
media computing groupJan Borchers 1

Designing Interactive Systems II

Computer Science Graduate Programme SS 2009

Prof. Dr. Jan Borchers
RWTH Aachen University

http://hci.rwth-aachen.de

http://media.informatik.rwth-aachen.de
http://media.informatik.rwth-aachen.de


media computing groupJan Borchers

Model-View-Controller

• Central concept behind Smalltalk-80 and its first 
multiwindow GUI interface

• View: Manages graphical/textual output
• Controller: Interprets user input (mouse,kbd) and tells 

model and/or view to change
• Model: manages data and behavior of application domain, 

responds to (View) requests about its state and (Controller) 
requests to change its state

2



media computing groupJan Borchers 3



media computing groupJan Borchers

Model-View-Controller

• Smalltalk-80 has abstract objects Model, View, Controller

• View & Controller need little added code; offer 
standardized display and input techniques

• Models cannot be standardized that way; any object 
can be a model

• Example: String as model for a simple editor

4



media computing groupJan Borchers

Passive Models

• Simplest case
• Controller responsible for notifying the view of any 

changes, because it interprets user input
• Model not responsible for triggering anything, unaware 

of the MVC triad

5



media computing groupJan Borchers

Active Models

• Most models cannot be so passive
• Need to inform all(!) dependent views when the 

model’s state changes (by sending update msg.)
• When a View is given its model, it registers itself as a 

dependent of that model

6



media computing groupJan Borchers

View and Controller

• Each view is associated with a unique controller and 
vice versa (through instance variables controller and 
view)

• They also both have a model instance variable
• The view is responsible for establishing these links

7



media computing groupJan Borchers

Subviews

• Views are nested
• topView has StandardSystemController for moving 

windows (➞ Window Manager task)
• subViews have associated controllers for their 

particular purpose (buttons,...)
• Bidirectional pointers (subViews, superView) establish 

tree structure

8



media computing groupJan Borchers 9

Smalltalk: History

• Common ancestor of all window systems

• Alan Kay (PARC, early 70's): Dynabook
• Influenced by Simula, Sketchpad (DIS I), Logo

• Initially on 64K Alto

• Used in 70s to teach OO to school children…

• Introduced windows, scrolling, pop-up menus, 
virtual desktop, MVC

BWS
GEL
HW

UITK

Apps

WM



media computing groupJan Borchers 10

Smalltalk: Architecture

• Machine-dependent Virtual Machine (byte-code 
interpreter)

• Machine-independent Virtual Image (Smalltalk 
classes)

• Complete universe, simplest WS archit.
• OS, language, WS, tools: single address space, single 

process structure, communicate with procedure calls
• Initially, OS & WS merged, on bare machine
• Later, WS on top of OS, but still “universe”

BWS
GEL
HW

UITK

Apps

WM



media computing groupJan Borchers 11

Smalltalk: Architecture

• Squeak: Recent open-source implementation (since 
1996) by Alan Kay and others

• Smalltalk is a purely object-oriented and simple 
language

• Messages are sent to objects
• Result := Object message: Parameters



media computing groupJan Borchers 12

Morphic
• User interface construction environment for Smalltalk
• Originally devised in the mid-90s [Maloney'95]
• Directness

• Change look&feel of widgets by pointing at them

• No separate “GUI editor view”

• Liveness
• UI is always active and working

• No separate “edit” and “run” modes

• Reduces UI development time, lowers cognitive load, 
real-world analogy

• Supports multiple users working simultaneously(!)



media computing groupJan Borchers 13

Morphic: Structural Reification

• Widgets are called morphs
• Any morph can be a container (hold submorphs)
• Submorphs managed through container, handle events 

first



media computing groupJan Borchers 14

Morphic: Structural Reification

• Advantage: entire dynamic widget tree consists of real 
morphs—Structural Reification—, enabling directness 
since every part of the widget tree can be 
manipulated directly

• E.g., turn labeled button into button with movie on it

• Extreme case: Editor with every character as morph

• Applications are just big composite morphs built by 
direct manipulation, including connections between 
control and target morphs(!)



media computing groupJan Borchers 15

Morphic: Layout Reification

• Layout morphs automatically and continuously lay out 
their children and make layout policy tangible—Layout 
Reification

• Row & Column Layout morphs

• Find compromise for submorph space requests, pass 
single space request on to parent

• Minimum size and resizing policy as attributes, H&V 
independent

• rigid, space fill, shrinkwrap



media computing groupJan Borchers 16

In-Class Exercise:
Implementing Layout



media computing groupJan Borchers 16

In-Class Exercise:
Implementing Layout

• Algorithm to determine the layout of a morph that 
includes a tree of submorphs?



media computing groupJan Borchers 16

In-Class Exercise:
Implementing Layout

• Algorithm to determine the layout of a morph that 
includes a tree of submorphs?

• Answer:
• 1st pass: Compute minimum size of all submorphs bottom-up

• 2nd pass: Distribute available space between submorphs top-down



media computing groupJan Borchers 16

In-Class Exercise:
Implementing Layout

• Algorithm to determine the layout of a morph that 
includes a tree of submorphs?

• Answer:
• 1st pass: Compute minimum size of all submorphs bottom-up

• 2nd pass: Distribute available space between submorphs top-down

• Optimizations?
• Deferred layout: Don't layout until visible

• Pruning: Maintain layoutOK flag for subtrees, do not compute 
subtree layout if flag ok and required space available

• Site Selection: Try to limit recomputation to subtree up to next 
likely stable (e.g. rigid) morph



media computing groupJan Borchers 17

Review

• What is the difference between Smalltalk, Squeak, and 
Morphic?

• How did the original Smalltalk implement the window 
system layer architecture?

• What are the most particular qualities of Morphic as a 
UI toolkit?

• What are morphs, and what is special about them?
• How does Morphic implement widget layout?



media computing groupJan Borchers 18

Morphic: Ubiquitous Animation

• Morphs can have autonomous behavior, usually 
appearing as animation (clock,…) (intrinsic step 
method, triggered by system each frame or less often, 
from activity list)

• Also, animation behaviors (move, scale, change color) 
can be assigned to any morph (as external activity, 
frame- or time-based, several pacing options, triggered 
from activity list n times)

• These two are orthogonal



media computing groupJan Borchers 19

Morphic: Ubiquitous Animation

• Multiple animations active concurrently
• Animations can be composited concurrently or 

sequentially, abort by user possible (e.g. delete file)
• Increases Liveness, allows objects to observe others



media computing groupJan Borchers 20

Managing redraws

• Damage List
• Add bounding box of each changed morph to list (at both 

locations if moving)

• Each frame, redraw all morphs intersecting each bounding box in 
damage list, back-to-front off screen, then copy to screen (double 
buffering)

• Improvements
• Merge overlapping bounding boxes when reported

• Prune submorph drawing to damage rectangle (works well with 
Row&Column morphs)

• Don't draw occluded morphs (requires each morph to fill its 
bounding box)



media computing groupJan Borchers 21

Morphic: Live Editing

• No edit/run modes
• +: No mode changes, no cognitive load, works with n users

• How distinguish operating from editing gestures?
• Context-sensitive meta menu on right click

• Includes access to code for morph, decomposable

• Special commands to access submorphs (spatial 
demultiplexing), specify additional operands



media computing groupJan Borchers 22



media computing groupJan Borchers 23

Smalltalk: Evaluation

• Availability: high (Squeak,...)
• Productivity: medium (depending on tools, libs used)
• Parallelism: originally none, now external

• But linguistic crash protection

• Performance: medium (high OO overhead since 
everything is an object)

• Graphic model: originally RasterOp
• Style: flexible (see Morphic, for example)
• Extensibility: highest (full source available to user, code 

browser)



media computing groupJan Borchers 24

Smalltalk: Evaluation

• Adaptability: low (no explicit structured user resource 
concept; although storing entire image possible)

• Resource sharing: high
• Distribution: none originally, yes with Squeak
• API structure: pure OO, Smalltalk language only
• API comfort: initially low, higher with Squeak&Morphic
• Independency: High (due to MVC paradigm)
• Communication: flexible (objects pass messages)


