
media computing groupJan Borchers 1

Designing Interactive Systems II

Computer Science Graduate Programme SS 2009

Prof. Dr. Jan Borchers
RWTH Aachen University

http://hci.rwth-aachen.de

media computing groupJan Borchers 2

User Interface Toolkit

• Motivation: Deliver API

• problem/user-oriented instead of hardware/BWS-specific

• 50–70% of SW development go into UI

- UITK should increase productivity

BWS

GEL

HW

UIDS/UIDL

Interface Guidelines (Look&Feel)

Complex widgets

Elementary widgets

Apps

WM UITK

media computing groupJan Borchers 3

UITK: Concept

• Two parts

• Widget set (closely connected to WS)

• UIDS (User Interface Design System to support UI design task)

• Assumptions

• UIs decomposable into sequence of dialogs (time) using widgets
arranged on screen (space)

• All widgets are suitable for on-screen display (no post-desktop user
interfaces)

• Note: decomposition not unique

media computing groupJan Borchers 4

UITK: Structure

• Constraints

• User works on several tasks in parallel ! parallel apps

• Widgets need to be composable, and communicate with other widgets

• Apps using widget set (or defining new widgets) should be reusable

• Structure of procedural/functional UITKs

• Matched procedural languages and FSM-based, linear description of app
behavior

• But: Apps not very reusable

media computing groupJan Borchers 5

UITK: Structure

• OO Toolkits

• Widget handles certain UI actions in its methods, without involving app

• Only user input not defined for widget is passed on to app asynchronously
(as seen from the app developer)

- Matches parallel view of external control, objects have their own “life”

• Advantage: Subclass new widgets from existing ones

• Disadvantage:

- Requires OO language (or difficult bridging, see Motif)

- Debugging apps difficult

media computing groupJan Borchers 6

UITK: Control Flow

• Procedural model:

• App needs to call UITK routines with parameters

• Control then remains in UITK until it returns it to app

• OO model:

• App instantiates widgets

• UITK then takes over, passing events to widgets in its own event loop

• App-specific functionality executed asynchronously in callbacks (registered
with widgets upon instantiation)

• Control flow also needed between widgets

media computing groupJan Borchers

• Widget :

• Output side: windows W, graphical attributes G

• Input side: actions A that react to user inputs I

• Mapping inputs to actions is part of the specification, can
change even at runtime

• Actions can be defined by widget or in callback

• Each widget type satisfied a certain UI need

• Input number, select item from list,...

(W = (w1 . . . wk), G = (g1 . . . gl), A = (a1 . . . am), i = (i1 . . . in))

7

Defining Widgets

media computing groupJan Borchers 8

Simple Widgets

• Elementary widgets

• Universal, app-independent, for basic UI needs

• E.g., button (trigger action by clicking), label (display text), menu
(select 1 of n commands), scrollbar (continuous display and change
of value), radio button (select 1 of n attributes)

media computing groupJan Borchers 9

In-Class Exercise: Button

• What are the typical components (W, G, A, I) of a
button?

• Sample solution:

• W=(text window, shadow window)

• G=(size, color, font, shadow,...)

• A=(enter callback, leave callback, clicked callback)

• I=(triggered with mouse, triggered with key, enter, leave)

media computing groupJan Borchers 10

Simple Widgets

• Container widgets

• Layout and coordinate other widgets

• Specification includes list C of child widgets they manage

• Several types depending on layout strategy

• Elementary & Container widgets are enough to create
applications and ensure look&feel on a fundamental
level

media computing groupJan Borchers 11

Complex Widgets

• Applications will only use subset of simple widgets

• But also have recurring need for certain widget
combinations depending on app class (text editing,
CAD,...)

• Examples: file browser, text editing window

• Two ways to create complex widgets

• Composition (combining simple widgets)

• Refinement (subclassing and extending simple widgets)

• Analogy in IC design: component groups vs. specialized ICs

media computing groupJan Borchers 12

Widget Composition

• Creating dynamic widget hierarchy by hierarchically
organizing widgets into the UI of an application

• Some will not be visible in the UI

• Starting at root of dynamic widget tree, add container
and other widgets to build entire tree

• Active widgets usually leaves

• Dynamic because it is created at runtime

• Can even change at runtime through user action (menus,...)

media computing groupJan Borchers 13

Widgets and Windows

• The dynamic widget tree usually matches geographical contains
relation of associated BWS windows

• But: Each widget usually consists of several BWS windows

! Each widget corresponds to a subtree of the BWS window
tree!

! Actions A of a widget apply to is entire geometric range except
where covered by child widgets

! Graphical characteristics G of a widget are handled using
priorities between it, its children, siblings, and parent

media computing groupJan Borchers 14

Refinement of Widgets

• Create new widget type by refining existing type

• Refined widget has mostly the same API as base
widget, but additional or changed features, and fulfills
Style Guide

• Not offered by all toolkits, but most OO ones

• Refinement creates the Static Hierarchy of widget
subclasses

• Example: Refining text widget to support styled text
(changes mostly G), or hypertext (also affects I & A)

media computing groupJan Borchers 15

Late Refinement of Widgets

• App developer can compose widgets

• Widget developer can refine widgets

• ! User needs way to change widgets

• ! Should be implemented inside toolkit

• Solution: Late Refinement (see WM for discussion)

• Late refinement cannot add or change type of widget
characteristics or the dynamic hierarchy

• But can change values of widget characteristics

media computing groupJan Borchers 16

Style Guidelines

• How support consistent Look&Feel?

• Document guidelines, rely on developer discipline

- E.g., Macintosh Human Interface Guidelines (but included commercial
pressure from Apple & later user community)

• Limiting refinement and composition possible

- Containers control all aspects of Look&Feel

- Sacrifices flexibility

• UIDS

- Tools to specify the dialog explicitly with computer support

media computing groupJan Borchers 17

Types of UIDS

• Language-oriented

• Special language (UIL) specifies composition of widgets

• Compiler/interpreter implements style guidelines by checking
constructs

• Interactive

• Complex drawing programs to define look of UI

• Specifying UI feel much more difficult graphically

- Usually via lines/graphs connecting user input (I) to actions (A), as
far as allowed by style guide

• Automatic

• Create UI automatically from spec of app logic (research)

• Examples in upcoming lectures

