
Related Reading

 Published on MacDevCenter (http://www.macdevcenter.com/)
 See this if you're having trouble printing code examples

Programming with Spotlight
by Matthew Russell
07/12/2005

The API for Spotlight offers highly advanced search capabilities. In fact, you can develop some of
the very features of Tiger we've already grown to love using Spotlight's API. In this piece, we'll
ease into Spotlight programming from a Cocoa development perspective so that you can make
your applications Spotlight enabled. Next time (this coming Friday), we'll finish our work with
Spotlight by hacking up a plugin for Stickies.

Pregame

As with any endeavor, an adequate background is vital to success. Apple has provided quite a bit
of documentation on Spotlight, and it is very good, although not quite final. This writing assumes
that you've done a bit of Cocoa programming before and understand how Spotlight works at a
conceptual level. If you need a quick crash course, review:

Introduction to Cocoa Design Patterns Guide (especially the Model View Controller
paradigm)
Working with Spotlight (including the "For More Information" links at the bottom)
Introduction to Carbon-Cocoa Integration Guide (especially "Toll-Free Bridging," briefly)

We'll ease into the Cocoa programming initially, but will quickly increase the pace because there's
a lot of turf to cover with Spotlight specifics. If you need more context on general purpose Cocoa
programming than Apple's developer documentation, check out one of the many excellent tutorials
here on MacDevCenter. Without further adieu, sit back, relax, and strap on your seat belt.

Developing with Spotlight

As a developer, you can interact with Spotlight in a variety of
ways. Here are a few of the most common ways:

Use Carbon- or Cocoa-level function calls from within
your compiled application

To have your application display the Spotlight
search window
To directly examine the metadata of a specific file
To query the Spotlight server for specific metadata
constraints on an operating system-wide level

Cocoa in a Nutshell
A Desktop Quick
Reference
By Michael Beam, James
Duncan Davidson

Table of Contents
Index
Sample Chapter

Read Online--Safari
Search this book on Safari:

Only This Book
Code Fragments only

Use a command line tool from within a script
Parse the output of an existing metadata tool such
as mdls or mdfind
Create your own customized command line tool
that performs a task of your own choosing

Create a plugin
Allow Spotlight to use the metadata available from
your own application's custom file types
Create a plugin for an existing file type for which
there's not any available plug-in

We'll work though each of these possibilities, and you'll soon
be able to interact with Spotlight on a variety of levels. Let's
get our hands dirty with some code by building a sample
application, looking at some of Apple's examples, and
reviewing some of the command line tools.

Displaying the Spotlight Search Window

Since Cocoa is the drink of the day (as always), let's make an
example project that interacts with Spotlight. If you haven't
already, now is a good time to update to Xcode 2.1. In Xcode:

Create a new project
Open Xcode
Create a new "Cocoa Application"
Name it "SpotlightExamples" and save it
somewhere

With a template in place, let's proceed to create a controller
class since we're big fans of the Model View Controller
paradigm

Create a controller class
From Xcode's "File" menu, choose "New File"
Pick "Objective-C class"
Name it "Controller" and choose to also create the header
In Xcode's "Groups & Files" pane, drag the Controller files into the "Classes" folder

Create a new project in Xcode

Our controller class needs outlets and connections, so let's add those. Replace your controller files
with the following ones. (We're simply adding an outlet that'll correspond to a button and an action
that contains a Carbon-level call to open up Spotlight's search window.)

For "Controller.h":

// Controller.h
// SpotlightExamples

#import <Cocoa/Cocoa.h>

@interface Controller : NSObject {
 IBOutlet NSButton* openSearchWindowButton;
}

- (IBAction)openSearchWindowAction:(id)sender;
@end

For "Controller.m":

// Controller.m
// SpotlightExamples

#import "Controller.h"

@implementation Controller

- (IBAction)openSearchWindowAction:(id)sender
{
 OSStatus resultCode=noErr;

 //Replace "Search Text" with user input
 resultCode=
 HISearchWindowShow((CFStringRef)@"Search Text", kNilOptions);

 if (resultCode != noErr) {
 NSLog(@"Failed to open search window");
 //Could use NSAlert class to display interactive dialog
 }
}
@end

Let's go ahead and instantiate the controller.

Instantiate the Controller
Open up the main menu of your application by expanding the "NIB Files" folder and
double clicking on "MainMenu.nib"
Drag the "Controller.h" file in Xcode down onto Interface Builder's "MainMenu.nib"
panel.
In the "Classes" tab of Interface Builder's "MainMenu.nib" panel, select "NSObject"
and then "Controller"
From Interface Builder's "Classes" menu, choose "Instantiate Controller"

Drag and drop your "Controller.h" file onto Interface Builder's main palette and then instantiate
it.

You should now see your controller under the "Instances" tab of Interface Builder as a blue cube.
The little yellow exclamation point reminds us that at least one outlet is not set, so let's take care of
that.

Add a button and make the connections
From Interface Builder's "Cocoa-Controls" palette, drag an NSButton onto your
application's main menu window. Double click and rename it "Open Search Window"
Ctrl-click and drag from the blue controller cube onto the button; release and choose
"Connect" for the "openSearchWindowButton" outlet.
Ctrl-click and drag from the button onto the blue controller cube; release, and choose
"Connect" for the "openSearchWindowAction" action.

Now you can run the application, click on the button, and get the search window to appear. As you
can see, there's just a simple Carbon-level call to make this happen. To make this feature useful,
your application might offer drag-and-drop functionality to allow a user to drag over a file for
some sort of processing.

Your initial project can display the Spotlight search window.

You can get the project file for this first portion here.

Examine a Specific File's Metadata

Out next topic investigates Spotlight's ability to examine a specific file's metadata, and it's
surprisingly easy. To illustrate, let's enhance our example project. For the sake of time, we'll stay
focused and add a text view object that displays the metadata for a specific file. In your own
applications, you'd probably be doing something more involved. You can find plenty of good
Cocoa tutorials that illustrate broader topics involving user interaction, file browsers, etc. here on
MacDevCenter if you need that additional context.

Modify your controller files (changes are in bold):

For "Controller.h":

// Controller.h
// SpotlightExamples

#import <Cocoa/Cocoa.h>

@interface Controller : NSObject {
 IBOutlet NSButton* openSearchWindowButton;

 IBOutlet NSTextView* metadataInfoView;
 IBOutlet NSButton* displayMetadataButton;
}

- (IBAction)openSearchWindowAction:(id)sender;

- (IBAction)displayMetadataAction:(id)sender;

@end

For "Controller.m":

// Controller.m
// SpotlightExamples

#import "Controller.h"

@implementation Controller

- (IBAction)openSearchWindowAction:(id)sender
{
 OSStatus resultCode=noErr;

 //Replace "Search Text" with user input
 resultCode=HISearchWindowShow((CFStringRef)@"Search Text", kNilOptions);
 if (resultCode != noErr) {
 NSLog(@"Failed to open search window");
 //Could use NSAlert class to display interactive dialog
 }
}

- (IBAction)displayMetadataAction:(id)sender
{

 //create a CF-compliant object representing a file and its metadata using
 //a Carbon level call

 //add in a path to an existing file on your system
 CFStringRef path = CFSTR("/Users/matthew/temp.txt");
 MDItemRef item = MDItemCreate(kCFAllocatorDefault, path);

 //pull out the metadata attribute names
 CFArrayRef attributeNames = MDItemCopyAttributeNames(item);

 //use toll-free bridging to load up an NSArray for convenience
 NSArray* array = (NSArray*)attributeNames;
 NSEnumerator *e = [array objectEnumerator];
 id arrayObject;

 //placeholders
 NSMutableString *info = [NSMutableString stringWithCapacity:50];
 CFTypeRef ref;

 while ((arrayObject = [e nextObject]))
 {
 ref =
 MDItemCopyAttribute(item, (CFStringRef)[arrayObject description]);

 //cast to get an NSObject for convenience
 NSObject* tempObject = (NSObject*)ref;

 [info appendString:[arrayObject description]];
 [info appendString:@" = "];
 [info appendString:[tempObject description]];
 [info appendString:@"\n"];
 }

 //set the info in the text view
 [metadataInfoView insertText:info];
}
@end

You'll need to update your instantiated controller to reflect changes in your source code by
dragging the "Controller.h" file onto the main Interface Builder palette and choose to "Replace"
when prompted. Without this change, the controller won't recognize the new outlets and action you
just added.

Spruce up your application's main window in Interface Builder
Add an NSButton and rename it "Display Metadata"
Add an NSTextView (from the "Cocoa-Text" tab)
Set the outlet and action for the new button
Set the outlet for the text view the same as with the button (it doesn't have any
actions)

With all that done, ensure that you've specified a file that exists on your system in method
openSearchWindowAction:. I just created a temporary text file for purposes of illustration. Again,
your application would be doing all sorts of fancy user interaction here; we're being simple on
purpose. "Build and Go" to see the action. If something's not working, double check your outlets
and connections. You can always add NSLog messages to help troubleshoot.

Your project is now capable of examining a file's metadata.

You can get the project file for this second portion here.

Query the Spotlight Server

So far, we've displayed the Spotlight search window and examined a specific file's metadata.
While interesting and useful, these features still leave plenty to be sought. Querying the Spotlight
server helps to fill this void and is one of the ways Spotlight really struts its stuff. In our example
application, we'll use Spotlight to query the entire file system for mail messages the same way we
could in the Spotlight search window. Take a moment to review the docs on NSMetadataQuery
and NSPredicate if you haven't already; these are the cornerstones. Everything else is from the
standard Model View Controller repertoire.

Let's update your controller class again. Changes are in bold.

For "Controller.h"

// Controller.h
// SpotlightExamples

#import <Cocoa/Cocoa.h>

@interface Controller : NSObject {
 IBOutlet NSButton* openSearchWindowButton;

 IBOutlet NSTextView* metadataInfoView;
 IBOutlet NSButton* displayMetadataButton;

 IBOutlet NSButton* startSearchButton;
 IBOutlet NSButton* stopSearchButton;
 IBOutlet NSTextField* numHitsField;
 NSMetadataQuery* q;
 NSTimer* t;

}

- (IBAction)openSearchWindowAction:(id)sender;

- (IBAction)displayMetadataAction:(id)sender;

- (id)init;
- (void)awakeFromNib;
- (void)dealloc;
- (IBAction)startSearchAction:(id)sender;
- (IBAction)stopSearchAction:(id)sender;
- (void)stopSearching;
- (void)updateResults:(NSTimer*)timer;

@end

For "Controller.m"

// Controller.m
// SpotlightExamples

#import "Controller.h"

@implementation Controller
- (IBAction)openSearchWindowAction:(id)sender
{
 OSStatus resultCode=noErr;

 //Replace "Search Text" with user input
 resultCode=
 HISearchWindowShow((CFStringRef)@"Search Text", kNilOptions);
 if (resultCode != noErr) {
 NSLog(@"Failed to open search window");
 //Could use NSAlert class to display interactive dialog
 }
}

- (IBAction)displayMetadataAction:(id)sender

{

 //create a CF-compliant object representing
 //a file and its metadata using a Carbon level call

 //add in a path to an existing file on your system
 CFStringRef path = CFSTR("/Users/matthew/temp.txt");
 MDItemRef item = MDItemCreate(kCFAllocatorDefault, path);

 //pull out the metadata attribute names
 CFArrayRef attributeNames = MDItemCopyAttributeNames(item);

 //use toll-free bridging to load up an NSArray for convenience
 NSArray* array = (NSArray*)attributeNames;
 NSEnumerator *e = [array objectEnumerator];
 id arrayObject;

 //placeholders
 NSMutableString *info =
 [NSMutableString stringWithCapacity:50];

 CFTypeRef ref;

 while ((arrayObject = [e nextObject]))
 {
 ref =
 MDItemCopyAttribute(item, (CFStringRef)[arrayObject description]);

 //cast to get an NSObject for convenience
 NSObject* tempObject = (NSObject*)ref;

 [info appendString:[arrayObject description]];
 [info appendString:@" = "];
 [info appendString:[tempObject description]];
 [info appendString:@"\n"];
 }

 //set the info in the text view
 [metadataInfoView insertText:info];
}

- (id)init
{
 if (self = [super init])
 {
 //release in dealloc
 q = [[NSMetadataQuery alloc] init];
 }
 return self;
}

- (void)awakeFromNib
{
 [q setDelegate: self];

 //remember to unregister for notifications
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(stopSearching)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
}

- (void)dealloc
{
 [q release];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];

 [super dealloc];
}

- (IBAction)startSearchAction:(id)sender
{
 //whatever query you want. emlx corresponds
 //to mail messages. you could easily
 //configure search terms from user interaction.
 NSPredicate *p =
 [NSPredicate predicateWithFormat:@"kMDItemKind == 'emlx'", nil];
 [q setPredicate:p];

 //optionally set search scopes
 //[q setSearchScopes:
 // [NSArray arrayWithObject:@"/Users/matthew/Library/Mail/"]];

 //start the query and use the run loop
 //to process the search progress.
 if ([q startQuery])
 {
 t =
 [NSTimer scheduledTimerWithTimeInterval:0.25
 target:self
 selector:@selector(updateResults:)
 userInfo:q
 repeats:YES];

 //NSRunLoop retains the timer
 [[NSRunLoop currentRunLoop]
 addTimer:t
 forMode:NSDefaultRunLoopMode];
 }
 else
 {
 NSLog(@"Error. Could not start query. Weird.");
 }
}

- (IBAction)stopSearchAction:(id)sender
{
 [self stopSearching];

}

//called via the NSMetadataQueryDidFinishGatheringNotification
//and/or the stopSearchAction: method
- (void)stopSearching
{
 //don't invalidate a timer more than once
 if (!([q isStopped]))
 {
 //NSLog(@"Finito. Num results = %d", [q resultCount]);
 [self updateResults:t];
 [q stopQuery];
 [t invalidate];

 }
}

- (void)updateResults:(NSTimer*)timer
{
 NSString *tempString =
 [NSString stringWithFormat:@"%d", [[timer userInfo] resultCount], nil];

 [numHitsField setStringValue:tempString];
 //NSLog(@"%d", [[timer userInfo] resultCount]);
}

@end

Like last time, drag and drop your header file onto Interface Builder's palette so that your
instantiated controller reflects the changes. On your application's main menu, you'll need to:

Add two NSButtons and an NSTextField and connect their outlets
Rename one NSButton "Start Search"
Rename one NSButton "Stop Search"
Add the NSTextField
Connect their outlets as you've been previously doing with Ctrl-click drags.

Set the actions for the "Start Search" button and "Stop Search" button
Connect "Start Search" to startSearchAction:
Connect "Stop Search" to stopSearchAction:

Do any finishing touches (optional)
Group controls together with an NSBox
Title the main window

If you decide to group controls using an NSBox, you have to delete your existing controls, drag
"fresh" controls from Interface Builder's palette over onto the box, and then re-establish the outlets
and connections. This only takes a few moments, and makes things look a lot less chaotic.
Although the application you've developed is fairly pedagogical, the concepts and code snippets
used are the same that you'd use in more sophisticated circumstances.

Your project can now query the entire filesystem.

You can get the project file for this final portion here.

Command Line Tools

Before creating a Spotlight plugin next time, you might like to know that you don't necessarily
have to be a Cocoa programmer to benefit from Spotlight. Apple provides several very useful
command line tools that you can use in shell scripts to query and manipulate metadata. Here's a
few you might find handy:

mdls: lists the metadata attributes for the specified file
mdfind: finds files matching a given query
mdimport: imports file hierarchies into the metadata datastore
mdutil: manages the metadata stores used by Spotlight

Since this is a Cocoa-oriented tutorial, we won't work through command-line examples. You'll
have no problems getting acquainted by using the man pages or Apple's documentation. These
command-line tools are very useful for debugging an importer (as we'll see next time) or for use in
your Perl, Bash, or other scripting routines that can benefit from the metadata awareness.

On a final note about command line tools, realize that you aren't constrained to the ones Apple
provides. You can create your own custom tools using Spotlight's Carbon-level API available to
you. In fact, the Cocoa-level API we've primarily been using is simply a wrapper around these
Carbon-level calls. The concepts are exactly the same, and you might even enjoy the simplicity
gained from the absence of human interaction (every once in a while).

Next Time

For next time, you'll want to skim the documentation on Introduction to Spotlight Importers and
ponder how in the world we'll get Spotlight to be aware of notes in Stickies. Until then.

Matthew Russell is a computer scientist from middle Tennessee; and serves Digital Reasoning
Systems as the Director of Advanced Technology. Hacking and writing are two activities essential
to his renaissance man regimen.

Return to the Mac DevCenter

Copyright © 2009 O'Reilly Media, Inc.

