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ABSTRACT 
In this paper we report a new approach to generating 
predictions about skilled interactive cognition. The 
approach, which we call Cognitive Constraint Modeling, 
takes as input a description of the constraints on a task 
environment, on user strategies, and on the human cognitive 
architecture and generates as output a prediction of the time 
course of interaction.  In the Cognitive Constraint Models 
that we have built this is achieved by encoding the 
assumptions inherent in CPM-GOMS as a set of constraints 
and reasoning about them using finite domain constraint 
satisfaction. 

Categories & Subject Descriptors: H.5.2 [User 
Interfaces]: Theory and methods 

General Terms: Human Factors, Performance, Theory. 

Keywords: cognitive modeling, tools for usability 
evaluation, constraint satisfaction. 

INTRODUCTION 
It is extremely expensive, if possible at all, to get 
assessments of skilled interaction by experts on routine 
tasks. Consider as an example, NASA’s needs in designing 
a new interface for the shuttle cockpit. Ideally, it would be 
possible to bring in experienced astronauts, train them for 
tens or hundreds of hours, and then assess the impact of the 
new interface on performance time, error potential, and so 
on. Researchers would then iterate on the interface design, 
bring in a new set of astronauts, and go through the process 
again. This cycle would be repeated several times in order 
to ensure that a substantive proportion of the consequences 
of the interface on performance are understood and 

addressed. This is practically impossible due to constraints 
on time and other resources. Researchers working on 
shuttle cockpit design struggle to get pilots (not astronauts) 
as test participants, and then just for a few hours. The 
return-on-investment for tools that predict the time course 
and potential for errors in skilled performance is therefore 
high.  

Assessing novice behavior, in contrast, has much lower 
costs. Novices are easily available and, moreover, relatively 
little of their time is required as they do not need training. 
Designing walk-up-and-use systems that require close 
attention to learnability rather than skilled interaction 
therefore poses a much lower barrier to effectively applying 
the design process. The consequences of poor HCI 
decisions are, at least, no less critical for interfaces that 
support skilled performance than for those that support 
walk-up and use tasks. It can be argued therefore, that 
model-based interface evaluation has great scope for 
impacting the interfaces of devices intended for skilled 
users. 

Fortunately there is a long tradition of work in Human-
Computer Interaction that is aimed directly at improving the 
efficiency with which predictions of skilled performance 
can be generated [1,2,3,4,5,6,7,8,9,10,14]. Empirically, 
there is little question that the performance of routine tasks 
by skilled individuals involves the interleaving or 
promotion of operators such that they are executed as the 
opportunity arises. Predicting this complex, anticipatory 
behavior has historically been accomplished in one of two 
ways:  By simulating the learning process (e.g., ACT-R) or 
by hand-crafting behavioral templates that ensure the 
appropriate sequencing (e.g., Apex-CPM). We will argue 
that it is both possible and beneficial (e.g., faster, easier) to 
generate a similar schedule from a set of architectural, 
strategic, and task constraints.  

Parallel recent efforts in the field have begun to focus on 
trying to make model-based evaluation techniques easier to 
use by non-experts. In addition to the work reported here, 
these includes Apex-CPM [7], Glean [10], and ACT-Simple 
[14]. Apex-CPM is an implementation of CPM-GOMS-like 
assumptions in a run-time scheduling architecture. CPM-
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procedures in which partial-orderings are established with 
explicit pair-wise relationships between operators ACT-
Simple [14] has been built to transform simple task 
specifications to non-learning ACT-R models. ACT-Simple 
generates Key-Stroke-Level models (KLM) of performance 
which, as Card, Moran, and Newell [8] intended, give a 
rough approximation of performance early in practice. 
Similarly, a current effort to integrate EPIC and GLEAN 
also aims at predicting behavior early in practice, in 
contrast to our goal of predicting skilled behavior (Kieras, 
personal communication).  

The approach to model-based prediction of skilled 
performance that is reported in the current paper owes most 
of its formulation to CPM-GOMS. Two key assumptions 
are shared. The first is that human psychological capability 
can be described in terms of temporal and resource 
properties of a distributed set of processors each with its 
own processing capabilities. The influence on CPM-GOMS 
derives directly from the Model Human Processor [8]. Each 
processor is defined with a set of parameters that capture 
information about, for example, the default rate at which 
operators are executed. The second assumption is that the 
start time of an operator is determined by its dependencies. 
The start time of an operator is dependent on the operators 
which, according to the theory, are hypothesized 
prerequisites for its execution.  The earliest start time of an 
operator is the latest start time of all of the operators on 
which it is dependent. 

For many years the only method for composing a CPM-
GOMS model was a painstaking manual process that relied 
as much on the modeler’s skill and experience as the 
underlying theory. A recent attempt to automate CPM-
GOMS output is described in Apex-CPM [7]. This method 
relies on a greedy algorithm to schedule cognitive, 
perceptual, and motor operators based on a procedural 
description of the task. 

This paper introduces a fundamentally different approach to 
generating predictions of expert behavior based on similar 
GOMS-like assumptions. The approach taken here is 
different in that it involves casting the problem of 
predicting skilled interactive performance as a constraint 
satisfaction problem. In the sections that follow, we first 
describe what is meant by constraint satisfaction and 
highlight some of its potential advantages; we then describe 
our approach to the application of constraint satisfaction to 
cognitive modeling. We call this approach, Cognitive 
Constraint Modeling (CCM). Two important features of 
cognitive constraint modeling are (1) that it supports the 
formal reification of the constraints underlying skilled 
human performance, and (2) it supports derivation of the 
implications of these constraints.  

We report our explorations of the use of CCM to formally 
specify CPM-GOMS in a set of axioms and to model a set 
of tasks for the Collaborative Information Portal (CIP) (one 
of the tools being developed at NASA Ames to support the 

Mars Exploration Rover '03 mission task). We call this 
specification of CPM-GOMS, CCM-d because it is a formal 
specification of the hypothesis that interactive cognition can 
be modeled by specifying the dependency relations between 
processes. The results suggest that constraints can be 
expressed in such a way as to increase, relative to previous 
techniques, the reuse of code from one model to another. 
They also suggest that the dependency axioms under-
constrain the set of possible schedules. The subspace of 
possible schedules generated includes those that are both 
cognitively plausible and implausible. This space has 
traditionally been narrowed by the expert CPM-GOMs 
modeler selecting by hand a plausible schedule and more 
recently with a set of additional assumptions implemented 
in Apex-CPM. In the general discussion possible responses 
to this finding are discussed. 

CONSTRAINT SATISFACTION 
A constraint is simply a logical relation between variables. 
Bartak [11] lists the following properties: 

1. constraints may specify partial values. (E.g. X>5 
constrains the value of X without uniquely specifying 
it.) 

2. constraints are heterogeneous. (They can specify 
constraints between variables with different domains.) 

3. constraints are non-directional. (E.g. X=Y+2 can be 
used to compute the value of Y as well as the value of 
X.) 

4. constraints are declarative. (I.e. they specify a 
relationship without specifying how that relationship is 
to be computed.) 

5. constraints are additive. (I.e. the order in which 
constraints are imposed does not matter.) 

6. constraints are rarely independent. (They share 
variables.) 

These properties are of interest because they suggest that 
constraint satisfaction has the potential to provide a formal 
framework for the specification of theories of interactive 
cognition, and thereby for the construction of 
mathematically rigorous tools for supporting the prediction 
of behavior. Of central importance is the fact that 
constraints are declarative and additive. These properties 
should allow theoretical assumptions to be expressed in a 
computable form that is relatively independent of the 
arbitrary constraints that are sometimes imposed by the 
machine, or software algorithms, with which computation is 
conducted. 

The fact that constraints are additive also allows different 
psychological assumptions to be stated separately. They can 
be stated in such a way that a collection of well-formed 
hypotheses about the nature of interactive cognition can be 
reified, refined, and their implications tested, in a modular 
fashion. Constraint-based definitions of psychological 
assumptions are also generative in a way that procedural 
descriptions are not. Procedural descriptions only  
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Figure 1: A CCM schedule of the cognitive, perceptua

click on the “person widget”. Note the prediction that
 

implicitly represent constraints, making them difficu
modify and manipulate consistently. 

Lastly, because constraints allow the specification of 
is to be computed without specification of how
computation is carried out (the algorithm), conside
flexibility is enabled in the desired properties of
schedule. In contrast, Apex-CPM models are intrinsi
bound to Apex’s greedy scheduling algorithm and A
Simple does not take advantage of ACT-R’s lear
mechanisms. In contrast, an approach to mod
cognition that is based on constraint satisfaction can
principle, produce schedules that optimize some featu
the schedule. Of particular interest is the possibilit
optimizing (i.e. minimizing) the overall performance tim

Optimal schedules are of particular interest in predi
interactive cognition in that they suggest the asymp
bound on skilled behavior [16]. In contrast, while the
some favorable evidence [7] supporting the view 
greedy scheduling approximates some level in the rang
skilled human performance, it is not clear exactly what
level is. 

One of the earliest reported examples of the applicatio
constraint satisfaction was Waltz’s work on the proble
labeling the vertices in a line drawing as either concav
convex [15]. More recent work, has led to 
implementation of Constraint Logic Programming (C
environments [12,13]. This work has been successfu
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finding applications in scheduling and planning, but has not 
yet, to our knowledge, been applied to the problem of 
predicting the time-course of interactive cognition. Sicstus 
Prolog offers a CLP module for finite domains (CLP FD) 
that we are currently using to compute the implications of 
task and psychological constraints for skilled behavior. 

A CONSTRAINT SATISFACTION APPROACH TO 
PREDICTING SKILLED PERFORMANCE 
A fragment of a predicted schedule generated by CCM-d 
for a database entry task is given in Figure 1. The schedule 
consists of the cognitive, perceptual and motor operators 
required to click on the ‘person cell’ (light operators) and 
then click on the ‘person widget’ (darker operators) with a 
mouse. The presentation of the output is similar to that 
produced by Apex-CPM [7] and earlier work on CPM-
GOMS [2]. Each operator (process) is denoted by a box. In 
this case, the operators are organized into four rows, where 
each row represents a mental processor as defined in the 
Model Human Processor [8]. The top row is for eye 
movements, then visual perception; the next for cognition; 
and the bottom for right-hand motor actions. Time is 
represented from left to right. Boxes are elaborated with a 
start time and an end time and are connected by lines that 
represent unidirectional dependencies (an operator is 
dependent on connected operators to its left). The length of 
the boxes is to scale. Dependency loops are not possible. 
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A crucial feature of the schedule is that operators are 
interleaved. It is predicted that attention will shift to 
identifying the ‘person widget’ prior to the completion of 
the mouse move to ‘person cell’. The model supports the 
prediction that user will act as if to anticipate the next 
action in the sequence, by increasing the extent to which 
operators are concurrent, and reducing the overall time cost 
of executing the task.  

The eye movement operator in Figure 1 overlaps with a 
click cursor operator. The prediction is that the eyes will 
move to target B while the hand is still acting on target A. 
Importantly, this overlap is not explicit in the input 
description rather it is calculated by combining the task, 
strategy, and architecture constraints together with the goal 
of minimizing performance time. 

CCM is implemented in a Prolog-based tool called CORE 
(Constraint-based Optimal Reasoning Engine). There are 
two phases to the generation of predictions form a CORE 
model. In the first phase, an input description is translated 
into an internal set of CLP constraints. If operator B is 
dependent on operator A, then operator A must finish 
before operator B can start. In the second phase, durations 
are assigned to operators and, constrained by the 
dependencies, a schedule is computed. 

Phase 1: Interpreting the description language 
The input description is divided into four parts: 

1. The task description. A hierarchal analysis of the 
interaction between a person and the task 
environment required to achieve a specified task or 
set of tasks. 

2. The environment description. 

3. The cognitive strategy description. Strategies for 
achieving simple routine tasks such as moving a 
computer mouse, turning a knob, or clicking a 
button.  

4. The architecture description. Definitions of 
fundamental mental operators, resources and their 
parameters and dependencies. 

The advantage to layering the description is the 
potential for ensuring that all templates conform to the 
same set of architectural constraints, and in providing a 
framework within which the role of further architectural 
constraints (e.g. memory capacity) can be explored. An 
accurate specification of the architecture and world layers 
should simplify the writing and comprehension of cognitive 
strategies (templates). The architecture description provides 
a specification of the obligatory relationships between 
operators, in terms of both their effects (e.g. an init causes a 
motor action) and their preconditions (e.g. a visual 
perceive(x) must be preceded by an eye movement to x.  

In the paragraphs that follow, each part of the description 
language is illustrated for the task of typing a password into 

a mouse-driven interface, describing how constraints are 
expanded into a predicted schedule of primitive operators. 

Proposition 1 describes a typical task interaction consisting 
of a sequence of dependent move_click (mc) subtasks. The 
mc subtask is defined with proposition (2). Proposition 2 
expands into a sequence of two operators consisting of a 
mouse movement followed by a click. The click is 
dependent on the move (denoted with a minus sign ‘-‘). 
Both of these operators represents a primitive interaction 
between the user and the task environment. 
t( enter_password,    

mc( k4 )   
- mc( k9 )   
- mc( k8 ) 
- mc( k0 ) 
- mc( k1 ) 
- mc( enter ) ).    (1) 

 
t( mc( X ),  
     motor(hand, move, X ) - motor(hand, click, X) ).  
     (2) 
 

The propositions are translated into mathematical relations 
between the start times and durations of the specified 
operators and are then posted to a CLP constraint store.  

The dependency graph is further elaborated by the 
interpretation of propositions that specify constraints 
determined by the environment or device. The device used 
in Vera et al.’s experiment was mouse-driven and therefore 
it is a pre-requisite of clicking on a button that the cursor is 
at the button: 
c( motor(hand, click, X ),   

at( cursor,X ) - motor(hand, click, X )). (3) 
 

Further propositions are required to represent micro-
strategies. Propositions 4 and 5 define micro-strategies for 
achieving a click interaction between the user and the 
device. Proposition 4 defines the slow move click strategy 
previously presented in [1]. 
c(init(hand,click,X),  
verify( X ) - verify( at(cursor,X) ) - init(hand,click,X) ). (4) 

 
c( [init(hand,click,X),in(X,[correct,card_2, ... ]) ], 

verify( X ) - init(hand,click,X) ).  (5) 
 

Proposition 4 states that if there is an init(hand,click,X) 
operator in the dependency graph then the init is dependent 
on a verification that the cursor is at the correct location, 
and that verification is dependent on the verification that X 
is the required target.  

Proposition 5 defines the fast move click strategy also 
defined in [1]. This example is an elaboration of (4) that 
specifies that the verify(X) should be added only if the 
value of X is in the set [correct, card_2, …] (where ‘…’ 
indicates that there are more names than printed above). 

CHI 2004  ׀  Paper 24-29 April  ׀  Vienna, Austria 

 Volume 6, Number 1 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

124



 

 

This construction allows micro-strategy choices to be 
contingent on parameters such as target names. 

The next part of the descriptions consists of a set of 
propositions that define cognitive architectural constraints. 
In the case of this example the constraints are intended to 
make explicit the CPM-GOMS theory of the human 
cognitive architecture. 
c( motor(E, A, X ),  
 init(E, A, X ) - motor(E, A, X ) ).  (6) 
 
c( verify(X), 
 perceive(X) - verify(X) ).   (7) 

 
c( perceive(X),  
 attend(X) - perceive(X) ).   (8) 

 
c( perceive(X),   

motor(gaze,move,X) - perceive(X) ).  (9) 
 

Proposition 6 states that if there is a motor action in the 
dependency graph then there must also be a cognitive init 
operator for the motor action, and the motor action must be 
dependent on the init. Proposition 7 captures the 
assumption that in order to verify(X), X must first be 
perceived. It states that verify is dependent on perceive. 
Proposition 8 captures the assumption that in order to 
perceive(X), X must first be attended to, and proposition 9 
captures the assumption that in order to perceive(X), the 
gaze must first be moved to X. The intention here is not to 
make a commitment to these particular assumptions, but 
rather to provide an explicit and computable statement of 
the assumptions underlying one particular approach to 
modeling.  

The resource requirement of an operator is defined using 
the ‘resource’ proposition, as in the following example:   

resource( perceive(tone),  audition ).  (10) 
 

This denotes that perceive(tone) is executed by the audition 
processor. Every operator has a statement of its resource 
requirement. 

Operators are assigned a duration using a simple inheritance 
mechanism. Some operators, e.g. motor actions that are 
dependent on Fitts’s Law, are assigned values that are 
particular to the instantiation of the operator, and which in 
the case of Fitts’s Law can be calculated using information 
about the arrangement and size of objects in the world. 
Other operators may have durations that are inherited from 
their processor (e.g. eye movements). The durations of 
operators are specified in propositions of the form: 

 
duration( perceive(tone), 100 ).   (11) 

 
duration( motor(hand,move,A,B),fittss(A,B) ).  (12) 

 
duration( processor, cognitive, 50 ).   (13) 
 

Where proposition 11 captures the assumption that 
perceive(tone) takes 100ms, proposition 12 that the duration 
is determined by Fitts’s law and proposition 13 that 
cognitive operators have a default duration of 50ms. 

Phase 2: Computing time predictions 
The various sources of constraint on operator scheduling 
(task, environment, strategy, architecture) are brought 
together as a set of arithmetic constraints in the CLP FD 
constraint store. This requires interpreting the particular 
task, strategy, and architecture assumptions (as defined 
above) as statements that further constrain the axiomatic 
assumptions of CPM-GOMS. These axioms essentially 
state that a CPM-GOMS model consists of a set of 
processes, each with a resource, and each with a set of 
dependencies, that only one process may occupy a 
particular resource at any one time, and lastly, that a 
process must start after all of the processes on which it is 
dependent have finished: 

Given a set of processes Pi (i=1…n) each represented by a 
set of attribute=value features, and each with a duration Di, 
start time Si, end time Ei = Si + Di and resource requirement 
Ri the following must hold: 

1. For all Pi with features {name=start}: Si=0. 

2. For all Pi: Si >= 0. 

3. For all Pi, Pj, where dependent(Pi,Pj): Ej =< Si. 

4. For all Pi, Pj, where Ri =Rj: Ei =< Sj or Ej =< Si 

where dependent(Pi,Pj) is true if Pi is dependent on Pj 
according to the definitions in the previous section. 

Constraints on start times and durations of the operators 
(whether cognitive, perceptual, or motor) required to 

Figure 2: A PDL description of a slow-move-click template
(reproduced from John et al. (2002).
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perform the task are represented along with their 
dependencies.  

However, the values of start and end times are still to be 
calculated. Predictions have been generated from CCM 
with both greedy scheduling and optimal scheduling. An 
optimal scheduler was used to generate the pert chart in 
Figure 1. In contrast, with a greedy scheduler, like that used 
by Apex-CPM [7], operators are scheduled as early as 
possible, i.e. once all of their dependencies have been met. 
A discussion of the suitability of different kinds of 
schedulers is presented below. 

APPLICATIONS OF CCM-d 

Predicting interactive skill 
Using CCM-d we have derived predictions for a number of 
interface evaluation problems. These include: (1) the 
analysis of a call-center interface built by Convergys Inc. 
that involved interaction between a customer, an agent, and 
the computer system. The CCM-d analyses were used to 
help selection between competing interface designs. (2) 
predicting how long it would take a skilled user to enter 
shift assignments into the Collaborative Information Portal 
(CIP), one of the tools being developed at NASA Ames to 
support the Mars Exploration Rover '03 mission. (3) 
predicting the performance of participants using the 
laboratory ATM task previously reported by John et al. 
(2002). 

All three of these analyses involved the semi-automatic 
generation of interleaved schedules such as that illustrated 
in Figure 1. The first of the tasks (Convergys) offered 
particular challenges in that it required modeling the 
interaction of an operator with a customer and with the 
system (similar to the original work by Gray et al. [2]). 
CCM-d was used to predict a highly interleaved schedule 
that involved much concurrency in the interactions (e.g. 
talking, while moving the mouse, and waiting for a system 
response) but without much of the hand-crafting of the 
schedule that would be required without some form of 
automation. 

The reification of constraints 
One of the claims that we made for the advantages of a 
constraint satisfaction approach to predicting skilled 
interactive cognition was that it allowed a clear separation 
of different levels of constraint.  This is evident through our 
description of the four levels of constraint specification in 
the previous section.  

The consequences of separating these constraints are two-
fold. First, they reify the underlying psychological and task 
theory. Second, each statement is a self-contained assertion 
of a universally quantified assumption about the nature of 
interactive cognition. Each statement, therefore needs 
stating only once. 

To fully appreciate the advantages of the separation of 
constraints it is worth contrasting the CCM descriptions to 

Apex-CPM procedural descriptions. Figure 2 is a 
reproduction of the Apex-CPM specification of Gray and 
Boehm-Davis’s slow-move-click template [1] taken from 
[7]. The template is described in a procedural form, where 
each operator is labeled (e.g. step m1) and if there is a 
dependency of an operator on a previous operator then a 
waitfor instruction is used to denote the dependency. The 
waitfor instructions are used to locally capture obligatory 
architectural and strategic dependencies. E.g. the 
dependency that links step m1 and step c1 is an obligatory 
architectural constraint. In contrast the dependency that 
links c4 to p1 is a strategic dependency in the sense that it is 
a matter of choice whether a verify operator follows 
perception.  

A template description in Apex-CPM consists of a mixture 
of architectural and strategic dependencies. This is not a 
general representation of the relationship between init and 
motor operators -- the same architectural rule must be 
recreated in each template in which it occurs.  To put it 
another way, in Apex-CPM, there is no universally 
quantified assertion of the architectural relationships 
between operators. In contrast, and as we have illustrated, 
with constraint satisfaction and the constraints defined 
above, if it is specified that there is a motor operator in the 
schedule then it is required by constraint 6 that there is a 
corresponding init operator, irrespective of which strategy 
the motor operator is for. The constraint captures a 
universal assumption about the nature of cognition.  

GENERAL DISCUSSION 
We have reported current work on the value of taking a 
constraint satisfaction approach to formalizing the 
assumptions implicit in CPM-GOMS, and thereby 
providing a mechanism for predicting the time-course of 
skilled interactive cognition. A distinctive aspect of the 
approach is that it involves the specification of declarative 
and additive constraints on cognitive behavior followed by 
a process of reasoning about their implications. This is 
achieved with the implementation of a tool for translating 
declaratively specified task and psychological constraints 
into a Sicstus Prolog implementation of CLP FD. The 
approach has the following two strengths: 

(1) As constraints are additive, a clean separation can be 
imposed between task specific, strategy specific, and 
psychological constraints. This separation ensures the 
reusability of the appropriate constraints as new models are 
built. It also helps ensure that an analyst can work at exactly 
the right level. It is possible, in contrast to Apex-CPM, to 
specify strategy constraints without knowledge of the 
underlying architecture. 

(2) As constraints are declarative, a clean separation can be 
imposed between what is to be computed (in this case a 
prediction of the time-course of operators) and how it is to 
be computed. This is particularly important in the 
relationship between the constraints on cognition and the 
scheduling algorithm used. It is possible to make formal 
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derivations of both optimal and greedy schedule from CCM 
descriptions. The difference between these schedules is 
important (they represent different hypotheses as to the 
structure of skilled behavior), but the algorithm by which 
they are computed is not. It happens that the mechanisms 
we have used for reasoning about CCM descriptions takes 
advantage of a Sicstus Prolog CLP FD implementation of a 
branch-and-bound algorithm in order to produce optimal 
schedules. We could, however, have used an entirely 
different algorithm to compute the same optimal strategy. 
The algorithm is irrelevant to the particular theory of 
cognition. The constraint-based approach helps ensure that 
the statement of task and psychological constraints is 
uncluttered by irrelevant specification that is present in 
order to get the scheduling algorithm to work. 

As discussed above, our application of constraint 
satisfaction techniques to a large-scale task (CIP Scheduler) 
provided evidence that supports the claimed strengths of the 
approach. However, it also exposed a weakness. The 
particular ontology that we have used to determine the 
entities between which relations were expressed is taken 
from CPM-GOMS. It is an ontology for expressing the 
relations between operators in terms of dependencies (if B 
is dependent on A then the start time of B is greater than the 
end time of A). However, the fact that it is not, for example, 
possible to specify the bounds on the delay between the end 
of A and the start of B means that operators may be 
scheduled much earlier than is cognitively plausible. 
Consider the following example. If a prerequisite of a motor 
action, click(x) is a cognitive operator init(x) then we could 
say that click(x) is dependent on  init(x). Similarly we could 
say that click(y) is dependent on init(y). But the problem is 
that the specification of this pair of dependencies is 
insufficient to ensure cognitively plausible scheduling of 
the four operators. For example, the schedule ordering 
init(x), init(y), click(y), click(x) is legal but cognitively 
implausible. 

In order to solve these problems, Apex-CPM included 
mechanisms to constrain greedy scheduling that were in 
addition to the standard CPM-GOMS dependencies 
between operators. John et al. [7] also provided Apex-CPM 
with information, for example, about virtual resources. 
Virtual resources were a mechanism that was deliberately, 
and successfully, introduced in Apex-CPM in order to 
prevent cognitively implausible scheduling. Other 
mechanisms added to standard CPM-GOMS assumptions 
include operator priorities (to ensure task ordering) and a 
mechanism to prevent interleaving of operators into gaps 
that were smaller than the operator duration.  

In contrast, the solution to the same problem (cognitively 
implausible orderings) was solved in CCM-d by using 
specifications of dependencies and no more. To solve the 
init(x) - click(x) problem in a CCM-d, rules were specified 
that, for example, constrain click(y) to be dependent on 
click(x) if init(x) must come before init(y). This solution 
has the advantage that it is expressed purely in terms of 

dependencies. However, it has the disadvantage that many 
such extra dependencies are needed to adequately constrain 
a schedule. This was demonstrated by the number of 
dependencies that were needed to constrain the excel task 
reported above beyond the small-set of template constraints 
borrowed from the work of Gray and Boehm-Davies [1]. 
Describing all of the constraints necessary to produce a 
cognitively plausible schedule with CCM-d is a problem 
that exposes the extent to which craft knowledge was 
required in the manual composition of a CPM-GOMS 
schedule. 

One way in which this issue could be addressed would be to 
supplement CCM-d descriptions with statements that 
capture the mechanisms provided in Apex-CPM (i.e, a 
formal specification of Apex-CPM). However, we have 
moved in a different direction, directly addressing the fact 
that the specification of the relationships between processes 
in terms of dependencies is inadequate because it does not 
support the specification of: 

1. The maximum duration of the gap between two 
processes. 

2. Constraints on whether a process can be scheduled 
between two other processes.  

Our current research focuses on specifying a set of entities 
and relations within a CCM framework that address these 
problems, and that therefore adequately constrain 
scheduling while at the same time maintaining the 
advantages of formal specification of cognitive theory. A 
crucial feature of this approach is that constraint satisfaction 
techniques provide a computational substrate for reasoning 
about these formal specifications. 
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