

A Constraint Satisfaction Approach to
Predicting Skilled Interactive Cognition

Alonso Vera1, Andrew Howes2, Michael McCurdy,1 Richard L. Lewis3

1NASA Ames Research
Center

Moffett Field, CA
avera@arc.nasa.gov

2School of Psychology

Cardiff University
Cardiff, UK

HowesA@Cardiff.ac.uk

3 Department of Psychology

University of Michigan
Ann Arbor, MI

rickl@umich.edu

ABSTRACT
In this paper we report a new approach to generating
predictions about skilled interactive cognition. The
approach, which we call Cognitive Constraint Modeling,
takes as input a description of the constraints on a task
environment, on user strategies, and on the human cognitive
architecture and generates as output a prediction of the time
course of interaction. In the Cognitive Constraint Models
that we have built this is achieved by encoding the
assumptions inherent in CPM-GOMS as a set of constraints
and reasoning about them using finite domain constraint
satisfaction.

Categories & Subject Descriptors: H.5.2 [User
Interfaces]: Theory and methods

General Terms: Human Factors, Performance, Theory.

Keywords: cognitive modeling, tools for usability
evaluation, constraint satisfaction.

INTRODUCTION
It is extremely expensive, if possible at all, to get
assessments of skilled interaction by experts on routine
tasks. Consider as an example, NASA’s needs in designing
a new interface for the shuttle cockpit. Ideally, it would be
possible to bring in experienced astronauts, train them for
tens or hundreds of hours, and then assess the impact of the
new interface on performance time, error potential, and so
on. Researchers would then iterate on the interface design,
bring in a new set of astronauts, and go through the process
again. This cycle would be repeated several times in order
to ensure that a substantive proportion of the consequences
of the interface on performance are understood and

addressed. This is practically impossible due to constraints
on time and other resources. Researchers working on
shuttle cockpit design struggle to get pilots (not astronauts)
as test participants, and then just for a few hours. The
return-on-investment for tools that predict the time course
and potential for errors in skilled performance is therefore
high.

Assessing novice behavior, in contrast, has much lower
costs. Novices are easily available and, moreover, relatively
little of their time is required as they do not need training.
Designing walk-up-and-use systems that require close
attention to learnability rather than skilled interaction
therefore poses a much lower barrier to effectively applying
the design process. The consequences of poor HCI
decisions are, at least, no less critical for interfaces that
support skilled performance than for those that support
walk-up and use tasks. It can be argued therefore, that
model-based interface evaluation has great scope for
impacting the interfaces of devices intended for skilled
users.

Fortunately there is a long tradition of work in Human-
Computer Interaction that is aimed directly at improving the
efficiency with which predictions of skilled performance
can be generated [1,2,3,4,5,6,7,8,9,10,14]. Empirically,
there is little question that the performance of routine tasks
by skilled individuals involves the interleaving or
promotion of operators such that they are executed as the
opportunity arises. Predicting this complex, anticipatory
behavior has historically been accomplished in one of two
ways: By simulating the learning process (e.g., ACT-R) or
by hand-crafting behavioral templates that ensure the
appropriate sequencing (e.g., Apex-CPM). We will argue
that it is both possible and beneficial (e.g., faster, easier) to
generate a similar schedule from a set of architectural,
strategic, and task constraints.

Parallel recent efforts in the field have begun to focus on
trying to make model-based evaluation techniques easier to
use by non-experts. In addition to the work reported here,
these includes Apex-CPM [7], Glean [10], and ACT-Simple
[14]. Apex-CPM is an implementation of CPM-GOMS-like
assumptions in a run-time scheduling architecture. CPM-

P
p
n
b
o
s
C
C

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

ermission to make digital or hard copies of all or part of this work for
ersonal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that copies
ear this notice and the full citation on the first page. To copy otherwise,
r republish, to post on servers or to redistribute to lists, requires prior
pecific permission and/or a fee.
HI 2004, April 24–29, 2004, Vienna, Austria.
opyright 2004 ACM 1-58113-702-8/04/0004…$5.00.
GOMS operators are described in terms of a hierarchy of

 Volume 6, Number 1 121

procedures in which partial-orderings are established with
explicit pair-wise relationships between operators ACT-
Simple [14] has been built to transform simple task
specifications to non-learning ACT-R models. ACT-Simple
generates Key-Stroke-Level models (KLM) of performance
which, as Card, Moran, and Newell [8] intended, give a
rough approximation of performance early in practice.
Similarly, a current effort to integrate EPIC and GLEAN
also aims at predicting behavior early in practice, in
contrast to our goal of predicting skilled behavior (Kieras,
personal communication).

The approach to model-based prediction of skilled
performance that is reported in the current paper owes most
of its formulation to CPM-GOMS. Two key assumptions
are shared. The first is that human psychological capability
can be described in terms of temporal and resource
properties of a distributed set of processors each with its
own processing capabilities. The influence on CPM-GOMS
derives directly from the Model Human Processor [8]. Each
processor is defined with a set of parameters that capture
information about, for example, the default rate at which
operators are executed. The second assumption is that the
start time of an operator is determined by its dependencies.
The start time of an operator is dependent on the operators
which, according to the theory, are hypothesized
prerequisites for its execution. The earliest start time of an
operator is the latest start time of all of the operators on
which it is dependent.

For many years the only method for composing a CPM-
GOMS model was a painstaking manual process that relied
as much on the modeler’s skill and experience as the
underlying theory. A recent attempt to automate CPM-
GOMS output is described in Apex-CPM [7]. This method
relies on a greedy algorithm to schedule cognitive,
perceptual, and motor operators based on a procedural
description of the task.

This paper introduces a fundamentally different approach to
generating predictions of expert behavior based on similar
GOMS-like assumptions. The approach taken here is
different in that it involves casting the problem of
predicting skilled interactive performance as a constraint
satisfaction problem. In the sections that follow, we first
describe what is meant by constraint satisfaction and
highlight some of its potential advantages; we then describe
our approach to the application of constraint satisfaction to
cognitive modeling. We call this approach, Cognitive
Constraint Modeling (CCM). Two important features of
cognitive constraint modeling are (1) that it supports the
formal reification of the constraints underlying skilled
human performance, and (2) it supports derivation of the
implications of these constraints.

We report our explorations of the use of CCM to formally
specify CPM-GOMS in a set of axioms and to model a set
of tasks for the Collaborative Information Portal (CIP) (one
of the tools being developed at NASA Ames to support the

Mars Exploration Rover '03 mission task). We call this
specification of CPM-GOMS, CCM-d because it is a formal
specification of the hypothesis that interactive cognition can
be modeled by specifying the dependency relations between
processes. The results suggest that constraints can be
expressed in such a way as to increase, relative to previous
techniques, the reuse of code from one model to another.
They also suggest that the dependency axioms under-
constrain the set of possible schedules. The subspace of
possible schedules generated includes those that are both
cognitively plausible and implausible. This space has
traditionally been narrowed by the expert CPM-GOMs
modeler selecting by hand a plausible schedule and more
recently with a set of additional assumptions implemented
in Apex-CPM. In the general discussion possible responses
to this finding are discussed.

CONSTRAINT SATISFACTION
A constraint is simply a logical relation between variables.
Bartak [11] lists the following properties:

1. constraints may specify partial values. (E.g. X>5
constrains the value of X without uniquely specifying
it.)

2. constraints are heterogeneous. (They can specify
constraints between variables with different domains.)

3. constraints are non-directional. (E.g. X=Y+2 can be
used to compute the value of Y as well as the value of
X.)

4. constraints are declarative. (I.e. they specify a
relationship without specifying how that relationship is
to be computed.)

5. constraints are additive. (I.e. the order in which
constraints are imposed does not matter.)

6. constraints are rarely independent. (They share
variables.)

These properties are of interest because they suggest that
constraint satisfaction has the potential to provide a formal
framework for the specification of theories of interactive
cognition, and thereby for the construction of
mathematically rigorous tools for supporting the prediction
of behavior. Of central importance is the fact that
constraints are declarative and additive. These properties
should allow theoretical assumptions to be expressed in a
computable form that is relatively independent of the
arbitrary constraints that are sometimes imposed by the
machine, or software algorithms, with which computation is
conducted.

The fact that constraints are additive also allows different
psychological assumptions to be stated separately. They can
be stated in such a way that a collection of well-formed
hypotheses about the nature of interactive cognition can be
reified, refined, and their implications tested, in a modular
fashion. Constraint-based definitions of psychological
assumptions are also generative in a way that procedural
descriptions are not. Procedural descriptions only

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

122

Figure 1: A CCM schedule of the cognitive, perceptua

click on the “person widget”. Note the prediction that

implicitly represent constraints, making them difficu
modify and manipulate consistently.

Lastly, because constraints allow the specification of
is to be computed without specification of how
computation is carried out (the algorithm), conside
flexibility is enabled in the desired properties of
schedule. In contrast, Apex-CPM models are intrinsi
bound to Apex’s greedy scheduling algorithm and A
Simple does not take advantage of ACT-R’s lear
mechanisms. In contrast, an approach to mod
cognition that is based on constraint satisfaction can
principle, produce schedules that optimize some featu
the schedule. Of particular interest is the possibilit
optimizing (i.e. minimizing) the overall performance tim

Optimal schedules are of particular interest in predi
interactive cognition in that they suggest the asymp
bound on skilled behavior [16]. In contrast, while the
some favorable evidence [7] supporting the view
greedy scheduling approximates some level in the rang
skilled human performance, it is not clear exactly what
level is.

One of the earliest reported examples of the applicatio
constraint satisfaction was Waltz’s work on the proble
labeling the vertices in a line drawing as either concav
convex [15]. More recent work, has led to
implementation of Constraint Logic Programming (C
environments [12,13]. This work has been successfu

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

TIME

Gaze

Perception

Cognition

Motor

l and motor operators required to click on the “person cell” and then
 attention will be shifted to the “person widget” prior to the first click.

lt to

what
 the
rable
 the
cally
CT-
ning
eling
, in

re of
y of
e.

cting
totic
re is
that
e of
 this

n of
m of
e or
the

LP)
l in

finding applications in scheduling and planning, but has not
yet, to our knowledge, been applied to the problem of
predicting the time-course of interactive cognition. Sicstus
Prolog offers a CLP module for finite domains (CLP FD)
that we are currently using to compute the implications of
task and psychological constraints for skilled behavior.

A CONSTRAINT SATISFACTION APPROACH TO
PREDICTING SKILLED PERFORMANCE
A fragment of a predicted schedule generated by CCM-d
for a database entry task is given in Figure 1. The schedule
consists of the cognitive, perceptual and motor operators
required to click on the ‘person cell’ (light operators) and
then click on the ‘person widget’ (darker operators) with a
mouse. The presentation of the output is similar to that
produced by Apex-CPM [7] and earlier work on CPM-
GOMS [2]. Each operator (process) is denoted by a box. In
this case, the operators are organized into four rows, where
each row represents a mental processor as defined in the
Model Human Processor [8]. The top row is for eye
movements, then visual perception; the next for cognition;
and the bottom for right-hand motor actions. Time is
represented from left to right. Boxes are elaborated with a
start time and an end time and are connected by lines that
represent unidirectional dependencies (an operator is
dependent on connected operators to its left). The length of
the boxes is to scale. Dependency loops are not possible.

 Volume 6, Number 1 123

A crucial feature of the schedule is that operators are
interleaved. It is predicted that attention will shift to
identifying the ‘person widget’ prior to the completion of
the mouse move to ‘person cell’. The model supports the
prediction that user will act as if to anticipate the next
action in the sequence, by increasing the extent to which
operators are concurrent, and reducing the overall time cost
of executing the task.

The eye movement operator in Figure 1 overlaps with a
click cursor operator. The prediction is that the eyes will
move to target B while the hand is still acting on target A.
Importantly, this overlap is not explicit in the input
description rather it is calculated by combining the task,
strategy, and architecture constraints together with the goal
of minimizing performance time.

CCM is implemented in a Prolog-based tool called CORE
(Constraint-based Optimal Reasoning Engine). There are
two phases to the generation of predictions form a CORE
model. In the first phase, an input description is translated
into an internal set of CLP constraints. If operator B is
dependent on operator A, then operator A must finish
before operator B can start. In the second phase, durations
are assigned to operators and, constrained by the
dependencies, a schedule is computed.

Phase 1: Interpreting the description language
The input description is divided into four parts:

1. The task description. A hierarchal analysis of the
interaction between a person and the task
environment required to achieve a specified task or
set of tasks.

2. The environment description.

3. The cognitive strategy description. Strategies for
achieving simple routine tasks such as moving a
computer mouse, turning a knob, or clicking a
button.

4. The architecture description. Definitions of
fundamental mental operators, resources and their
parameters and dependencies.

The advantage to layering the description is the
potential for ensuring that all templates conform to the
same set of architectural constraints, and in providing a
framework within which the role of further architectural
constraints (e.g. memory capacity) can be explored. An
accurate specification of the architecture and world layers
should simplify the writing and comprehension of cognitive
strategies (templates). The architecture description provides
a specification of the obligatory relationships between
operators, in terms of both their effects (e.g. an init causes a
motor action) and their preconditions (e.g. a visual
perceive(x) must be preceded by an eye movement to x.

In the paragraphs that follow, each part of the description
language is illustrated for the task of typing a password into

a mouse-driven interface, describing how constraints are
expanded into a predicted schedule of primitive operators.

Proposition 1 describes a typical task interaction consisting
of a sequence of dependent move_click (mc) subtasks. The
mc subtask is defined with proposition (2). Proposition 2
expands into a sequence of two operators consisting of a
mouse movement followed by a click. The click is
dependent on the move (denoted with a minus sign ‘-‘).
Both of these operators represents a primitive interaction
between the user and the task environment.
t(enter_password,

mc(k4)
- mc(k9)
- mc(k8)
- mc(k0)
- mc(k1)
- mc(enter)). (1)

t(mc(X),
 motor(hand, move, X) - motor(hand, click, X)).
 (2)

The propositions are translated into mathematical relations
between the start times and durations of the specified
operators and are then posted to a CLP constraint store.

The dependency graph is further elaborated by the
interpretation of propositions that specify constraints
determined by the environment or device. The device used
in Vera et al.’s experiment was mouse-driven and therefore
it is a pre-requisite of clicking on a button that the cursor is
at the button:
c(motor(hand, click, X),

at(cursor,X) - motor(hand, click, X)). (3)

Further propositions are required to represent micro-
strategies. Propositions 4 and 5 define micro-strategies for
achieving a click interaction between the user and the
device. Proposition 4 defines the slow move click strategy
previously presented in [1].
c(init(hand,click,X),
verify(X) - verify(at(cursor,X)) - init(hand,click,X)). (4)

c([init(hand,click,X),in(X,[correct,card_2, ...])],

verify(X) - init(hand,click,X)). (5)

Proposition 4 states that if there is an init(hand,click,X)
operator in the dependency graph then the init is dependent
on a verification that the cursor is at the correct location,
and that verification is dependent on the verification that X
is the required target.

Proposition 5 defines the fast move click strategy also
defined in [1]. This example is an elaboration of (4) that
specifies that the verify(X) should be added only if the
value of X is in the set [correct, card_2, …] (where ‘…’
indicates that there are more names than printed above).

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

124

This construction allows micro-strategy choices to be
contingent on parameters such as target names.

The next part of the descriptions consists of a set of
propositions that define cognitive architectural constraints.
In the case of this example the constraints are intended to
make explicit the CPM-GOMS theory of the human
cognitive architecture.
c(motor(E, A, X),
 init(E, A, X) - motor(E, A, X)). (6)

c(verify(X),
 perceive(X) - verify(X)). (7)

c(perceive(X),
 attend(X) - perceive(X)). (8)

c(perceive(X),

motor(gaze,move,X) - perceive(X)). (9)

Proposition 6 states that if there is a motor action in the
dependency graph then there must also be a cognitive init
operator for the motor action, and the motor action must be
dependent on the init. Proposition 7 captures the
assumption that in order to verify(X), X must first be
perceived. It states that verify is dependent on perceive.
Proposition 8 captures the assumption that in order to
perceive(X), X must first be attended to, and proposition 9
captures the assumption that in order to perceive(X), the
gaze must first be moved to X. The intention here is not to
make a commitment to these particular assumptions, but
rather to provide an explicit and computable statement of
the assumptions underlying one particular approach to
modeling.

The resource requirement of an operator is defined using
the ‘resource’ proposition, as in the following example:

resource(perceive(tone), audition). (10)

This denotes that perceive(tone) is executed by the audition
processor. Every operator has a statement of its resource
requirement.

Operators are assigned a duration using a simple inheritance
mechanism. Some operators, e.g. motor actions that are
dependent on Fitts’s Law, are assigned values that are
particular to the instantiation of the operator, and which in
the case of Fitts’s Law can be calculated using information
about the arrangement and size of objects in the world.
Other operators may have durations that are inherited from
their processor (e.g. eye movements). The durations of
operators are specified in propositions of the form:

duration(perceive(tone), 100). (11)

duration(motor(hand,move,A,B),fittss(A,B)). (12)

duration(processor, cognitive, 50). (13)

Where proposition 11 captures the assumption that
perceive(tone) takes 100ms, proposition 12 that the duration
is determined by Fitts’s law and proposition 13 that
cognitive operators have a default duration of 50ms.

Phase 2: Computing time predictions
The various sources of constraint on operator scheduling
(task, environment, strategy, architecture) are brought
together as a set of arithmetic constraints in the CLP FD
constraint store. This requires interpreting the particular
task, strategy, and architecture assumptions (as defined
above) as statements that further constrain the axiomatic
assumptions of CPM-GOMS. These axioms essentially
state that a CPM-GOMS model consists of a set of
processes, each with a resource, and each with a set of
dependencies, that only one process may occupy a
particular resource at any one time, and lastly, that a
process must start after all of the processes on which it is
dependent have finished:

Given a set of processes Pi (i=1…n) each represented by a
set of attribute=value features, and each with a duration Di,
start time Si, end time Ei = Si + Di and resource requirement
Ri the following must hold:

1. For all Pi with features {name=start}: Si=0.

2. For all Pi: Si >= 0.

3. For all Pi, Pj, where dependent(Pi,Pj): Ej =< Si.

4. For all Pi, Pj, where Ri =Rj: Ei =< Sj or Ej =< Si

where dependent(Pi,Pj) is true if Pi is dependent on Pj
according to the definitions in the previous section.

Constraints on start times and durations of the operators
(whether cognitive, perceptual, or motor) required to

Figure 2: A PDL description of a slow-move-click template
(reproduced from John et al. (2002).

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

125

perform the task are represented along with their
dependencies.

However, the values of start and end times are still to be
calculated. Predictions have been generated from CCM
with both greedy scheduling and optimal scheduling. An
optimal scheduler was used to generate the pert chart in
Figure 1. In contrast, with a greedy scheduler, like that used
by Apex-CPM [7], operators are scheduled as early as
possible, i.e. once all of their dependencies have been met.
A discussion of the suitability of different kinds of
schedulers is presented below.

APPLICATIONS OF CCM-d

Predicting interactive skill
Using CCM-d we have derived predictions for a number of
interface evaluation problems. These include: (1) the
analysis of a call-center interface built by Convergys Inc.
that involved interaction between a customer, an agent, and
the computer system. The CCM-d analyses were used to
help selection between competing interface designs. (2)
predicting how long it would take a skilled user to enter
shift assignments into the Collaborative Information Portal
(CIP), one of the tools being developed at NASA Ames to
support the Mars Exploration Rover '03 mission. (3)
predicting the performance of participants using the
laboratory ATM task previously reported by John et al.
(2002).

All three of these analyses involved the semi-automatic
generation of interleaved schedules such as that illustrated
in Figure 1. The first of the tasks (Convergys) offered
particular challenges in that it required modeling the
interaction of an operator with a customer and with the
system (similar to the original work by Gray et al. [2]).
CCM-d was used to predict a highly interleaved schedule
that involved much concurrency in the interactions (e.g.
talking, while moving the mouse, and waiting for a system
response) but without much of the hand-crafting of the
schedule that would be required without some form of
automation.

The reification of constraints
One of the claims that we made for the advantages of a
constraint satisfaction approach to predicting skilled
interactive cognition was that it allowed a clear separation
of different levels of constraint. This is evident through our
description of the four levels of constraint specification in
the previous section.

The consequences of separating these constraints are two-
fold. First, they reify the underlying psychological and task
theory. Second, each statement is a self-contained assertion
of a universally quantified assumption about the nature of
interactive cognition. Each statement, therefore needs
stating only once.

To fully appreciate the advantages of the separation of
constraints it is worth contrasting the CCM descriptions to

Apex-CPM procedural descriptions. Figure 2 is a
reproduction of the Apex-CPM specification of Gray and
Boehm-Davis’s slow-move-click template [1] taken from
[7]. The template is described in a procedural form, where
each operator is labeled (e.g. step m1) and if there is a
dependency of an operator on a previous operator then a
waitfor instruction is used to denote the dependency. The
waitfor instructions are used to locally capture obligatory
architectural and strategic dependencies. E.g. the
dependency that links step m1 and step c1 is an obligatory
architectural constraint. In contrast the dependency that
links c4 to p1 is a strategic dependency in the sense that it is
a matter of choice whether a verify operator follows
perception.

A template description in Apex-CPM consists of a mixture
of architectural and strategic dependencies. This is not a
general representation of the relationship between init and
motor operators -- the same architectural rule must be
recreated in each template in which it occurs. To put it
another way, in Apex-CPM, there is no universally
quantified assertion of the architectural relationships
between operators. In contrast, and as we have illustrated,
with constraint satisfaction and the constraints defined
above, if it is specified that there is a motor operator in the
schedule then it is required by constraint 6 that there is a
corresponding init operator, irrespective of which strategy
the motor operator is for. The constraint captures a
universal assumption about the nature of cognition.

GENERAL DISCUSSION
We have reported current work on the value of taking a
constraint satisfaction approach to formalizing the
assumptions implicit in CPM-GOMS, and thereby
providing a mechanism for predicting the time-course of
skilled interactive cognition. A distinctive aspect of the
approach is that it involves the specification of declarative
and additive constraints on cognitive behavior followed by
a process of reasoning about their implications. This is
achieved with the implementation of a tool for translating
declaratively specified task and psychological constraints
into a Sicstus Prolog implementation of CLP FD. The
approach has the following two strengths:

(1) As constraints are additive, a clean separation can be
imposed between task specific, strategy specific, and
psychological constraints. This separation ensures the
reusability of the appropriate constraints as new models are
built. It also helps ensure that an analyst can work at exactly
the right level. It is possible, in contrast to Apex-CPM, to
specify strategy constraints without knowledge of the
underlying architecture.

(2) As constraints are declarative, a clean separation can be
imposed between what is to be computed (in this case a
prediction of the time-course of operators) and how it is to
be computed. This is particularly important in the
relationship between the constraints on cognition and the
scheduling algorithm used. It is possible to make formal

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

126

derivations of both optimal and greedy schedule from CCM
descriptions. The difference between these schedules is
important (they represent different hypotheses as to the
structure of skilled behavior), but the algorithm by which
they are computed is not. It happens that the mechanisms
we have used for reasoning about CCM descriptions takes
advantage of a Sicstus Prolog CLP FD implementation of a
branch-and-bound algorithm in order to produce optimal
schedules. We could, however, have used an entirely
different algorithm to compute the same optimal strategy.
The algorithm is irrelevant to the particular theory of
cognition. The constraint-based approach helps ensure that
the statement of task and psychological constraints is
uncluttered by irrelevant specification that is present in
order to get the scheduling algorithm to work.

As discussed above, our application of constraint
satisfaction techniques to a large-scale task (CIP Scheduler)
provided evidence that supports the claimed strengths of the
approach. However, it also exposed a weakness. The
particular ontology that we have used to determine the
entities between which relations were expressed is taken
from CPM-GOMS. It is an ontology for expressing the
relations between operators in terms of dependencies (if B
is dependent on A then the start time of B is greater than the
end time of A). However, the fact that it is not, for example,
possible to specify the bounds on the delay between the end
of A and the start of B means that operators may be
scheduled much earlier than is cognitively plausible.
Consider the following example. If a prerequisite of a motor
action, click(x) is a cognitive operator init(x) then we could
say that click(x) is dependent on init(x). Similarly we could
say that click(y) is dependent on init(y). But the problem is
that the specification of this pair of dependencies is
insufficient to ensure cognitively plausible scheduling of
the four operators. For example, the schedule ordering
init(x), init(y), click(y), click(x) is legal but cognitively
implausible.

In order to solve these problems, Apex-CPM included
mechanisms to constrain greedy scheduling that were in
addition to the standard CPM-GOMS dependencies
between operators. John et al. [7] also provided Apex-CPM
with information, for example, about virtual resources.
Virtual resources were a mechanism that was deliberately,
and successfully, introduced in Apex-CPM in order to
prevent cognitively implausible scheduling. Other
mechanisms added to standard CPM-GOMS assumptions
include operator priorities (to ensure task ordering) and a
mechanism to prevent interleaving of operators into gaps
that were smaller than the operator duration.

In contrast, the solution to the same problem (cognitively
implausible orderings) was solved in CCM-d by using
specifications of dependencies and no more. To solve the
init(x) - click(x) problem in a CCM-d, rules were specified
that, for example, constrain click(y) to be dependent on
click(x) if init(x) must come before init(y). This solution
has the advantage that it is expressed purely in terms of

dependencies. However, it has the disadvantage that many
such extra dependencies are needed to adequately constrain
a schedule. This was demonstrated by the number of
dependencies that were needed to constrain the excel task
reported above beyond the small-set of template constraints
borrowed from the work of Gray and Boehm-Davies [1].
Describing all of the constraints necessary to produce a
cognitively plausible schedule with CCM-d is a problem
that exposes the extent to which craft knowledge was
required in the manual composition of a CPM-GOMS
schedule.

One way in which this issue could be addressed would be to
supplement CCM-d descriptions with statements that
capture the mechanisms provided in Apex-CPM (i.e, a
formal specification of Apex-CPM). However, we have
moved in a different direction, directly addressing the fact
that the specification of the relationships between processes
in terms of dependencies is inadequate because it does not
support the specification of:

1. The maximum duration of the gap between two
processes.

2. Constraints on whether a process can be scheduled
between two other processes.

Our current research focuses on specifying a set of entities
and relations within a CCM framework that address these
problems, and that therefore adequately constrain
scheduling while at the same time maintaining the
advantages of formal specification of cognitive theory. A
crucial feature of this approach is that constraint satisfaction
techniques provide a computational substrate for reasoning
about these formal specifications.

REFERENCES
1. Gray, W. D., & Boehm-Davis, D. A. (2000).

Milliseconds matter: An introduction to microstrategies
and to their use in describing and predicting interactive
behavior. Journal of Experimental Psychology:
Applied, 6(4), 322--335.

2. Gray, W. D., John, B. E. & Atwood, M. E. (1993)
Project Ernestine: Validating a GOMS Analysis for
Predicting and Explaining Real-World Task
Performance. Human-Computer Interaction, 8 (3), pp.
237--309.

3. Scott E. Hudson , Bonnie E. John , Keith Knudsen ,
Michael D. Byrne, A tool for creating predictive
performance models from user interface
demonstrations, Proceedings of the 12th annual ACM
symposium on User interface software and technology,
p.93-102, November 07-10, 1999, Asheville, North
Carolina, United States

4. John, B. E. (1988) Contributions to Engineering
Models of human-computer interaction. Ph.D. Thesis.
Carnegie Mellon University.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

127

5. John, B. E. (1996) TYPIST: A Theory of Performance
In Skilled Typing. Human-Computer Interaction , 11
(4), pp.321--355.

6. John, B.E., Wayne D. Gray, GOMS analysis for
parallel activities, Conference companion on Human
factors in computing systems, p.395-396, April 24-28,
1994, Boston, Massachusetts, United States

7. John, B.E. Vera, A., Matessa, M., Freed, M.,
Remington, R. (2002). Automating CPM-GOMS.
Proceedings of Human factors in computing systems,
4,1, 147-155.

8. Stuart K. Card , Allen Newell , Thomas P. Moran, The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, 1983

9. Kieras, D. E. (1996). Guide to GOMS model usability
evaluations using NGOMSL, The Handbook of
Human-Computer Interaction, M. Helander and
T.Landauer (Eds.), 2nd ed. North-Holland Amsterdam.

10. Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A.
(1995). GLEAN: A Computer-Based Tool for Rapid
GOMS Model Usability Evaluation of User Interface
Designs. International Journal of Human-Computer
Studies, 22, 365--394.

11. Bartak, R. (1999). Constraint programming- What is
behind? Proceedings of CPDC99 Workshop (invited
talk), Gliwice, June 1999, 7-15.

12. Jaffar, J., & Lassez, J.L. (1987). Constraint logic
programming. In Proceedings of the ACM Symposium
on Principles of Programming Languages, ACM, 1987.

13. Jaffar, J., Maher, M., Marriott, K., Stucket, P. (1994).
The semantics of constraint logic programs. Journal of
Logic Programming, 20, 1-47.

14. Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In
Human Factors in Computing Systems: CHI 2003
Conference Proceedings (pp. 265-272). New York:
ACM Press.

15. Waltz, D.L. (1975). Understanding line drawings of
scenes with shadows. In The Psychology of Computer
Vision. McGraw Hill, New York.

16. Anderson (1990). Rational Analysis. LEA.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

128

