tree structure that contains the
variables shown in Figure 2; mute is represented as variables
that take on the values 0% and 100%. Flat loudness uses the
same hierarchical structure, but different semantics. Leaves in
the tree represent application loudness; nodes are defined as
the maximum of their children. Leaves and nodes determine
the value of the interface widgets each of them is associated
with. By definition, a mute widget is muted if the associated
variable is zero.
When the flat system is launched, it reads the hardware vol-
ume state and converts it to flat format. From then on, volume
is managed in flat format. Whenever loudness is adjusted, the
flat format is translated to hardware-oriented format and sent
to the system’s audio API in order to make the changes audi-
ble.
Algorithms: Hardware-oriented volume is converted to flat
loudness by multiplying node values by their parent’s value in
a top-down traversal and then setting all nodes to the
maximum of the values of their child nodes in a bottom-up
traversal. The back conversion is done by dividing all node
values by their parent’s value in a top-down traversal. When
the user adjusts the loudness of some node, the flat structure
preserves its consistency by repairing the path from the node
to the root, as well as the node’s sub tree.
Note that this algorithm explains all the behavior described in
the interface walkthrough, such as the tight coupling between
mute and sliders or the behavior of the flood mark, which is
simply coupled to master volume. The hardware-oriented
volume states created by this algorithm have the following

properties. The master volume is always minimized, the wave
channel is set to a constant 100%, all other channels are
muted, and application volume variables are always maxi-
mized. This optimizes the system’s signal-to-noise ratio—
better than a typical user might configure.
The current status of our implementation is that the volume
control panel shown in Figure 7 is implemented in Windows
native code, while the add-ons required for the flat volume
control model are implemented as prototype code (Macrome-
dia Flash) to allow for more efficient experimentation with
different algorithms and interfaces.

DEALING WITH LEGACY ISSUES
Implementing the full extent of the flat volume control model
requires the participation of applications and volume control
panel. This would suggest that introducing the flat model
would face a huge hurdle, as it is unlikely that a user would
upgrade the operating system and all applications at the same
time. Fortunately, this hurdle can be overcome by the use of
application ‘shims’ and ‘flood mark sliders’.

Legacy applications in a flat system
The handling of legacy applications depends on their volume
control capabilities. Applications that produce sound, but
offer no volume control interface are particularly easy, as the
flat system can simply manage loudness for them. Legacy
applications with internal volume control interface need to be
kept in sync with the flat system. While the flat system cannot
control user interface elements inside the legacy application
(volume control widget inside the application may therefore
at times reflect an incorrect loudness value), the flat system
can still control the application’s volume and thus apply the
flat model. For that purpose, the flat system uses so-called
application compatibility shims. Shims are callback functions
inserted into the get and set volume functions that applica-
tions call. While shims are active, legacy applications effec-
tively communicate with the flat system rather than the sound
hardware, which allows the flat system to manage loudness
for the application. This also allows the user to adjust the
application’s loudness through the control panel.

Flat applications in legacy operating system
The opposite case, a flat application running in a legacy sys-
tem, is of particular interest, as it allows deploying the pre-
sented concepts on a per-application basis—an easier step
than adoption on an operating system-wide scale.
The slider inside a flat-enabled application always represents
loudness, also when running in a legacy operating system. If
necessary, the slider itself now increases the system’s master
volume and mute to achieve the requested loudness. The only
difference compared to a full flat implementation is that the
flat application cannot establish the shim mechanism and thus
cannot prevent other applications from getting louder in that
case. In order to warn users of this side effect, sliders may
optionally display a little horizontal line across the slider
(Figure 6a) to indicate: “Dragging the knob beyond this line
will increase the loudness of all other applications.” This line
is called flood mark—vaguely related to the flood mark con-
trol panel design presented earlier (but not subject to its us-

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

259

ability issues). Dragging the slider knob beyond the flood
mark drags the flood mark with it (Figure 6b c). Dragging
the knob back down leaves the master volume unchanged
(Figure 6c d). This prevents reducing the loudness of one
application from reducing the loudness of or muting others.
Flood marks can be complemented with a handle, shown as a
small rectangle attached to the flood mark. By dragging the
flood mark users adjust the master volume directly (Figure
6d e).

a b c d e
Figure 6: (a) A flood mark slider consists of a slider and
a flood mark that warns users “exceeding this loudness
will increase the loudness of other apps”, (b-e) walk-
through.

PILOT STUDY
Before conducting our actual user study, we carried out a
pilot study to get a first impression of the learnability and
usability of the flat volume control concept and our control
panel prototype and to identify potential usability bottlenecks.
Moreover, we wanted to get a general sense of whether the
flat volume concept combined with the other design changes
described earlier were perceived as improvements over the
volume control panel of the currently most widely used oper-
ating system. We therefore compared our flat volume proto-
type with the volume control interface of Microsoft Windows
XP.
The XP interface was implemented as a Windows XP system
running three sound sources—Windows media player, 3D
Pinball, and Windows new message notifications. The flat
interface offered identical functionality, but its sliders repre-
sented loudness and it used the control panel shown in Figure
3 in a desktop with matching visuals (Figure 7 shows a
screenshot of that desktop, but with a different control panel).
Desktop, control panel, and all relevant application function-
ality were simulated using Macromedia Flash. Both interfaces
were run on a PC running Windows XP on a 20” LCD screen
at 1024x768 pixel resolution.
Seven participants were recruited from the larger Puget
Sound area. All were fairly experienced Windows users and
had used their PCs for sound and audio purposes, e.g., play-
ing music via ripped format, listening to internet radio, etc.
All participants were familiar with the standard Windows XP
volume control panel.
During the study, participants received verbal instructions via
a voice connection and we observed the participant’s actions
from behind a two-way mirror. Participants received no train-
ing. We started by asking participants to make the PC, which
was currently muted, play sounds. Then we asked them to
increase the volume of the CD. Next, we called them on the

phone, on which we hinted that we couldn’t hear them very
well and if necessary prompted them to turn down the vol-
ume. After the phone call ended we asked them to restore the
volume. We then asked them to turn all volume up or down a
little. After participants had completed this walkthrough, we
encouraged them to explore the volume control panel and
application volume controls at their own pace. Then we re-
peated the same sequence with the other interface. At the end
of the study, we interviewed participants and assessed their
comprehension of the involved interface elements. The study
lasted about 30 minutes.
Results
All seven participants were able to complete all tasks in-
volved in the walkthrough with either interface. It was ob-
served that participants had no trouble operating the flat inter-
face, despite their lack of familiarly with this interface style.
The flat interface received a number of positive comments.
Most relevant for this study, all participants recognized and
liked the functionality of the thumbwheel and the fact that it
raised or lowered the volume sliders of all applications in
unison. When explicitly asked whether the fact that sliders
moved at different speeds (this was caused by the propor-
tional slider motion, see Figure 4a b) would be strange,
participants disagreed and stated that this behavior was logi-
cal and intuitive. The additional changes were well received
as well. All seven participants liked the fact that the flat con-
trol panel listed applications instead of the sound card chan-
nels. The application volume sliders were considered useful
for adjusting the volume of the Pinball game, which by itself
offered no volume control.
The main shortcoming of the flat interface mentioned by the
participants was the discoverability of the thumbwheel. All
participants discovered the functionality of the wheel, but 6
out of 7 did not touch it during their initial exploration of the
control panel; in most cases, not until the part of the experi-
ment were we asked them to “turn everything up a little”. In
subsequent prototypes, we have addressed this issue by add-
ing a brief 10-pixel back and forth rotation animation to the
wheel when the control panel opens.
All seven participants expressed a strong preference for the
flat interface. While this did not clearly tell us which aspect
of the new control panel was responsible for the preference, it
indicated that the design of our control panel as a whole was
on the right track.

USER STUDY
With the improved thumbwheel design, we conducted a for-
mal user study to isolate and evaluate only the flat volume
control aspects. We did this by comparing the flat interface
with a system that was visually and functionally identical, but
used the traditional hierarchical volume control system in-
stead (Figure 7).
Our hypothesis was that participants would troubleshoot vol-
ume control, restore volume, and increase volume faster
when using the flat interface. This should result in higher
subjective satisfaction for that interface. However, we ex-
pected the flat interface to score lower in terms of learnabil-

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

260

ity, as some participants would be already familiar with the
concept behind the control interface while the flat concept
would be new to them.
Interfaces: The flat interface used in this study was identical
to the flat interface in the pilot study reported in the previous
section, but it used the improved thumbwheel. The control
interface (Figure 7) was identical to the flat interface except
that it implemented the traditional hierarchical volume con-
trol model. Its sliders represented volume not loudness and its
control panel offered a master volume slider and a main mute
checkbox instead of the thumbwheel and mute push button
offered by the flat interface. The control interface’s control
panel also exposed per-application mute checkboxes. This
was necessary to allow users to notice and unmute applica-
tions that had been muted from within the application. The
flat interface did not need to expose these, as the flat model
manages mute indirectly through the loudness widgets. Be-
sides this, both interfaces used the same visuals (Figure 7 vs.
Figure 3).

Figure 7: The experimental environment used in the pi-
lot study and the user study, here with the volume con-
trol panel of the control interface.

Participants: Seven participants were recruited from the lar-
ger Puget Sound area. Each participant had access to a Win-
dows PC in their place of residence and used it at least once a
month. Actual computer tenure and level of expertise varied
from “casual user” to “skilled daily PC user”. All participants
indicated that they had some experience listening to sounds or
music on the PC and all had adjusted the sound level of their
PC multiple times in the past either through software or hard-
ware controls.
Procedure: Each interface was evaluated in two steps. To
assess the learnability of the interfaces, participants first com-
pleted the same walkthrough procedure that we had used in
the pilot study. At the end of this part, participants were
quizzed about the interface’s functionality. Then participants
completed four qualitative tasks as described below and filled
out a questionnaire. Then they repeated the same procedure
with the other interface. Interface and task order were coun-
terbalanced. The entire study lasted about 1 hour.

Tasks: In all tasks, trials started by participants clicking a
button labeled “start”, adjusting volume either in media
player or the control panel, and completing the trial by hitting
the space key. Each task consisted of four training and eight
timed trials.
1. Unmute task. The participant’s task was to make Media
Player’s audio play from a muted state. The Media Player
was muted by its application volume being zero or muted, the
master volume being zero or muted, or any combination
thereof.
2. Restore task. Participants found the volume/loudness set-
tings initialized to a randomly chosen reference setting mak-
ing Media Player play at reference loudness. The participants
task was to hit a button labeled “randomize” that changed the
volume settings and then to bring back the loudness of Media
Player to this trial’s reference loudness.
3. Maximize-one task. The participant’s task was to maximize
the loudness of Media Player, while affecting the volume of
all other applications as little as possible.
4. Maximize-all task. The participant’s task was to make the
PC play as loud as possible, while affecting the relative mix
between applications as little as possible.

Results
Task completion time: Confirming our first hypothesis, sub-
jects achieved significantly better task completion times in all
four tasks when using the flat interface (Figure 8). All differ-
ences between interfaces were significant at p<0.01.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

unmute restore max one max all

Control
Flat
Control
Flat

Figure 8: Average task completion times in milliseconds
(and Std. Error of Mean)

A 2 (flat v. control) x 4 (4 tasks) repeated measures Analysis
of Variance (RM ANOVA) was carried out on the task time
data. We observed a significant main effect for Interface,
F(1,18)=23.8, p<0.01. However, there was no significant
effect for Task or the interaction. The control interface was
consistently slower than the flat interface for input across all
tasks.
Error rate: For each of the four tasks, participants produced
lower error rates when using the flat interface than when us-
ing the control interface (Table 1). Due to the different nature
of the four tasks, error was computed differently for each
task. Unmute task: number of cases where Media Player was
not successfully unmuted. Restore task: percentage the en-
tered loudness was off with respect to reference loudness.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

261

Max one: percentage the loudness of the other two applica-
tions was off from their starting loudness. Max all: percent-
age the loudness of the other two applications was off from
the loudness that would have preserved the mix. Paired t-tests
for interface showed significant effects for restore, t(6)= 3.70,
p< 0.01 and max one t(6)= 4.39, p< 0.01 and borderline sig-
nificance for max all, t(6)= 2.37, p< 0.06.

task flat interface control interface
unmute 2 of 64 5 of 64
restore 4.4% (1.1%) 11.8% (2.6%)
max one 0.4% (0.4%) 27.7% (6.1%)
max all 1.0% (0.7%) 8.4% (2.7%)

Table 1: Error rate (and Std. Error of Mean)

Subjective satisfaction: On a five-point Likert scale (1 =
strongly disagree, 5 = strongly agree), average ratings on
learnability (“self explanatory”, “simple”, and “clear”) ranged
between 3.9 and 4.3 out of five for both interfaces. “Making
changes was simple” was rated 4.6 out of 5 for the flat inter-
face vs. 3.6 for control and “Making changes was efficient”
was rated 4.3 for flat vs. 3.4 for control, but none of the dif-
ferences where statistically significant. When asked, 5 of the
7 participants indicated specific trouble on certain tasks when
using the control interface. The restore task seemed particu-
larly hard with this interface. Participants reported no prob-
lems for the flat interface.
In the final ranking, the majority of subjects (5/7) indicated a
preference for the flat interface over the control.

DISCUSSION AND CONCLUSIONS
Overall, our user study confirmed our hypotheses and pro-
vided the evidence that the flat volume control model leads to
actual time savings when troubleshooting audio, as well as
subjective preference over the existing hierarchical volume
control model. While these time savings are a clear indication
for the usefulness of the flat system, the results of the walk-
through part of the study are at least as important. Unlike the
quantitative part, which required participants to solve the
same volume control problem repeatedly and thus measured
how long it takes users to execute a troubleshooting interac-
tion, the walkthrough required participants to solve volume
control problems. The virtual absence of complications dur-
ing this part of the study indicates the probably most valuable
benefit of the flat model: the flat model prevents users’ vol-
ume control needs from becoming problems in the first place.
As future work, we plan to explore in how far the concepts
described in this paper transfer to other application areas,
such as sound studio equipment or even non-audio applica-
tions, such as multi-stage gamma corrections.

Acknowledgements
Thanks to Ed Cutrell and Mary Czerwinski for their com-
ments on this paper. Thanks to Frank Yerrace, Annette Crow-
ley, Larry Osterman, Frank Wong, and Jeremy Knudsen for
their contribution to the volume control project.

REFERENCES
1. Aoki, P. et al. The mad hatter's cocktail party: a social

mobile audio space supporting multiple simultaneous
conversations. In Proc CHI’03, pp. 425–432.

2. Back, M., Cohen, J., Gold, R., Harrison, S., and Minne-
man, S. Listen reader: an electronically augmented paper-
based book. In Proc CHI’01, pp. 23–29.

3. Baudisch, P. Don't Click, Paint! Using Toggle Maps to
Manipulate Sets of Toggle Switches. In Proc. UIST’98,
pp. 65–66.

4. Brewster, S. Overcoming the Lack of Screen Space on
Mobile Computers. Personal and Ubiquitous Computing
6(3):188–205, May 2002.

5. Brewster, S. Using non-speech sounds to provide naviga-
tion cues. TOCHI 5(3):224–259, Sept. 1998.

6. Carr, D.A. Specification of Interface Interaction Objects.
In Proc. CHI’94, pp. 372–378.

7. Freeman, W.T. and Weissman, C.D. Television Control
by Hand Gesture. In IEEE Intl. Workshop on Automatic
Face and Gesture Recognition, 1995.

8. Greenberg, S. and Boyle, M. Customizable physical inter-
faces for interacting with conventional applications. In
Proc. UIST’02, pp. 31–40.

9. http://www.griffintechnology.com/products/powermate
10. Kohle, M. Special Topics of Gesture Recognition Applied

in Intelligent Home Environments. Lecture Notes in Com-
puter Science 1371:285–296, 1998.

11. Kramer, G. An Introduction to auditory displays. In Audi-
tory Display: Sonification, Audification, and Auditory In-
terfaces. Addison-Wesley 1994, pp 1–78.

12. Lee, C.H., Kim, S., Chae, C.S., Chung, K.H. Sound: an
emotional element of interactions a case study of a mi-
crowave oven. In Proc. DIS’00, pp. 174–182.

13. Masui, T., and Siio, I. Real-World Graphical User Inter-
faces. In Proc. HUC’00, pp. 72–84.

14. Naef, M., Staadt, O., and Gross, M. Spatialized audio
rendering for immersive virtual environments. In Proc.
VR Software and Technology, pp. 55–72.

15. Plaisant, C., Wallace, D. Touchscreen Toggle Switches:
Push or slide? Design issues and usability study. Univer-
sity of Maryland, CS-Tech Report 2557, 1990.

16. Rushby, J. Analyzing cockpit interfaces using formal
methods. In H. Bowman (editor), Elsevier Electronic
Notes in Theoretical Computer Science 43, Oct. 2000.

17. Shneiderman, B., Designing the User Interface: Strate-
gies for effective human-computer interaction, Third edi-
tion, Reading MA: Addison-Wesley, 1998

18. Singer, A., Hindus, D., Stifelman, L. and White, S. Tan-
gible progress: less is more in Somewire audio spaces. In
Proc CHI’99, pp 104–111.

19. Wickens, C.D. and Hollands, J.G. Engineering Psychol-
ogy and Human Performance. Third Edition, Prentice
Hall, NJ, 2000.

20. Jones, D. The cognitive psychology of auditory distrac-
tion. The 1997 BPS Broadbent Lecture. British Journal of
Psychology, Vol 90(2), May 1999, 167–187.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

262

