Improving Computer-Adaptive Psychological Tests

automatic item generation & alternative response formats

Immo Köster

Thesis advisor: Prof. Dr. Lutz F. Hornke

Second examiner: Prof. Dr. Jan O. Borchers

Daily advisor: Dipl.-Psych. Jonas W.B. Lang

- objectives
- software prototype
- response formats
- demonstration
- psychological study
- results
 - Psychometrics
 - Usability
- discussion

further results in the thesis

Objectives

- develop a software prototype of a computer-adaptive test for analogical reasoning
- inspired by figural analogies used by Sternberg (1977) and Sternberg & Rifkin (1979)

automatic item generation

- empirical models of item difficulty (Mulholland et al., 1980; Bethell-Fox et al., 1984; Leon & Revelle, 1985)
- Linear Logistic Test Model (LLTM; Fischer 1973)
- optimize response format and usability

Realization: Software prototype

- adaptive testing
 - Expected a Posteriori (EAP) estimation (Bock & Aitkin, 1982)
- automatic generation of items & distractors
 - LLTM based on elements and transformations of the analogy
- high flexibility:
 - customizable structure & rendering of figures
 - XML User Interface Language: SwiXml
 - minor UI changes do not require to recompile
 - i18n & I10n using Java property files
 - → currently German & English,
 - → allows to focus on the psychological aspects of translation
 - configuration through Java property files
 - → e.g., computer-adaptive test or static fixed-length test ?

Optimize response format & usability

- optimization criteria for psychological tests:
 - Flow experiences (Rheinberg, 2004)
 - State anxiety: Worry & Emotionality (Zeidner, 1998)
 - Performance (percentage correct)
 - → maximize unbiased individual performance
- usability optimization criteria:
 - typical usability questions
 - individual feedback

- Imited research on response formats in psychological tests available
- previously studied response formats in psychological research (Martinez, 1999):
 - Multiple-Choice (MC)
 - → very common & familiar, easy to explain
 - → easy scoring allows for immediate feedback
 - but performance biased: guessing chance, response elimination strategy
 - Computerized Modified Multiple-Choice Testing (Park, 2005)
 - reasoning set apart from response recognition and selection (user has to actively request response options)
 - → time limit (few seconds) hinders response elimination strategy
 - but hard to find an appropriate time limit due to individual differences
 - Non-Computer-based Constructed-Response (CR)
 - → no response options, answer has to be constructed
 - → eliminates MC bias
 - but scoring is difficult, subject to interpretation

newly developed response format in this thesis:

- Computer-based Constructed-Response (CCR)
 - → automatic scoring (compare MC)
 - high subjective user control (beneficial for people with high test anxiety)
 - inspired by usability research & design patterns

Time for a short demonstration...

Study: Objective, Method, Design, & Analysis

Objective: comparison of three response formats with respect to outlined criteria

Method/Design: repeated measures design, 27 subjects

- 3 different response formats
 - → order: MC-CMMT-CR, CMMT-CR-MC, CR-MC-CMMT
- 3 different item sets
- 3 subjects per condition
- psychological questionnaires

Data Analysis:

- paired t-tests
- Cohen's d (effect size measure)
 - → d ≥ 0.2 : small effect size
 - → d ≥ 0.5 : medium effect size
 - → d ≥ 0.8 : large effect size

Study: Results – Psychometrics (1/2)

Performance

Flow experiences

10/16

Study: Results – Psychometrics (2/2)

Worry

Emotionality

Study: Results – Usability (1/3)

Everything worked as I expected it

It was always clear to me what to do next

Overall user feedback was positive

- "good user interface"
- "enjoyed it"
- "the diversity of response options was impressive"

Arrangement of control elements was concise

Usage of the program was easy to learn

The representation of the interface confused me

Working with the interface was a problem for me

some problems:

- time limit of CMMT format was too short
- color contrasts (green and black) too low
- figures (a bit) too small
- contrast of small body shapes too low

[6 participants]
[3 participants]
[2 participants]
[1 participant]

14/16

Discussion

CMMT did not fulfill the expectations

- chosen time limit too short
- probably UI issues as well
- main problem: forced separation of reasoning and answering
- CCR performs very well
 - no significant differences to MC
 - exception: performance, which is known to be biased for MC
 - "it was great fun to assemble the figures myself"
- adaptive testing requires large LLTM calibration study

References

- Bethell-Fox, C. E., Lohman, D. F., & Snow, R. E. (1984). Adaptive Reasoning: Componential and Eye Movement Analysis of Geometric Analogy Performance. Intelligence, 8 (3), 205–238.
- Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP Estimation of Ability in a Microcomputer Environment. Applied Psychological Measurement, 6 (4), 431-444.
- Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.
- Leon, M.R., & Revelle, W. (1985). Effects of Anxiety on Analogical Reasoning: A Test of Three Theoretical Models. Journal of Personality and Social Psychology, 49 (5), 1302–1315.
- Martinez, M. E. (1999). Cognition and the question of test item format. Educational Psychologist, 34 (4), 207–218.
- Mulholland, T. M., Pellegrino, J. W., & Glaser, R. (1980). Components of geometric analogy solution. Cognitive Psychology, 12, 252-284.
- Park, J. (2005). Learning in a new computerized testing system. Journal of Educational Psychology, 97 (3), 436–443.
- Rheinberg, F. (2004). Motivationsdiagnostik. Göttingen: Hogrefe.
- Sternberg, R. J. (1977). The people piece analogy experiment. In Intelligence, information processing and analogical reasoning: The componential analysis of human abilities (pp. 173-221). Hillsdale, NJ: Lawrence Erlbaum.
- Sternberg, R. J., & Rifkin, B. (1979). The development of analogical reasoning processes. Journal of Experimental Child Psychology, 27, 195–232.
- Zeidner, M. (1998). Test Anxiety: The State of the Art. New York: Plenum.