
by
Faraz Ahmed Memon

      iStuffMobile: 
Rapidly Prototyping Novel 
Interactions for Mobile 
Phones 

Master Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.  Stefan Kowalewski

Registration date:   7th Dec , 2005
Submission date:  17th May, 2006





iii

Contents

Abstract xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 iStuff Toolkit . . . . . . . . . . . . . . . . . . . 2

1.1.1 iStuff Architecture . . . . . . . . . . . 3

1.1.2 Event Heap . . . . . . . . . . . . . . . 4

1.1.3 iStuff Components . . . . . . . . . . . 5

1.1.4 Event . . . . . . . . . . . . . . . . . . . 6

1.1.5 Event Communication . . . . . . . . . 6

1.1.6 Patch Panel . . . . . . . . . . . . . . . 7

1.2 Smart-Its Technology . . . . . . . . . . . . . . 9

1.2.1 Smart-Its Architecture . . . . . . . . . 10

1.2.2 Smart-Its Core and Sensor Boards . . 11



iv Contents

1.2.3 Smart-Its Communication . . . . . . . 12

2 Related work 15

2.1 Phidgets . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Phidgets Architecture . . . . . . . . . 16

2.1.2 Phidgets vs. iStuff Mobile . . . . . . . 17

2.2 Calder . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Calder Architecture . . . . . . . . . . . 18

2.2.2 Calder vs. iStuff Mobile . . . . . . . . 20

2.3 The TEA project . . . . . . . . . . . . . . . . . 20

2.3.1 TEA Architecture . . . . . . . . . . . . 21

2.3.2 TEA vs. iStuff Mobile . . . . . . . . . 22

2.4 D.tools . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 D.tools Architecture . . . . . . . . . . 23

2.4.2 D.tools vs iStuff Mobile . . . . . . . . 25

2.5 Teleo . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Teleo Architecture . . . . . . . . . . . 25

2.5.2 Teleo vs. iStuff Mobile . . . . . . . . . 26

2.6 CCC Cybelius Maestro . . . . . . . . . . . . . 26

2.6.1 CCC Cybelius Maestro Architecture . 26

2.6.2 CCC Cybelius Maestro vs. iStuff Mobile 27

2.7 ContextPhone . . . . . . . . . . . . . . . . . . 27

2.7.1 ContextPhone Architecture . . . . . . 28



Contents v

2.7.2 ContextPhone vs. iStuff Mobile . . . . 30

3 iStuff Mobile Architecture 31

3.1 Particle Framework . . . . . . . . . . . . . . . 33

3.1.1 Scanning Network for Particles . . . . 35

3.1.2 Configuring Particle Sensor Board . . 36

3.1.3 Particle Packet to Particle Event . . . 37

3.2 Mobile Phone Proxy . . . . . . . . . . . . . . 38

3.2.1 Mobile Phone Proxy and Mobile
Phone Communication . . . . . . . . . 39

3.2.2 Event Relaying Process . . . . . . . . 39

3.2.3 User Action Relaying Process . . . . . 40

3.3 iStuff Mobile Smart Phone Applications . . . 42

3.3.1 Background Application . . . . . . . . 42

3.3.2 Foreground Application . . . . . . . . 46

3.4 Visual Programming Support . . . . . . . . . 46

4 Prototyping with iStuff Mobile 49

4.1 Recreating inspiring mobile phone interaction 49

4.1.1 Tilt Scrolling . . . . . . . . . . . . . . . 50

4.1.2 Changing Ringing Profile . . . . . . . 51

4.1.3 Tilt Typing . . . . . . . . . . . . . . . . 52

4.2 Ubiquitous Computing Prototyping Scenarios 53

4.2.1 Multi-Screen Presentation Control . . 54



vi Contents

4.2.2 Keyboard Redirection . . . . . . . . . 55

4.2.3 Speech Text . . . . . . . . . . . . . . . 55

4.2.4 Phone As Accurate Pointing Device . 56

5 Summary and future work 57

5.1 Summary . . . . . . . . . . . . . . . . . . . . . 57

5.2 Future work . . . . . . . . . . . . . . . . . . . 58

A Particle Framework Implementation 61

A.1 Framework class . . . . . . . . . . . . . . . . 62

A.2 Scanner class . . . . . . . . . . . . . . . . . . . 64

A.3 ConfigureDialog class . . . . . . . . . . . . . 65

A.4 SensorConfig class . . . . . . . . . . . . . . . 67

A.5 EventLauncher class . . . . . . . . . . . . . . 68

A.6 ImagePanel class . . . . . . . . . . . . . . . . 69

B iStuff Mobile Proxy Implementation 73

B.1 iStuffMobileProxy class . . . . . . . . . . . . . 77

C iStuff Mobile SmartPhone Application Implemen-
tation 81

C.1 Class CiStuffMobileAppUi . . . . . . . . . . . 83

C.2 Class CiStuffMobileContainer . . . . . . . . . 83

C.3 Class CCodeListener . . . . . . . . . . . . . . 84

C.4 Class CKeyListener . . . . . . . . . . . . . . . 89



Contents vii

C.5 Class CSoundPlayer . . . . . . . . . . . . . . 90

C.6 Class CBTServiceListContainer . . . . . . . . 91

C.7 Class CBTDiscoverer . . . . . . . . . . . . . . 92

Bibliography 95

Index 101





ix

List of Figures

1.1 iStuff Architecture . . . . . . . . . . . . . . . . 3

1.2 iStuff Components . . . . . . . . . . . . . . . 6

1.3 Patch Panel . . . . . . . . . . . . . . . . . . . . 8

1.4 Smart-Its Architecture . . . . . . . . . . . . . 10

1.5 Smart-Its Core and Sensor Board . . . . . . . 11

1.6 Smart-Its X-Bridge . . . . . . . . . . . . . . . 13

1.7 Smart-Its Communication . . . . . . . . . . . 14

2.1 The Phidgets Architecture . . . . . . . . . . . 16

2.2 The Calder Toolkit Architecture . . . . . . . . 19

2.3 The TEA boards . . . . . . . . . . . . . . . . . 21

2.4 The TEA Architecture . . . . . . . . . . . . . . 22

2.5 D.tools Architecture . . . . . . . . . . . . . . . 24

2.6 ContextPhone Architecture . . . . . . . . . . 29

3.1 iStuff Mobile Architecture . . . . . . . . . . . 32

3.2 Particle Framework GUI . . . . . . . . . . . . 34



x List of Figures

3.3 Packet Formats (Scan and Configure Packets) 35

3.4 Particle Packet to Particle Event . . . . . . . . 38

3.5 Event Relaying Process . . . . . . . . . . . . . 40

3.6 User Activity Relaying Process . . . . . . . . 41

3.7 User Interaction with iStuff Mobile Smart
Phone . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Apple’s Quartz Composer GUI . . . . . . . . 47

4.1 Smart-Its Augmented Mobile Phone . . . . . 50

4.2 Tilt Scroll Patch Panel Composition . . . . . . 51

4.3 Profile Change Patch Panel Composition . . 52

4.4 TiltText Patch Panel Composition . . . . . . . 53

4.5 Multi-Screen Presentation Patch Panel Com-
position . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Mobile Phone Text Dictation Patch Panel
Composition . . . . . . . . . . . . . . . . . . . 55

4.7 Accurate Sweep Technique Patch Panel
Composition . . . . . . . . . . . . . . . . . . . 56

A.1 Particle Framework Class Diagram . . . . . . 62

A.2 Particle Framework: Scanning Network For
Particle (Code) . . . . . . . . . . . . . . . . . . 64

A.3 Particle Framework: Response Of HELLO
Packet (Code) . . . . . . . . . . . . . . . . . . 65

A.4 Particle Framework: Configuration Packet
Construction (Code) . . . . . . . . . . . . . . 66



List of Figures xi

A.5 Particle Framework: Transmission of Con-
figuration Packet (Code) . . . . . . . . . . . . 67

A.6 Particle Framework: Receiving Packets from
Configured Particles (Code) . . . . . . . . . . 69

A.7 Particle Framework: Filtering Redundant
Packets (Code) . . . . . . . . . . . . . . . . . . 70

B.1 iStuff Mobile Proxy Class Diagram . . . . . . 74

B.2 iStuff Mobile Proxy: iStuff Mobile Proxy Ini-
tialization (Code) . . . . . . . . . . . . . . . . 75

B.3 iStuff Mobile Proxy: Mobile Phone Key Press
Relaying (Code) . . . . . . . . . . . . . . . . . 76

B.4 iStuff Mobile Proxy: Event Field Value Ex-
traction (Code) . . . . . . . . . . . . . . . . . . 77

B.5 iStuff Mobile Proxy: Int Fields Conversion to
Byte Values (Code) . . . . . . . . . . . . . . . 79

C.1 iStuff Mobile SmartPhone Application Class
Diagram . . . . . . . . . . . . . . . . . . . . . 82

C.2 iStuff Mobile: Sending Application to Back-
ground (Code) . . . . . . . . . . . . . . . . . . 84

C.3 iStuffMobile: Bluetooth station search and
selection (Code) . . . . . . . . . . . . . . . . . 85

C.4 iStuffMobile: Connect to a service (Code) . . 86

C.5 iStuffMobile: Launch External Application
(Code) . . . . . . . . . . . . . . . . . . . . . . 86

C.6 iStuffMobile: Close External Application
(Code) . . . . . . . . . . . . . . . . . . . . . . 87

C.7 iStuffMobile: Foreground Application Key
Simulation (Code) . . . . . . . . . . . . . . . . 88



xii List of Figures

C.8 iStuffMobile: Sending Key to Proxy (Code) . 89

C.9 iStuffMobile: Intercepting Keys (Code) . . . . 90

C.10 iStuffMobile: Adding Port Number and Port
Name to the List (Code) . . . . . . . . . . . . 91

C.11 iStuffMobile: Port Number and Port Name
Extraction (Code) . . . . . . . . . . . . . . . . 92



xiii

List of Tables

3.1 Particle Sensor Numbers . . . . . . . . . . . . 36

3.2 Particle Sensor Sampling Rates . . . . . . . . 37

3.3 Key Type Interpretation . . . . . . . . . . . . 41

3.4 iStuff Mobile Background Application Survey 45

B.1 Command values . . . . . . . . . . . . . . . . 78





xv

Abstract

iStuff Mobile is a rapidly prototyping toolkit which is targeted towards mobile
phone interaction designers. iStuff Mobile helps interaction designers explore
novel interactions including sensor enhanced mobile phone interactions and ubiq-
uitous computing interactions in which mobile phone acts as an input or output
device to the environment. iStuff Mobile enables interaction designers to quickly
prototype and test novel mobile phone interactions without making internal
hardware/software modifications to the handset. iStuff Mobile leverages iStuff
Framework [Ballagas et al., 2003] to provide a sensor network platform (Smart-Its),
a mobile phone software and related patches for Apple Quartz Composer [Apple
Quartz Composer].

This Thesis starts by presenting a comprehensive introduction of iStuff Toolkit and
Smart-Its technology [Beigl et al., 2003b]. It continues by describing Related work
done in this area. The idea of iStuff Mobile is then put forward along with the
architectural description and example interactions prototyped using this toolkit.
Finally the thesis concludes with a notion of future work.





xvii

Acknowledgements

This Master Thesis has been produced by technical and moral support of many
individuals whom I would like to thank. Special thanks go to people mentioned
below.

First of all I would like to thank Prof. Jan Borchers for making an exception
and allowing me to do master thesis at his department because only those students
are selected to do thesis at his department who took a few courses with him
during their studies. Tico Ballagas, my thesis supervisor has been very supportive
throughout my thesis. He was always available for discussions and gave me
time under busy situations where anyone would have excused. Whether it was
programming, documentation or resource allocation Tico was always there to help.
So I thank Tico for everything that he has done to help me during this thesis.

People who supported me every now and then include my friends and col-
leagues. Eugen Yu helped me at places with Java code, Fahad Bin Tariq and
Mohammad Sajjad helped me explore new ideas, Thorsten Kareer provided such a
wonderful template for thesis write up, Junaid Ansari helped me setup the Latex
environment for documentation and Imran Ahmed Khan helped reviewing this
thesis. I particularly got support from Philip at the Teco foruma regarding the
Smart-Its technology.

Last but not least, I would mention my parents and my fiancee Faryal Gul
Memon for morally supporting me during frustrating times, for comforting me
and for being there for me whenever I needed them.

Thank you!

ahttp://forum.teco.edu/

http://forum.teco.edu/




xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://media.informatik.rwth-aachen.de/∼ACCOUNT/thesis/folder/file number.file

http://media.informatik.rwth-aachen.de/~ACCOUNT/thesis/folder/file_number.file




1

Chapter 1

Introduction

“I begin by taking. I shall find scholars later to
demonstrate my perfect right.”

—Frederick (II) the Great

Mobile phones have become a part of daily life around Mobile phones are
packed with
extensive number of
features these days

the globe. Today, people use mobile phones not only for
making/receiving calls but also for taking pictures, lis-
tening music, organizing tasks, sending/receiving emails
etc. More and more features are being packed into mobile
phones.

Introducing sensors and actuators in mobile phones en- New mobile
interactions cost time
and money

ables a variety of new interaction techniques. Interaction
designers need to rapidly produce running prototypes to
test this concept with users. However, hardware limitations
of the mobile phones may hinder the ability to explore these
novel interactions in a cost-effective manner. The number
of iterations in design process of mobile interactions can be
increased by lowering the time and financial cost of proto-
typing, which in turn would increase the quality of the user
interface design [Nielsen, 1993].

iStuff Mobile [Ballagas et al., 2006a] [Ballagas et al., 2006b] iStuff Mobile enables
interaction designers
to design new
interactions on

is a toolkit which facilitates mobile phone interaction de-
signers to prototype new interactions using the mobile
phones that are readily available in the market, saving them



2 1 Introduction

time, cost and effort. iStuff Mobile extends the iStuff toolkit
[Ballagas et al., 2003] to support rapid prototyping of novelreadily available

mobile phones interactions. It allows interaction designers to augment
mobile phone with externally attached hardware such as
Smart-Its [Beigl et al., 2003b] sensor network module. Us-
ing iStuff Mobile, interaction designers can prototype sen-
sor driven mobile phone interactions. Additionally, the
toolkit can be used to prototype ubiquitous computing ap-
plications such as mobile phone interactions with interac-
tive spaces [Pering et al., 2005] or public displays [Ballagas
et al., 2005]. Following are the contributions of the this the-
sis:

• An application that runs as a background service on
the mobile phone to expose critical functions, allow-
ing remote control of the foreground applications on
the phone.

• A new graphical front-end for Smart-Its that simpli-
fies configuration of the sensor nodes and integrates
Smart-Its into iStuff framework through a proxy strat-
egy proxy strategy.

A comprehensive introduction to iStuff toolkit and Smart-
Its technology follows:

1.1 iStuff Toolkit

POST-DESKTOP:
Generally, post-desktop means beyond the desktop.
Specifically, it means interaction with computers when
they are embedded into walls, tables, chairs etc. When
there may be no mouse or keyboard present for interac-
tion. Ubiquitous computing is a subset of post-desktop
computing

Definition:
Post-Desktop

iStuff toolkit allows exploration and design of novel in-
teractions in a multiuser, post-desktop environment where
several applications collaborate with each other



1.1 iStuff Toolkit 3

Figure 1.1: iStuff Architectural Diagram

[Ballagas et al., 2003]. iStuff toolkit is a freeware and could
be downloaded from iStuff Project website1

1.1.1 iStuff Architecture

iStuff toolkit is based on the Event Heap [Johanson and Fox, An Event Heap, iStuff
Components and a
Patch Panel makes
up the iStuff toolkit

2002] which is the center of communication between de-
vices and application in an interactive space. The toolkit
also includes iStuff Components that are physical user in-
put/output devices with wireless communication capabili-
ties, and a Patch Panel [Ballagas et al., 2004] which dynam-
ically maps events from input device to the events required
by output device. Figure 1.1 shows the architecture of iStuff
toolkit.

1http://media.informatik.rwth-aachen.de/istuff/

http://media.informatik.rwth-aachen.de/istuff/


4 1 Introduction

1.1.2 Event Heap

INTERACTIVE WORKSPACE:
An interactive workspace is a localized ubiquitous com-
puting environment where people come together for col-
laboration [Johanson et al., 2002a]

Definition:
Interactive
Workspace

An Event Heap is a coordination model similar to
tuplespaces which allows diverse applications/devices
to collaborate in solving problems in an interactive
workspace.

As explained in [Johanson and Fox, 2002], in a tu-
plespace coordination between all the participants takes
place through a shared space. A tuplespace allows tu-
ples which are collection of ordered type-value fields to be
posted to the the space, or read from the space in a destruc-
tive or a non-destructive manner. A retrieving application
specifies the tuple which it wishes to retrieve from the tu-
plespace through a template tuple. A template contains
precise values of fields to be matched, and wild cards for
fields containing data to be retrieved. Following are fea-
tures of the Event Heap (for details of these feature please
refer to [Johanson and Fox, 2002]):

• Anonymous Communication: Communication be-
tween two applications is automatic as long as they
both understand the same event types.

• Interposability: An intermediary can be used to
transform an event that a source generated to an
event that a receiver expected.

• Snooping: Snooping an event is possible in the tu-
plespace model. Snooping an event does not hinder
the behavior of the receiving application.

• Tuple Sequencing: Events are sequenced in the or-
der they are posted. The receiver will get the earliest
matching event requested.

• Expiration of Tuples: A ”TimeToLive” field is pro-
vided in every event. TTL field specifies how long



1.1 iStuff Toolkit 5

an event will stay in the Event Heap before being de-
stroyed.

• Default Routing Fields: Few default fields are added
to an event by the Event Heap to ensure the correct
routing of events.

• Query Registration: Applications can register to re-
ceive template tuples from the Event Heap. When-
ever a matching event is placed onto Event Heap,
a callback function of the applications registered for
that event is called.

1.1.3 iStuff Components

TRANSCEIVER:
A transceiver in iStuff context, is a part of iStuff Compo-
nent which does transmission (and reception) of data to
(and from) an iStuff Device. See Fig 1.1

Definition:
Transceiver

PROXY:
A proxy in iStuff context, encapsulates the data transmit-
ted from the iStuff Device into events (or extracts data
from events to be transmitted to the iStuff Device). See
Fig 1.1

Definition:
Proxy

iStuff Components are physical devices which are paired to iStuff Components
are physical
input/output devices
with corresponding
transceivers and
proxies

a Transceiver and corresponding Proxy. The Transceiver +
Proxy are in turn connected to the Event Heap. An iStuff
Component must contain both device and a Proxy to con-
nect to the Event Heap although many devices can share
the same Proxy [Ballagas et al., 2003]. iStuff Devices con-
tain simple input/output devices like buttons, sliders and
buzzers, as well as more complex devices like Smart-Its and
mobile phones. Figure 1.2 shows some of the iStuff Com-
ponents.

To make sure that an iStuff Device is independent of wire-
less protocol or technology, the iStuff Proxy encapsulates
the data transmitted from the iStuff Device into events (or



6 1 Introduction

Figure 1.2: Example of iStuff Components [Ballagas et al., 2003]

extracts data from events to be transmitted to the iStuff De-
vice). These events are posted onto (or received from) the
Event Heap.

1.1.4 Event

Event in the iStuff toolkit is a message or tuple which con-
sists of a type field and any number of optional fields in
form of key-value pairs [Ballagas et al., 2003]. These events
are basis of communication between applications and de-
vices. Event Heap is the channel through which events are
transmitted.

1.1.5 Event Communication

The communication between iStuff components and appli-iStuff Components
communicate with
each other through
events which are
transmitted over the
Event Heap

cations takes place through events. An iStuff component
posts events onto the Event Heap and any application can
register to receive these events from the Event Heap. The
registration takes place by specifying event type, and op-
tionally other criteria based on matching of specific fields
[Ballagas et al., 2003].This communication mechanism al-
lows several application and devices running on separate
machines to communicate in an interactive manner.



1.1 iStuff Toolkit 7

An iStuff component may produce events which are spe-
cific to its properties e.g. An ”iMouse” may produce an
event of type NewMousePosition but an application which
would register for such event would become specific to
”iMouse”. A better and more flexible way would be to
introduce a level of abstraction and expect e.g. NewPosi-
tion event at the application end. This way an application
would be able to handle the new position of ”iMouse”, ”iS-
lider”, ”iTouchPanel” etc. Patch Panel would then be used
to dynamically transform an event of type NewMousePosi-
tion into an event of type NewPosition.

1.1.6 Patch Panel

In a ubiquitous computing environment new de-
vices/services may be added frequently which makes
it clear that this environment will be incrementally de-
ployed. The devices, application and services that already
exist in such environment cannot anticipate communi-
cation with every other component they may encounter.
They need to be able to communicate without a prior
knowledge of each other and this communication should
be meaningful to both the components as well as the
user of the system. This phenomenon is known as the
incremental integration.

The Patch Panel [Ballagas et al., 2004] provides a general Patch Panel enables
dynamic mapping of
events

facility for retargeting event flow. Hence, allowing incre-
mental integration of devices into ubiquitous computing
environments which use Event Heap as a communication
space. In the Patch Panel intermediations can be expressed
as simple event transitions or more complex finite state ma-
chines. The Patch Panel works by subscribing to all event
types. On receiving an event which matches a trigger con-
dition, the Patch Panel generates the corresponding output
events and posts them onto the Event Heap. Here we will
consider an example of simple event translation. For a bet-
ter understanding of finite state mechanism for intermedi-
ation refer to [Ballagas et al., 2004].

We will use the same convention as used in [Ballagas et al.,
2004] for describing the mapping. A mapping (trigger →



8 1 Introduction

Put: Dog

Put: 
Button

iButton

iDog 
Controller

Projector 
Controller

Light 
Controller

Get: 
Projector

Get: Light

Get: Dog

Put: 
Projector

Put: Light

Get: 
Button

Event Heap

Patch Panel

Figure 1.3: This figure shows an example of Patch Panel mapping. The iButton
in this figure represents both the button and its proxy. Light Controller, Projector
Controller and iDog Controller are proxies to Light, Projector and iDog respectively

output events) is the basic functionality provided by the
Patch Panel. Lets say e.g. we have an ”iButton” which
whenever pressed generates an event of type Button with
string-valued field id, a ”Light Controller” which responds
to an event of type Light containing an integer-valued field
brightness with intensity values between 0 and 10, a
”Projector Controller” which responds to an event of type
Projector with boolean-valued field powerOn, and an ”iDog
Controller” which responds to an event of type Dog with a
string valued field action. We would like to configure the
Patch Panel in such a manner that whenever the ”iButton”
is pressed, the light goes on, the projector is turned on and
the iDog barks. The following mappings can be specified
in the Patch Panel:



1.2 Smart-Its Technology 9

Button(id = blue) → Light(brightness =
10),Projector(powerOn = true),Dog(action
= bark)

Now whenever the iButton is pressed, the following course
of actions take place: (Figure 1.3 depicts the idea)

• An event Button(id = blue) is posted onto the
Event Heap.

• None of the ”Light Controller”, ”Projector Con-
troller” and ”iDog Controller” recognizes the Button
event but the Patch Panel recognizes it as a trigger for
the Button mapping.

• The mapping shown above fires and the Patch Panel
posts events Lights(brightness = 10), Projec-
tor(powerOn = true) and iDog(action = bark)
onto the Event Heap.

• The ”Light Controller” recognizes the Light event and
turns on the Light with full intensity, ”Projector Con-
troller” recognizes the Projector event and turns the
projector on and the ”iDog Controller” recognizes
Dog event and makes the iDog bark.

The example translation shown above is a simple one.
Patch Panel allows more complex event translations, in
which for example, the output event values may be derived
through some mathematical calculations or conditions over
input event values.

1.2 Smart-Its Technology

Smart-Its also knows as particle computers are small scale Smart-Its are small
scale embedded
systems with basic
sensing, processing
and actuating
capabilities

low powered embedded systems. Attaching Smart-Its to
every day objects adds basic computation, sensing, com-
munication and actuating mechanism to that object [Beigl
et al., 2003b]. All this functionality has been combined to



10 1 Introduction

Figure 1.4: This Figure has been reproduced from the original in [Beigl et al., 2003b].
The figure depicts architecture of the Smart-Its platform

produce Smart-Its boards that can be used without any fur-
ther infrastructure requirements. Just like paper Post-Its
add information to some object, Smart-Its add basic com-
puting, sensing, communication and actuating capabilities
to an object.

Smart-Its technology is based upon two independent cir-A Smart-It is
composed of two cuit boards, namely a Core board and a Sensor board. The

Smart-Its core board is mainly responsible for communica-independent circuit
boards tion and processing of data while the sensor board consists

of several sensors to gather the contextual information.

1.2.1 Smart-Its Architecture

As described in [Beigl et al., 2003b] Smart-Its architec-
ture is driven by separation of communication, processing
and filtering of data from processing and storage of sen-
sor/actuator related information. To facilitate this func-
tional separation, two independent hardware boards have
been produced. Each of these hardware boards have their
own processor, memory as well as system software.



1.2 Smart-Its Technology 11

Figure 1.5: Left side shows Smart-Its core board and the right side shows Smart-Its
Sensor Board

The functional separation in the Smart-Its architecture adds
flexibility to the architecture by allowing developers to re- Smart-Its

architecture allows
replacement of the
sensor board with
more sophisticated
boards

place sensor boards with more sophisticated boards. These
boards could be third party produced boards or ones pro-
duced by the developers themselves. The only requirement
for such boards is to have a compatible interfacing module
with the Smart-Its core board.

Figure 1.4 depicts the architecture of the Smart-Its platform. zero to sixteen
sensor boards can
be attached to a
Smart-It core board

A typical Smart-Its is composed of one core board which
is an RF board for high-level wireless communication, and
zero to a maximum of 16 sensor boards. The sensor boards
are connected to the RF board through serial lines for con-
trol and data flow. The core board as well as the sensor
boards have their own processor, power supply, program
and data memory.

1.2.2 Smart-Its Core and Sensor Boards

Left side of the Figure 1.5 shows a Smart-Its core board
which is also known as the Particle Computer. The core
board is the center of communication. The protocol used



12 1 Introduction

for communication is AwareCon, details on how AwareCon
works could be found in [Beigl et al., 2003a]. The Smart-Its
hardware is commercially available at Particle Website2 .
The hardware details of the core board including the list of
complete features could be found at the Teco website3

Smart-Its sensor board also known as the Spart sensorThe Spart Smart-Its
Spart sensor board board consists or several sensors including: acceleration
sensor board is
equipped with
several sensors for
gathering contextual
information

sensors (X/Y/Z axis), light sensor, temperature sensor,
force sensor, ambient light sensor and volume sensor. Ad-
ditional sensors can also be connected to the sensor board
using connectors. The hardware details of the Spart sensor

Spart sensor board
board including list of complete features could be found at
the Teco website4

1.2.3 Smart-Its Communication

On a basic level Smart-Its communicate with one another
as soon as they are in range of each other. No further in-
frastructure, hardware or configuration is needed. Further,
Smart-Its can communicate with the environment when
they come near an ”X-Bridge”. X-Bridge runs over ether-X-Bridge allows

Smart-Its to connect
to any internet
enabled device on a
LAN

net and allows Smart-Its to connect to any internet enabled
device. The basic functionality of X-Bridge is to enable de-
vices (e.g. PCs, PDAs) in the network to connect to Smart-
Its and receive sensor data from it. Smart-Its can also access
an internet service using an X-Bridge (Shown in Figure 1.6).

Communication takes place between Smart-Its and X-
Bridge in the following manner:

• When X-Bridge receives a packet from a particle com-
puter, it removes the RF headers from the packet,
adds UDP headers to the packet and forwards it to
the Ethernet network.

• When X-Bridge receives a packet from Ethernet net-
work, it removes the UDP header from the packet,

2http://www.particle-computer.de/
3http://particle.teco.edu/documentation/content/particle.html
4http://particle.teco.edu/devices/index.html

http://www.particle-computer.de/
http://particle.teco.edu/documentation/content/particle.html
http://particle.teco.edu/devices/index.html


1.2 Smart-Its Technology 13

Figure 1.6: A Smart-Its X-Bridge

adds RF headers to the packet and forwads it to the
destined particle computer.

• While forwarding packets from a particle computer to
the network, X-Bridge adds the location information
to the packets so that applications running on the net-
work can locate particles.

Figure 1.7 shows how several particles communicate in a
networked environment. The figure indicates that Smart-
Its Communicate with an X-Bridge which is running over
LAN, by sending RF packets containing the sensor informa-
tion. The X-Bridge then converts the RF packets to UDP/IP
packets and transmits them to the laptop which is running
over the same network.



14 1 Introduction

Figure 1.7: This Figure depicts Smart-Its Communication Network



15

Chapter 2

Related work

“The secret of success is to know something
nobody else knows.”

—Aristotle Onassis (1906-1975)

Several toolkits have been introduced in the recent years
that help prototype interactions with physical devices. This
section gives a brief introduction to these toolkits and dis-
cusses their similarities/differences with the iStuff Mobile
toolkit.

2.1 Phidgets

Physical widgets or more popularly known as Phidgets Phidgets is a
physical device
prototyping toolkit
which comes in with
several hardware
and software
components

package input and output devices in a manner that their
hardware level details are hidden from the end users. How-
ever, the functionality of these devices is made available
through a well-defined API. Phidgets also provide a soft-
ware connection manager to determine the connectivity
of devices, a simulation environment and an optional on-
screen component which helps interact with the devices
[Greenberg and Fitchett, 2001].



16 2 Related work

Computer SoftwareThe Physical Device

The Wire Protocol

Physical Interface

Physical Designer

Software Interface

Programmer

Primitive Device 
Components

End User End User

Microcontroller-based 
circuit board

Communication Layer
Communication Layer

Phidgets Manager

Phidget-specific COM 
Object

ActiveX control

Figure 2.1: The Phidgets Architecture: This Figure has been reproduced from the
original in [Greenberg and Fitchett, 2001]

2.1.1 Phidgets Architecture

Phidgets architecture is driven by several hardware and
software components. Following is a short description of
these components. For further details refer to [Greenberg
and Fitchett, 2001]

The Physical Device: On the left side of Figure 2.1, one canPhysical devices in
Phidgets architecture
include several I/O
components and a
communication
network

see the physical device in the Phidgets architecture. The
physical device includes different input/output compo-
nents (e.g. buttons, sensors, motors etc), a micro-controller
based circuit board and a communication layer. A Physical
device is used by the interaction designer to create a phys-
ical interface which would be handed over to the end user.
The communication layer is responsible for communicating
with the host computer. The communication is based of a
USB connection which is handled by the micro-controller.



2.1 Phidgets 17

The Wire Protocol: For a physical device to talk to a host
computer the protocol used is known as the Wire Protocol
(See Figure 2.1). The wire protocol is not visible to the pro- The wire protocol

initiates the
communication
between a physical
devices and a
computer in Phidgets
architecture

grammers. It initiates the communication at a lower level.
A software written for both micro-controller and the host
computer (Windows 2000) is used to communicate using
the wire protocol over a USB connection. Whenever a de-
vice is connected to the host PC, it appears as a USB device
to the Windows 2000 and the communication is initiated.

The PhidgetManager: The PhidgetManager (See right side The PhidgetManager
is a COM object
which handles device
connectivity

of Figure 2.1) is a COM object and this COM object gener-
ates events whenever a device is connected to, or discon-
nected from the computer. The PhidgetManager provides
an API to end programmers through which they can detect
all the devices attached to the computer.

Phidget-specific COM objects: Whenever a device is at- Phidget-specific
COM objects provide
access to individual
devices and their
properties

tached to the computer, the PhidgetManager creates a
Phidget-specific COM object corresponding to that device.
This COM object provides complete access to the physi-
cal device. The properties of the device can be accessed
and changed at the runtime using the API provided by the
Phidget-specific COM objects.

Phidget ActiveX controls: Phidget ActiveX controls are Phidget ActiveX
controls provide
visual control of
hardware
components

built on top of phidget-specific COM objects. These Ac-
tiveX controls provide COM objects with a visual interface.
Programmers can use these ActiveX controls to simulate
the physical devices, either they are connected or discon-
nected. They have a choice of using either these ActiveX
controls or the phidget-specific COM objects directly.

2.1.2 Phidgets vs. iStuff Mobile

Although Phidgets enable prototyping of physical user in- No explicit support
for mobile phones in
Phidgets

terfaces, they do not provide explicit support for prototyp-
ing mobile phone interactions. A mobile phone is not avail-
able as a Phidget. However, iStuff Mobile enables prototyp-
ing of mobile phone interactions. The flexible architecture
of iStuff framework allows phidgets to be used along with
the iStuff Mobile to prototype more sophisticated mobile



18 2 Related work

phone interactions.

Most of the Phidgets prototyping solutions are wired.Phidget devices are
mostly wired unlike
iStuff Mobile’s
complete wireless
solution

However, iStuff Mobile provides a complete wireless solu-
tion. iStuff Mobile relies on Smart-Its [Beigl et al., 2003b] to
provide a low-powered sensor board which communicates
through a wireless network. This sensor board along with
the Smart-It could be directly taped to the mobile phone.
The mobile phone itself communicates with the proxy over
bluetooth.

2.2 Calder

Calder is a hardware toolkit which is targeted towards in-Calder uses small
wired/wireless
components to
prototype physical
devices

teraction designers to help them in early design phases.
The Calder toolkit enables prototyping of physical devices
using small input and output components. These compo-
nents can be either wired or wireless and are capable of
communication with a computer [Lee et al., 2004].

2.2.1 Calder Architecture

This section summarizes the details of the architectural
components of the Calder toolkit. For further details, refer
to [Lee et al., 2004].

Wireless Components: The Calder toolkit provides severalCalder wireless
components
communicate the PC
through a wired
uplink transceiver

wireless components which communicate with a computer
through a wired uplink transceiver (See Figure 2.2). The
wireless components communicate with the transceiver us-
ing conventional radio technology and the transceiver in
turn is connected to the PC through a USB connection.
These components are provided with a battery source and
a microprocessor. To support attaching of the wireless com-
ponents to a foam, two push-pins are provided at the back
of each component.

Wired Components: The wired components is the CalderCalder wired
components toolkit include a general purpose input component and a



2.2 Calder 19

Figure 2.2: The Calder Toolkit Architecture: This Figure has been reproduced from
the original in [Lee et al., 2004]

runtime configurable I/O breadboard. Using these com- communicate with
PC through a USB
connection

ponents several input/output devices can be connected
through a short cable. The wired components in the Calder
toolkit communicate with the PC through a USB connec-
tion which is also the source of power for them (See Figure
2.2). These components are also provided with a micropro-
cessor.

Global Master (Computer): The computer in Calder toolkit
architecture provides the processing power and a program-
ming infrastructure. All the wired and wireless compo-
nents are connected to the Global Master through a USB
connection.

Programming Infrastructure: The Calder toolkit employs Wirless and wired
components in
Calder can be
manipulated through
GUI objects on PC

the same strategy as Phidgets for providing programming
infrastructure. Each of the wireless or wired component in
the Calder architecture is represented as an object inside a
GUI system on PC. Change in the object state will invoke a
change in the physical component and vice versa. Actions
of physical devices which represent an input are fed into
the computer as events. The physical devices can be ac-
cessed and manipulated using C access routines which are
provided with the toolkit.



20 2 Related work

2.2.2 Calder vs. iStuff Mobile

Prototyping mobile phone interactions is not possible usingCalder does not
provide support for
mobile phones

the Calder toolkit because it does not provide support for
introducing a mobile phone as a Calder component. How-
ever, iStuff Mobile has been designed specifically for pro-
totyping interactions using the mobile phone as input or
output device to the environment.

To use the Calder toolkit a prior knowledge of object ori-Calder toolkit is
targeted towards
programmer rather
than designers

ented programming in C++ is required in order to access
the Calder components as objects in a GUI system. How-
ever, an interaction designer may not possess this knowl-
edge. iStuff Mobile by extending the iStuff toolkit provides
the Patch Panel GUI which eliminated the necessity of Ob-
ject Oriented programming knowledge.

2.3 The TEA project

The TEA (Technology for Enabling Awareness) Project is anTEA project involved
development of
sensor boards to
retrieve contextual
information

effort to develop add-on components for context retrieval
in mobile phones, communication devices, PDAs, laptops
and GSMS. The TEA project developed two components:
TEA-I board and the TEA-II board (See Figure 2.3). The
TEA-I board is designed to communicate with a computer
over a serial line. The board itself consists of 8 sensors to
gather the contextual information. The TEA-II board has
been developed so that it can fit into the large battery casing
of the Nokia 6110-6150 series phones. The board consists
of 8 sensors and two communication slots. One commu-
nication slot is a serial port to enable communication with
PDAs and Computers and the other slot is a Nokia port for
communication with Nokia 6110-6150 series phones. For
further information on TEA boards, refer to [Technology
for Enabling Awareness].



2.3 The TEA project 21

Figure 2.3: The TEA boards: Left side shows TEA-I board and the right side shows
TEA-II board with the Nokia mobile phone (These images have been taken from
[Technology for Enabling Awareness])

2.3.1 TEA Architecture

The TEA architecture is composed of four layers: sensors,
cues, contexts and an application layer. The sensors are im-
plemented as hardware while other layers are implemented
as software layers [Schmidt et al., 1999]. Figure 2.4 depicts
the TEA Architecture. A short description of layers in TEA
architecture follows:

Sensors: Sensors in TEA Architecture are divided into two TEA architecture
divides sensors into
physical and logical
sensors

categories: Physical sensors and logical sensors. Physical
sensors are hardware components that measure the physi-
cal parameters in the environment. Logical sensors are in-
formation gathered from the host e.g. current time, IMSI
number etc.

Cues: A Cue in TEA architecture is function that that takes Cues provide
abstraction of
physical and logical
sensors

values of a single sensor up to a certain time as input and
provides a symbolic or sub-symbolic output. Cue itself is
an abstraction of physical and logical sensors. For physical
sensors, cues also solve the problem of calibration [Schmidt
et al., 1999].

Contexts: The context in TEA architecture is determined Contexts depict
current situation of a
user/device

by the available cues. Context depict the current situation
of the user/device on an abstract level. The context in TEA
is derived from a set of two-dimensional vectors. Each vec-



22 2 Related work

Applications and Scripting

Cue
1,1

Cue
1,2

Cue
1,i

Sensor 1

Cue
2,1

Cue
2,2

Cue
2,j

Sensor 2

Cue
n,1

Cue
n,2

Cue
n,k

Sensor n

... ... ....
....

...

Context

Figure 2.4: The TEA Architecture: This Figure has been reproduced from the origi-
nal in [Schmidt et al., 1999]

tor consists of a symbolic value and a number determining
the probability that the user/device is currently in this sit-
uation.

Application and Scripting: The scripting primitives are of-Scripting primitives
provide access to
contextual data
through
programming

fered to programmers in order to access the contextual in-
formation in application. Basic actions can be performed
while entering a context, leaving a context and while in a
certain context [Schmidt et al., 1999].

2.3.2 TEA vs. iStuff Mobile

The TEA project provides a limited amount of new inter-TEA project only
allows prototyping of
interactions using
sensors

actions i.e. An interaction designer can use the TEA board
only to prototype interactions which involve use of sensor
data. In iStuff Mobile on the other hand, mobile phone
can also be used as an input device to a ubiquitous com-
puting environment. iStuff Mobile introduces a lose cou-
pling between the sensor values and the application logic
by allowing the relationship between the two to be modi-
fied at runtime. However, in order to modify the mapping
of sensor values to application logic in TEA architecture,
mobile phone application needs to be recompiled and re-
downloaded.



2.4 D.tools 23

The TEA-I board is large sensor board which communicates TEA-I board cannot
be attached to a
mobile phone

with the computer over a serial line. The size of the board
makes it hard to attach it to a mobile phone. iStuff Mobile
provides a mechanism to use Smart-Its [Beigl et al., 2003b]
sensor board which very small in size for accessing the con-
textual information. In iStuff Mobile the computer com-
municates with the mobile phone over a bluetooth wireless
connection.

The TEA-II board has been developed to fit with into iStuff Mobile covers
a wider range of
mobile phones than
the TEA-II board

the large casing of Nokia 6110-6150 series mobile phones.
However, iStuff Mobile covers Symbian series 60 [Symbian
Series 60] mobile phones which is a wider range. The archi-
tecture of iStuff Mobile allows the toolkit to be theoretically
used for all mobile phones.

Finally, the TEA project is a complete wired solution while
the iStuff Mobile is a complete wireless solution to proto-
typing mobile phone user interaction.

2.4 D.tools

D.tools is a prototyping toolkit that enables rapid proto- D.tools comes with
several I/O devices
and a visually
authoring
environment for
prototyping physical
interactions

typing of information appliances using the concept of in-
tegrated interaction. D.tools comes with several I/O hard-
ware components that can be attached to a computer, and
a PC-based visually authoring environment that works on
the concept of state-charts. States in the visual authoring
environment represent the device output while state tran-
sitions are fired by a physical input. The d.tools does the
rapid mapping of graphical widgets to the physical I/O
components [Klemmer et al., 2005].

2.4.1 D.tools Architecture

D.tools is built up of a software and a hardware layer. Fig-
ure 2.5 depicts the architecture of d.tools. A brief discussion
of the d.tools architecture follows. For further details refer
to [Klemmer et al., 2005]



24 2 Related work

I/O Device

I2C Communication

Master Controller
I2C Communication

Serial Communication

Computer
Device Designer

Statechart Designer
Hardware Events

OpenSourceControl 
(OCS) messages

I/O Device

I/O Device

Figure 2.5: D.tools Architectural Diagram

Hardware Layer: Each hardware component in d.tools ar-D.tools hardware
components are
composed of a
micro-controller

chitecture consists of a micro-controller and a networking
module to communicate over an I2C bus. A hardware
component connects to a master controller board which
co-ordinates the communication between the componentand a communication

module and the PC. The master controller transforms the hardware
events into OpenSourceControl (OCS) messages. The con-
troller itself is connected to the PC through a serial line or a
USB connection using virtual serial port driver.

Software Layer: The d.tools visual authoring environmentD.tools provide a
device designer and
a statechard
designer on the
software level

consists of two main components: A device designer and
a statechart designer. The visual authoring environment it-
self has been implemented as a plug-in for JAVA Eclipse
IDE.

The Device Designer in the visual authoring tool allows de-
signers to lay down a representation of the appliance they
are prototyping. It allows arrangement and resizing of in-
put/output components.

The Statechart Designer enables behavior prototyping of
the appliance by creating interaction graphs. States in a
startchart describe the values on the outputs at a particu-
lar instance in time while transitions represent control flow



2.5 Teleo 25

from one state to another.

2.4.2 D.tools vs iStuff Mobile

D.tools also provides a wired solution. iStuff Mobile on the D.tools is a wired
solution unlike
complete wireless
solution of iStuff
Mobile

other hand is a complete wireless solution. The wireless
factor is important when dealing with physical sensors be-
cause it involves movement of the device in order to test it
under different circumstances.

Designing new mobile phone interactions with d.tools iStuff Mobile uses
existing mobile
phones to prototype
new interactions
unlike d.tools

would involve developing a physical mobile phone proto-
type with all the hardware components. However, iStuff
Mobile allows the use of existing mobile phones for proto-
typing new interactions.

The use of real mobile phones makes iStuff Mobile less D.tools allows
localized interactions
unlike iStuff Mobile
which allows
distributed
interactions

flexible than d.tools for experimentation with form factor,
but the scale of the prototypes is more realisitic. In addi-
tion, real devices afford more sophisticated UI design us-
ing the Nokia Series 60 [Nokia Series 60] software devel-
opment kit (SDK) or Macromedia Flash Lite [Macromedia
Flash Lite]. The iStuff graphical programming environ-
ment is not restricted to state machines, although the iStuff
Framework does allow them 1.1.6—“Patch Panel”. Finally,
d.tools focuses on localized interactions, while iStuff Mo-
bile also supports distributed interactions in ubicomp envi-
ronments.

2.5 Teleo

Teleo is a commercial rapidly prototyping toolkit devel-
oped by MakingThings [Teleo].

2.5.1 Teleo Architecture

Teleo Architecture is less complex one than the ones de-
scribed above. None the less, the architecture is built up



26 2 Related work

of a hardware and a software layer.

Hardware Layer: Teleo comes with a number of I/O hard-Teleo hardware
ware components which can be connected to a computerconnects to PC

through USB using a normal USB connection.

Software Layer: The Teleo hardware components con-Teleo hardware can
be accessed from
PC through
programming
languages

nected to a computer can be accessed and programmed
using a number of programming languages, mentioned
specifically C++ and Macromedia Flash (MX 2004 and Ac-
tion Script 2.0) [Macromedia Flash].

2.5.2 Teleo vs. iStuff Mobile

Teleo toolkit for rapidly prototyping physical UIs is tar-Teleo is targeted
towards
programmers

geted towards programmers rather then designers. A de-
signer may not possess the programming knowledge of
C++. iStuff Mobile on the other hand requires almost no
programming knowledge to provide prototyping solution
for mobile phones.

Like most of the other toolkits Teleo uses wired connection.Teleo is a wired
solution Further, teleo does not support mobile phone interaction

design.

2.6 CCC Cybelius Maestro

CCC Cybelius Maestro is a commercial product devel-
oped by Cybelius that support design, simulation and code
generation for telecommunication and electronic products
[CCC Cybelius Maestro].

2.6.1 CCC Cybelius Maestro Architecture

CCC Cybelius Maestro is Software Prototyping toolkitCCC Cybelius
Maestro is a software
prototyping toolkit

which supports all major operating systems. It is an open
architecture toolkit which allows prototyping, simulation



2.7 ContextPhone 27

and testing of products. The architecture is realized by a
Connectivity Framework and a Plug-in Tool Framework.
For further details refer to [CCC Cybelius Maestro].

Connectivity Framework: Connectivity Framework in
CCC Cybelius Maestro architecture provides interfaces for
integrating external tools, simulation models, software and
hardware into the CCC Cybelius Maestro simulation envi-
ronment.

Plug-in Tool Framework: Plug-in Tool Framework allows
designers to build and add new tool components dynami-
cally into the CCC Cybelius Maestro environment.

2.6.2 CCC Cybelius Maestro vs. iStuff Mobile

CCC Cybelius Maestro is a Software Simulation environ- CCC Cybelius
Maestro allows
simulation of mobile
phone interactions.
However, iStuff
Mobile prototypes
interactions on a real
mobile phone

ment which enables designers to prototype physical de-
vices and simulate them in a software environment. CCC
Cybelius Maestro also strongly supports simulation of mo-
bile phone interaction but that is also limited in a software
environment. iStuff Mobile however enables designers to
prototype interactions on a real mobile phone which makes
it more realistic for use. This factor of the iStuff Mobile is
most important one because designers cannot get that real-
istic feel unless the simulation occurs on a real device.

The composition of hardware and software layer allows
iStuff Mobile to enable exploration of physical interactions
and interaction in an interactive space unlike CCC Cybelius
Maestro.

2.7 ContextPhone

ContextPhone is a software platform that enables develop- ContextPhone allows
developers to use
contextual
information in
applications that are

ers to incorporate contextual information into their appli-
cation when developing for Symbian series 60 [Symbian
Series 60] mobile phones. ContextPhone provides four in-
terconnected module as a set of open source C++ libraries



28 2 Related work

which can be used by the developers to extract contextualdeveloped for smart
phones information from the mobile phone. The ContextPhone

platform runs on off-the-shelf mobile phones using Sym-
bian OS and Nokia series 60 smart phones [Raento et al.,
2005].

2.7.1 ContextPhone Architecture

ContextPhone architecture is driven by four interconnectedContextPhone
architecture
comprises of four
inter-connected
components.

modules namely: Sensors, Communications, Customizable
applications and System services. Figure 2.6 shows the ar-
chitecture of the ContextPhone. A brief description of the
four architectural modules follows. For further details refer
to [Raento et al., 2005].

Sensors: ContextPhone uses internal sensors to extract con-ContextPhone
supports four types
of logical sensors

text of the mobile phone. This sensor data can then be
stored, processed or transferred through the communica-
tion channel. The four kind of sensors that ContextPhone
supports are:

• Location, including GSM cell identifier and GPS via
Bluetooth GPS receiver.

• User interaction, including active applications,
idel/active status, alarm profile, charger status and
media capture.

• Communication behavior, including calls and call at-
tempts, call recording and sent/received SMS.

• Physical environment, including surrounding Blue-
tooth devices, Bluetooth network availability and op-
tical marker recognition.

Communications: ContextPhone platform supports bothContextPhone
supports local (IR
and BT) and
wide-area (GSM and
GPS)
communications

local and wide-area communication. Infrared and Blue-
tooth is used for local communication while GSM and
GPRS is used for wide-area communication. For gather-
ing data, ContextPhone uploads data files automatically in
the background using HTTP POST method. Any service



2.7 ContextPhone 29

ContextMediaContextLogger

ContextContacts

Customizable 
Applications

Sensors System Services

Communication

Media Battery 
Level

Optical 
Markers

D
evice Inquiry

Serial

H
TTP

Jabber

N
etw

ork Locationing

Person-to-Person C
om

m

B
ase sation handover

GPSNearby 
Devices

Background 
File Upload

Media 
NotificationPresence

Automatic 
Startup

Status 
Display

Error Log 
& Recovery

Active 
Application

User 
Activity

Cellular 
Location

SMS MMS Calls

Symantic 
Location

Label 
Location

GPRSBluetooth

C
am

era

B
attery

Sound R
ecorder

A
pplications

Phone 
Resources

Figure 2.6: ContentPhone Architectural Diagram: This Figure has been reproduced
from original in [Raento et al., 2005]

which uses messaging can be incorporated by developers
since ContextPhone uses standard SMS/MMS messaging.

Customizable Applications: Customizable application
have been developed using ContextPhone platform. De-
velopers can use these applications which are typically cus-
tomizable versions of built-in Series 60 Contacts and Re-
cent Calls applications to add new features to person-to-
person communication.

System Services: To support robustness, ContextPhone ContextPhone
provides several
system services

services add a feature that if a crash occurs, services and
applications are restarted by a watchdog process. Context-



30 2 Related work

Phone components also support disconnected execution,
queuing of operations, and storing of latest network in-
formation. The ContextPhone Architecture works on pub-
lish/subcribe model, in which components can publish or
subscribe for context-events.

2.7.2 ContextPhone vs. iStuff Mobile

The targeted users domains of ContextPhone and iStuffContextPhone is
targeted towards
developers, however
iStuff Mobile is
targeted towards
designers

Mobile are clearly different. It is apparent that Context-
Phone is targeted towards smart phone application devel-
opers, iStuff Mobile on the other hand targets smart phone
interaction designers. Further, iStuff Mobile has a con-
crete mechanism to redirect the contextual information of
the mobile phone to a ubiquitous computing environment.
No such concrete infrastructure is provided by the Context-
Phone platform.

iStuff Mobile provides an interactive prototyping environ-iStuff Mobile is an
interactive
prototyping toolkit

ment to a designer in which the changes can be made to
the mobile phone application behavior without the cum-
bersome compiling + download cycle. However, when us-
ing ContectPhone, changes in application behavior require
re-compile and re-download of the mobile phone applica-
tion.

ContextPhone focuses on using logical sensors e.g. loca-
tion, user interaction etc. iStuff Mobile however enables
designers to add additional physical sensors to gather con-
textual information and react to it.



31

Chapter 3

iStuff Mobile
Architecture

“Each problem that I solved became a rule which
served afterwards to solve other problems”

—Rene Descartes (1596-1650), ”Discours de la
Methode”

iStuff Mobile enables interaction designers to prototype in- iStuff Mobile has
been designed as
compound
architecture that
allows designers to
prototype
interactions which
may be beyond the
hardware capabilities
of a mobile phone

teractions using mobile phones. These interactions may
be beyond the hardware capabilities of available mobile
phones. iStuff Mobile has been designed as a compound
prototype architecture [Abowd et al., 2005] in which part of
the software is distributed across separate computers. Fig-
ure 3.1 depicts the iStuff Mobile architecture. iStuff Mobile
allows an interaction designer to augment mobile phone
with external physical sensors (particle sensor module) that
post sensor data onto the Event Heap 1.1.2—“Event Heap”.
This sensor data can be interpreted at the Patch Panel
1.1.6—“Patch Panel” level and high-level commands can
be sent to the mobile phone over Bluetooth serial connec-
tion. One might argue that a direct communication chan- Direct

communication b/w
sensors and mobile
phone would
eliminate the
advantages gained

nel between sensors and the mobile phone (e.g. through
Bluetooth) would be more efficient. However, this would
eliminate the possibility of dynamic configuration of the re-
lationship between user activity and application feedback
using the Patch Panel. When using iStuff Mobile, the delay



32 3 iStuff Mobile Architecture

..

..
..

..

..
..

..
..

Bluetooth 
Communication

Wireless 
Communication

Event Heap

Particle + 
Sensor Board

Particle 
Framework

Particle
Packets

Patch Panel

Particle
Event

iStuffMobile 
Event

Mobile Phone 
Proxy

User

Smart Phone

Foreground 
Application

Background 
Application 

(iStuff Mobile)

X-Bridge

Quartz 
Composer

Particle
Event

iStuffMobile 
Event

Figure 3.1: iStuff Mobile Architecture: An illustration of the iStuff Mobile architec-
ture showing the Smart-Its particle framework proxy and the mobile phone proxy.
The Event Heap supports publish/subscribe event communication. The Patch
Panel intermediates between incompatible publishers and subscribers by translat-
ing events. This diagram shows only the Event Heap clients directly relevant to the
iStuff Mobile architecture, but many other clients and proxies may be connected
supporting distributed ubicomp interactions.

between the user action and application feedback is on thefrom Patch Panel
order of 10-29 ms which should not be a big performance
concern.

The components in the iStuff Mobile architecture can beCommunication
medium between
components is

distributed across a room. These components use Event
Heap infrastructure to communicate with each other. Since
Smart-Its and mobile phone are not designed to commu-Event Heap in iStuff

Mobile architecture nicate with the Event Heap, a proxy strategy is employed
1.1.3—“iStuff Components”.

As described in 1—“Introduction” iStuff Mobile extends
the iStuff toolkit. This extension takes place in three im-
portant ways:

1. Support to use Smart-Its sensor network module
is provided using the proxy strategy. This Proxy



3.1 Particle Framework 33

(known as the Particle Framework) provides a GUI
which allows configuration of sensors, filtering of
sensor data and posting of sensor data onto the Event
Heap.

2. A mobile phone application for Symbian Series 60
[Symbian Series 60] phones is provided. This appli-
cation performs some system functions. It also allows
designer to communicate with any foreground appli-
cation running on the mobile phone.

3. A visual front-end is provided to rapidly specify
Patch Panel mappings using Apple’s Quartz Com-
poser visual programming environment [Reiners,
2006].

iStuff Mobile is distributed under the Open Source Artistic iStuff Mobile is open
source and the
complete code could
be downloaded

License [OPI Artistic License]. The complete source code
with documentation can be checked out through SVN from
iStuff Mobile Developers Site1 .

3.1 Particle Framework

Sensor network platforms have been proven to be valuable iStuff Mobile
supports Smart-Its
for prototyping
sensor based
interactions

tools for rapid prototyping scenarios [Gellersen et al., 2004].
Typical prototyping scenarios using sensor enhanced in-
teractions require the sensors to be small size, cheaper
and widely available. For iStuff Mobile we decided to
support Smart-Its (See 1.2—“Smart-Its Technology”) sensor
network module because of following features:

• Small Size: A Smart-It is typically 45x27 mm in size.

• Wireless Communication: Smart-Its use wireless
communication with up to 125kbit/sec bandwidth.

• Easily Rechargeable: Smart-Its use typical AAA bat-
teries for power and are therefor easy to charge.

1http://developer.berlios.de/svn/?group id=3259

http://developer.berlios.de/svn/?group_id=3259


34 3 iStuff Mobile Architecture

Figure 3.2: Left side of this figure shows the cross-platform GUI that allows for the
discovery of and configuration of Smart-Its modules. By selecting ”Start Frame-
work” the user starts the proxy service that posts events to the Event Heap. Right
side of this figure shows a subscreen of the interface on the left that allows users to
configure the active sensors and their sampling rates.

• Software Support: Smart-Its come in with APIs for
C/C++ and Java to establish communication between
a computer and the sensor network module.

• Ease of Use: Smart-Its provide a RPC (Remote Pro-
cedural Call) interface to allow reconfiguration of
sensors without modifying the code on the particle
board.

iStuffMobile makes use of these features to provide a cross-The Particle
Framework allows
scanning of particles,
reception and
posting of sensor
data onto the Event
Heap

platform GUI known as the Particle Framework (See Figure
3.2) which enables scanning of particles in the network,
configuration of sensors, reception of sensor data and post-
ing of sensor data onto the Event Heap. Each Smart-It
comes with an array of sensors (See Section 1.2.2—“Smart-
Its Core and Sensor Boards”). Each of these sensors can be
activated or deactivated over the air. Particle framework
GUI allows a designer to enable/disable appropriate sen-
sors to work with iStuff Mobile in a particular prototyping
scenario. Implementation level details of particle frame-



3.1 Particle Framework 35

Particle Packet

Tuple 1
--------
Tuple Type : acm
Tuple Bytes:

Tuple 2
--------
Tuple Type: che
Tuple Bytes: 255 255 
255 255 255 255 255 
255

Particle Packet

Tuple 1
--------
Tuple Type : aps
Tuple Bytes:

Tuple 2
--------
Tuple Type: crs
Tuple Bytes: 0 1 1 0 4 3

Network 
Scanning Packet

Sensor 
Configuration Packet

Logical Group:

1st byte denoting 
sensor number

2nd byte denoting 
sampling number

Figure 3.3: Left side of this figure shows a particle packet used for scanning net-
work for particles. Right side of this figure shows a particle packet used for config-
uring sensor module on particle

work have been discussed in Section A—“Particle Frame-
work Implementation”.

iStuff Mobile has been designed in such a manner that
Smart-Its sensor network platform can be replaced by any iStuff Mobile

architecture is
flexible to allow
incorporation of other
sensor network
platforms

other sensor network platform. In order to incorporate
a new sensor network platform into iStuff Mobile, a new
Event Heap proxy has to be developed which would sent
events on sensor module’s behalf. Patch Panel mapping
can then be altered to media communication between this
new event type and the mobile phone proxy.

3.1.1 Scanning Network for Particles

The particle framework scans the network for available par- Particle Framework
scans network for
particles by

ticles and displays their source IDs. For scanning the net-
work for particles, particle framework constructs a HELLO
packet and broadcasts it to the network. All the particles broadcasting a

HELLO packet,
which is responded
by all particles

inside the network respond to this packet by sending an
acknowledgment to the particle framework. The particle



36 3 iStuff Mobile Architecture

Sensor Number Sensor Name
0 Acceleration X/Y axis
1 Acceleration Z axis
2 Audio
3 Light
4 Ambient Light
5 Force
6 Temperature
7 Voltage

Table 3.1: This table shows sensor numbers and the actual
physical sensors they represent

framework then extracts the source Id of all the particles
that responded to the HELLO packet and displays a list of
available particles in the network. The format of HELLO
packet is shown in Figure 3.3.

3.1.2 Configuring Particle Sensor Board

SAMPLING RATE:
Sampling rate in particle context means the rate at which
a Particle will transmit the data of a particular sensor

Definition:
Sampling Rate

The particle framework also provides a GUI which enablesParticle Framework
enables Smart-Its
sensor board
configuration

a designer to activate/deactivate particular sensors on the
particle sensor module (See right side of Figure 3.2). In or-
der to do so, particle Framework constructs a configuration
packet and transmits it to the particle selected for configu-
ration. On reception of this configuration packet, the parti-
cle configures its sensor module accordingly and sends an
acknowledgment to the particle framework.

Right side of the Figure 3.3 shows an example particle con-Smart-Its sensor
board configuration
is achieved by
transmitting a
configuration packet
to the Particle

figuration packet. The first tuple of type ”aps” denotes that
this packet is a configuration packet. The second tuple of
type ”crs” contains the configuration data. In this case the
sequence of bytes [01 10 43] means ”Configure sensor num-
ber 0 (Acceleration X/Y axis) with sampling number 1 (26



3.1 Particle Framework 37

Sampling Number Sampling Rate
0 13 ms
1 26 ms
2 52 ms
3 104 ms
4 208 ms
5 416 ms
6 832 ms
7 1664 ms
8 3328 ms
9 6656 ms

10 13312 ms
11 26624 ms
12 53248 ms
13 106496 ms
14 212992 ms
15 425984 ms

Table 3.2: This table shows sampling numbers and the ac-
tual sampling rates they represent

ms), configure sensor number 1 (Acceleration Z axis) with
sampling number 0 (13 ms), and configure sensor number
4 (Ambient Light) with sampling number 3 (104 ms)”. Rest
of the sensors are not configured in this example and there-
for they do not transmit any data. A list of sensor numbers
and sampling numbers is given in Table 3.1 and Table 3.2
respectively.

3.1.3 Particle Packet to Particle Event

As discussed in 1.2.3—“Smart-Its Communication”, a Particle Framework
prevents redundant
sensor data from
being posted onto
the Event Heap

Smart-It transfers the sensor data in form of packets (Par-
ticle Packets) to the X-Bridge. These packets are then re-
ceived at the particle framework end over the LAN. A
typical particle packet received from particle is shown on
the left side of Figure 3.4. On receiving a particle packet,
the particle framework compares the packet with the last
packet received from the same source. If the two packets
are different, the particle framework constructs an event,
fills it with relevant data from particle packet, and posts it



38 3 iStuff Mobile Architecture

Particle Packet

Source Id
-----------
10.1.0.1.10.1.0.235

Tuple 1
--------
Tuple Type : aps
Tuple Bytes:

Tuple 2
--------
Tuple Type: sgx
Tuple Bytes: 3 42 0

Tuple X
--------
Tuple Type: abc

Tuple Bytes: XXX

Particle Event

Type
-----
Particle_Packet (string)

ParticleSrcId
--------------
10.1.0.1.10.1.0.235 (string)

sgx
---- Attribute/Value Pair
810 (int)

abc
----
xxx

...

.....

Figure 3.4: This figure shows transformation of particle packet to particle Event
done by the particle framework (Only relevant information has been shown).

onto the Event Heap. A typical particle event is shown on
the right side of Figure 3.4.

3.2 Mobile Phone Proxy

A normal mobile phone cannot talk to the Event Heap.Mobile Phone talks
to the Event Heap
through a proxy in
iStuff architecture

In order to establish a communication between the Event
Heap and the mobile phone, iStuff Mobile employs a proxy
strategy. The proxy which communicates with the mobile
phone and sends/receives events on its behalf is knows as
the iStuff Mobile Proxy. Following are the three main func-
tionalities of the mobile phone proxy:

1. Establish communication between a computer and an
iStuff enabled mobile phone.



3.2 Mobile Phone Proxy 39

2. Relay events that are posted to the Event Heap by the
Patch Panel to the mobile phone.

3. Listen to incoming actions from the mobile phone and
react accordingly.

3.2.1 Mobile Phone Proxy and Mobile Phone Com-
munication

Once the iStuff Mobile Proxy is launched, it connects to the iStuff Mobile Proxy
connects to the
mobile phone
through bluetooth

Event Heap and waits for the mobile phone to connect to it.
The mobile phone proxy establishes a connection with the
mobile phone over bluetooth serial port.

After successfully establishing connection with the Event
Heap and the mobile phone, the proxy listens to the Event
Heap for relevant events and it also listens to the phone
phone for relevant actions.

3.2.2 Event Relaying Process

Once communication has been established between the The mobile phone
proxy relays events
from Event Heap to
the mobile phone

Event Heap and the mobile phone through iStuff Mobile
Proxy, the proxy listens to the Event Heap for events of type
”iStuff Mobile” with a mandatory field ”Command”. An
”iStuff Mobile” type event with ”Command” field can be
divided into four categories:

• Events with only ”Command” field. In this case, the
mobile phone proxy simply extracts the value of the
”Command” field and sends it over the bluetooth se-
rial port to the mobile phone.

• Events with ”Command” and ”Path” fields. In this
case, the proxy extracts the value of ”Command” and
”Path” fields. Then it sends the value of the ”Com-
mand” field to the mobile phone, followed by the
length of the value of the ”Path” field, followed by
the value of the ”Path” field.



40 3 iStuff Mobile Architecture

iStuff Mobile Proxy

Path

Path Length

Command

iStuff Mobile
Command

Path

iStuff Mobile
Command

Path

iStuff Mobile
Command

iStuff Mobile
Command
ProfileNo

Command

Path Length

Path

Smart Phone

Event Heap

Figure 3.5: The figure shows an example of relaying event from Event Heap to the
iStuff Mobile enabled smart phone

• Events with ”Command”, ”Repeat”, ”ScanCode” and
”Code” fields, which represent a key press event. In
this case, the proxy extracts these fields and send
them to the mobile phone in the order they are stated
here. This sequence cause the mobile phone to simu-
late a key press on the foreground application.

• Events with ”Command” and ”ProfileNo” fields. In
this case, the proxy extracts the value of ”Command”
and ”ProfileNo” fields. Then it sends the value of the
”Command” field to the mobile phone, followed by
the value of the ”ProfileNo” field.

Figure 3.5 shows an example or event relaying process.

3.2.3 User Action Relaying Process

The communication between the Event Heap and the mo-Mobile phone relays
user activity (Key bile phone is not one sided. Hence, after establishing the



3.2 Mobile Phone Proxy 41

iStuff Mobile Proxy

Command

Key Code

Key Type

iStuff Mobile
KeyCode
Activity

iStuff Mobile
KeyCode
Activity

iStuff Mobile
Activity

iStuff Mobile
KeyCode
Activity

Key Type

Key Code

Command

Smart Phone

Event Heap

Figure 3.6: The figure shows an example of relaying user activity (Key Presses)
from the iStuff Mobile enabled smart phone to the Event Heap

communication between the Event Heap and the mobile
phone, the iStuff Mobile Proxy also listens for any user ac- Presses) to the

Event Heaptivity that the mobile phone wants to forward to the Event
Heap. For the current version of iStuff Mobile, the user ac-
tivity forwarded by the mobile phone is User interaction
with the GUI in form of Key Press Events.

Key Type Value Key Activity
1 KeyPress
2 KeyUp
3 KeyDown

Table 3.3: This table shows key type values and the corre-
sponding user activity they represent

The mobile phone proxy listens to the bluetooth serial port
for any incoming commands. If the command for key press
is received, the proxy expects the ascii value of the key, as
well as well as the type value of key to be followed. On
receiving the expected values, the proxy posts an ”iStuff
Mobile” type event containing ”KeyCode” (ascii value) and



42 3 iStuff Mobile Architecture

”Activity” (interpretation of type value) fields on to the
Event Heap. Table 3.3 shows a list of type values and the
corresponding key activities and Figure 3.6 shows an ex-
ample of relaying key presses from the mobile phone to the
Event Heap.

3.3 iStuff Mobile Smart Phone Applica-
tions

The iStuff Mobile architecture creates a division between
the mobile phone background application and the mobile
phone foreground application.

FOREGROUND APPLICATION:
The foreground application is designed to be used by the
user, the person that is testing the prototype design dur-
ing user evaluation.

Definition:
Foreground
Application

BACKGROUND APPLICATION:
The background application is designed to simplify the
work of interaction designer, the person that creates
functional prototypes. The background application is not
directly visible to the prototype user.

Definition:
Background
Application

3.3.1 Background Application

The background application is a part of iStuff Mobile thatiStuff Mobile
background
application is
responsible for
communicating with
the proxy, OS of the
mobile phone and
the foreground
application of the
mobile phone

is provided for the designers by the framework. Interac-
tion designers can remotely executes commands on the mo-
bile phone by sending commands in form of iStuffMobile
events to the iStuff Mobile Proxy. The proxy relays these
commands to the background application via a Bluetooth
connection (See Section 3.2.2—“Event Relaying Process”).
The background application relays these commands to the
foreground application or the operating system as appro-
priate. The background application is also capable of inter-
cepting user activity on the foreground application, such as



3.3 iStuff Mobile Smart Phone Applications 43







 













Figure 3.7: An illustration of the key functional components in the iStuff Mobile
architecture. (1) The key press from the user is sent to the mobile phone operat-
ing system. (2) Typically, the operating system (OS) would send key presses to
the foreground application, however the background application has registered to
intercept the event notification from the foreground. (3) The background applica-
tion notifies Quartz Composer of user activity through a Bluetooth connection. (4)
Meanwhile, the Smart-Its sensor board is also reporting sensor data. Quartz Com-
poser interprets the data and issues a high-level command to the background such
as a (5) key press to the foreground or (6) producing system output such as sound
feedback. (7) The foreground application responds to key press by updating the UI
or producing other system output.

key presses, which are relayed to the proxy over the blue-
tooth and subsequently posted as events onto the Event
Heap (See Section 3.2.3—“User Action Relaying Process”).
Figure 3.7 portrays an example user interaction with the
mobile phone.

This architecture enables designers to prototype interac-



44 3 iStuff Mobile Architecture

tions with existing applications (such as the built-in Ad-iStuff Mobile can be
used to prototype
interactions with new
or readily available
mobile phone
applications

dress Book and Calender application), or the new ones cre-
ated using Symbian C++, Python, or Macromedia Flash
Lite. The iStuff Mobile background application was de-
signed to include following features but is not limited to
them. New features may be added later:

1. Bluetooth Communication: communicate with the
iStuff Mobile proxy through a low-latency wireless
communication channel.

2. Sound Playback: trigger available sound files to be
played or stopped.

3. Vibrator Control: trigger the vibrator to start and
stop.

4. Key Capture Capability: intercept key events from
the foreground application and relay them to the
proxy for processing.

5. Foreground Application Key Simulation: relay key
events to the foreground application.

6. Launch External Application: launch any applica-
tion among the available application on the mobile
phone.

7. Close External Application: close any running appli-
cation on the mobile phone.

8. Profile Control: programmatically change the ring
profile of the mobile phone.

9. Backlight Control: turn the backlight ON and OFF
programmatically.

10. Run Application in Background: send the current
foreground application to the background.

11. Camera Control: use the camera on the mobile phone
for taking pictures, videos, interactions using mo-
tion estimation such as the Sweep technique [Balla-
gas et al., 2005], and recognizing visual markers such
as Visual Codes [Rohs and Gfeller, 2004].



3.3 iStuff Mobile Smart Phone Applications 45

 

 

B
lu

et
o

o
th

 

C
o

m
m

u
n

ic
a

ti
o

n
 

S
o

u
n

d
 P

la
y

b
a

ck
 

V
ib

ra
to

r
 

C
o

n
tr

o
l 

K
ey

 C
a

p
tu

re
 

C
a

p
a

b
il

it
y

 

F
o

r
eg

ro
u

n
d

 

A
p

p
li

ca
ti

o
n

 K
ey

 

S
im

u
la

ti
o

n
 

L
a

u
n

ch
 

E
x

te
r
n

a
l 

A
p

p
li

ca
ti

o
n

 

C
lo

se
 E

x
te

rn
a

l 

A
p

p
li

ca
ti

o
n

 

P
ro

fi
le

 C
o

n
tr

o
l 

B
a

ck
li

g
h

t 

C
o

n
tr

o
l 

R
u

n
 A

p
p

li
ca

ti
o

n
 

in
 B

a
c
k

g
ro

u
n

d
 

C
a

m
er

a
 C

o
n

tr
o

l 

Symbian 

Series 60        a b  c 

Java 

(J2ME)   
 

d 
 

e 
    

 
Windows 

Mobile 5.0 

SmartPhone        
 

   

 
Available 
 

Implemented 

 
 

1. Available only when the java application is in focus. 

2. Available only for Java applications inside the same package. 

3. Profile Change implemented using Application Launch + Foreground Application 

Control. 

4. Partially implemented (only turning on functionality). 

5. Implemented in a separate application, need to integrate. 

 

 

 

 

 

1. Bluetooth Communication: Answers the question whether the API to enable 

communication over Bluetooth is available or not. 

2. Sound Playback: Answers the question whether the API to play and stop 

sound files is available or not.  

3. Vibrator Control: Answers the question whether the API to vibrate the 

mobile phone programmatically is available or not. 

4. Key Capture Capability: Answers the question whether the API to capture 

key presses (regardless of the fact that the application is in focus or 

background) is available or not. 

5. Foreground Application Key Simulation: Answers the question whether the 

functionality of sending a Key Event to whatever application in the 

foreground is possible or not. 

6. Launch External Application: Answers the question, whether an external 

application/ process can be launched from within one application. 

 

 

B
lu

et
o

o
th

 

C
o

m
m

u
n

ic
a

ti
o

n
 

S
o

u
n

d
 P

la
y

b
a

ck
 

V
ib

ra
to

r
 

C
o

n
tr

o
l 

K
ey

 C
a

p
tu

re
 

C
a

p
a

b
il

it
y

 

F
o

r
eg

ro
u

n
d

 

A
p

p
li

ca
ti

o
n

 K
ey

 

S
im

u
la

ti
o

n
 

L
a

u
n

ch
 

E
x

te
r
n

a
l 

A
p

p
li

ca
ti

o
n

 

C
lo

se
 E

x
te

rn
a

l 

A
p

p
li

ca
ti

o
n

 

P
ro

fi
le

 C
o

n
tr

o
l 

B
a

ck
li

g
h

t 

C
o

n
tr

o
l 

R
u

n
 A

p
p

li
ca

ti
o

n
 

in
 B

a
c
k

g
ro

u
n

d
 

C
a

m
er

a
 C

o
n

tr
o

l 

Symbian 

Series 60        a b  c 

Java 

(J2ME)   
 

d 
 

e 
    

 
Windows 

Mobile 5.0 

SmartPhone        
 

   

 
Available 
 

Implemented 

 
 

1. Available only when the java application is in focus. 

2. Available only for Java applications inside the same package. 

3. Profile Change implemented using Application Launch + Foreground Application 

Control. 

4. Partially implemented (only turning on functionality). 

5. Implemented in a separate application, need to integrate. 

 

 

 

 

 

1. Bluetooth Communication: Answers the question whether the API to enable 

communication over Bluetooth is available or not. 

2. Sound Playback: Answers the question whether the API to play and stop 

sound files is available or not.  

3. Vibrator Control: Answers the question whether the API to vibrate the 

mobile phone programmatically is available or not. 

4. Key Capture Capability: Answers the question whether the API to capture 

key presses (regardless of the fact that the application is in focus or 

background) is available or not. 

5. Foreground Application Key Simulation: Answers the question whether the 

functionality of sending a Key Event to whatever application in the 

foreground is possible or not. 

6. Launch External Application: Answers the question, whether an external 

application/ process can be launched from within one application. 

 

 

B
lu

et
o

o
th

 

C
o

m
m

u
n

ic
a

ti
o

n
 

S
o

u
n

d
 P

la
y

b
a

ck
 

V
ib

ra
to

r
 

C
o

n
tr

o
l 

K
ey

 C
a

p
tu

re
 

C
a

p
a

b
il

it
y

 

F
o

r
eg

ro
u

n
d

 

A
p

p
li

ca
ti

o
n

 K
ey

 

S
im

u
la

ti
o

n
 

L
a

u
n

ch
 

E
x

te
r
n

a
l 

A
p

p
li

ca
ti

o
n

 

C
lo

se
 E

x
te

rn
a

l 

A
p

p
li

ca
ti

o
n

 

P
ro

fi
le

 C
o

n
tr

o
l 

B
a

ck
li

g
h

t 

C
o

n
tr

o
l 

R
u

n
 A

p
p

li
ca

ti
o

n
 

in
 B

a
c
k

g
ro

u
n

d
 

C
a

m
er

a
 C

o
n

tr
o

l 

Symbian 

Series 60        a b  c 

Java 

(J2ME)   
 

d 
 

e 
    

 
Windows 

Mobile 5.0 

SmartPhone        
 

   

 
Available 
 

Implemented 

 
 

1. Available only when the java application is in focus. 

2. Available only for Java applications inside the same package. 

3. Profile Change implemented using Application Launch + Foreground Application 

Control. 

4. Partially implemented (only turning on functionality). 

5. Implemented in a separate application, need to integrate. 

 

 

 

 

 

1. Bluetooth Communication: Answers the question whether the API to enable 

communication over Bluetooth is available or not. 

2. Sound Playback: Answers the question whether the API to play and stop 

sound files is available or not.  

3. Vibrator Control: Answers the question whether the API to vibrate the 

mobile phone programmatically is available or not. 

4. Key Capture Capability: Answers the question whether the API to capture 

key presses (regardless of the fact that the application is in focus or 

background) is available or not. 

5. Foreground Application Key Simulation: Answers the question whether the 

functionality of sending a Key Event to whatever application in the 

foreground is possible or not. 

6. Launch External Application: Answers the question, whether an external 

application/ process can be launched from within one application. 

 

 

B
lu

et
o

o
th

 

C
o

m
m

u
n

ic
a

ti
o

n
 

S
o

u
n

d
 P

la
y

b
a

ck
 

V
ib

ra
to

r
 

C
o

n
tr

o
l 

K
ey

 C
a

p
tu

re
 

C
a

p
a

b
il

it
y

 

F
o

r
eg

ro
u

n
d

 

A
p

p
li

ca
ti

o
n

 K
ey

 

S
im

u
la

ti
o

n
 

L
a

u
n

ch
 

E
x

te
r
n

a
l 

A
p

p
li

ca
ti

o
n

 

C
lo

se
 E

x
te

rn
a

l 

A
p

p
li

ca
ti

o
n

 

P
ro

fi
le

 C
o

n
tr

o
l 

B
a

ck
li

g
h

t 

C
o

n
tr

o
l 

R
u

n
 A

p
p

li
ca

ti
o

n
 

in
 B

a
c
k

g
ro

u
n

d
 

C
a

m
er

a
 C

o
n

tr
o

l 

Symbian 

Series 60        a b  c 

Java 

(J2ME)   
 

d 
 

e 
    

 
Windows 

Mobile 5.0 

SmartPhone        
 

   

 
Available 
 

Implemented 

 
 

1. Available only when the java application is in focus. 

2. Available only for Java applications inside the same package. 

3. Profile Change implemented using Application Launch + Foreground Application 

Control. 

4. Partially implemented (only turning on functionality). 

5. Implemented in a separate application, need to integrate. 

 

 

 

 

 

1. Bluetooth Communication: Answers the question whether the API to enable 

communication over Bluetooth is available or not. 

2. Sound Playback: Answers the question whether the API to play and stop 

sound files is available or not.  

3. Vibrator Control: Answers the question whether the API to vibrate the 

mobile phone programmatically is available or not. 

4. Key Capture Capability: Answers the question whether the API to capture 

key presses (regardless of the fact that the application is in focus or 

background) is available or not. 

5. Foreground Application Key Simulation: Answers the question whether the 

functionality of sending a Key Event to whatever application in the 

foreground is possible or not. 

6. Launch External Application: Answers the question, whether an external 

application/ process can be launched from within one application. 

 

 

B
lu

et
o

o
th

 

C
o

m
m

u
n

ic
a

ti
o

n
 

S
o

u
n

d
 P

la
y

b
a

ck
 

V
ib

ra
to

r
 

C
o

n
tr

o
l 

K
ey

 C
a

p
tu

re
 

C
a

p
a

b
il

it
y

 

F
o

r
eg

ro
u

n
d

 

A
p

p
li

ca
ti

o
n

 K
ey

 

S
im

u
la

ti
o

n
 

L
a

u
n

ch
 

E
x

te
r
n

a
l 

A
p

p
li

ca
ti

o
n

 

C
lo

se
 E

x
te

rn
a

l 

A
p

p
li

ca
ti

o
n

 

P
ro

fi
le

 C
o

n
tr

o
l 

B
a

ck
li

g
h

t 

C
o

n
tr

o
l 

R
u

n
 A

p
p

li
ca

ti
o

n
 

in
 B

a
c
k

g
ro

u
n

d
 

C
a

m
er

a
 C

o
n

tr
o

l 

Symbian 

Series 60        a b  c 

Java 

(J2ME)   
 

d 
 

e 
    

 
Windows 

Mobile 5.0 

SmartPhone        
 

   

 
Available 
 

Implemented 

 
 

1. Available only when the java application is in focus. 

2. Available only for Java applications inside the same package. 

3. Profile Change implemented using Application Launch + Foreground Application 

Control. 

4. Partially implemented (only turning on functionality). 

5. Implemented in a separate application, need to integrate. 

 

 

 

 

 

1. Bluetooth Communication: Answers the question whether the API to enable 

communication over Bluetooth is available or not. 

2. Sound Playback: Answers the question whether the API to play and stop 

sound files is available or not.  

3. Vibrator Control: Answers the question whether the API to vibrate the 

mobile phone programmatically is available or not. 

4. Key Capture Capability: Answers the question whether the API to capture 

key presses (regardless of the fact that the application is in focus or 

background) is available or not. 

5. Foreground Application Key Simulation: Answers the question whether the 

functionality of sending a Key Event to whatever application in the 

foreground is possible or not. 

6. Launch External Application: Answers the question, whether an external 

application/ process can be launched from within one application. 

Table 3.4: A preliminary analysis of API support for different smart phone plat-
forms. Our prototype background application was written for Symbian Series 60,
but it could be ported to Windows Mobile 5.0 Smartphone. This analysis was accu-
mulated from a survey of system documentation and developer forums.

a Profile Change implemented in the iStuff Mobile application using Application Launch and
Foreground Application Key Simulation.

b Partially implemented (only turning ON functionality).
c Sweep and Point & Shoot interactions implemented in a separate Series 60 application, still need

to integrate into iStuff Mobile background application.
d Available only when the Java application is the foreground application.
e Available only for Java applications inside the same package.

First background application have been developed using Current background
application prototype
has been developed

Symbian Series 60 SDK. However, iStuff Mobile is not lim-
ited to Symbian Series 60 phones. Table 3.4 shows a prelim-
inary analysis of necessary API support required to port for Symbian platform,

but Windows Mobile
5.0 platform is a
good candidate

iStuff Mobile background application on alternative smart
phone platforms. From the table one can clearly deduce
that Windows Mobile 5.0 SmartPhone would be a great can-
didate to port iStuff Mobile background application since
it shares many of same capabilities as Symbian Series 60.
Porting iStuff Mobile background application to Java 2 Mi-
cro Edition (J2ME) platform would not be useful, since
it would be lacking critical functionalities. Theoretically,
iStuff Mobile background application can also be ported to
Linux-based mobile phone platforms (e.g. Motorola E680i),
but currently no public SDKs are provided for development
on these phone. Open source development efforts on these
phones are still in their early stages.



46 3 iStuff Mobile Architecture

3.3.2 Foreground Application

The foreground application in iStuff Mobile architectureCommunication
between foreground
and background
application takes

is the application that user sees and interacts with on the
mobile phone. iStuff Mobile background application has
been designed to interact with any foreground applica-
tion. The communication between the background appli-place through key

events cation and the foreground application takes place primar-
ily through system events (key press simulation).Designers
are expected to prototype their own mobile phone ap-Designer can built

their own mobile
phone application
which can
communicate with

plication using rapid prototyping solutions such as Flash
Lite [Macromedia Flash Lite], or a scripting language like
Python [Python for Series 60]. Alternatively, designers can
use Java [Java Platform, Micro Edition] or native code to
program their own application with which iStuff Mobilethe iStuff Mobile

background
application

background application would interact. Lastly, designers
can use existing mobile phone applications, that come with
the mobile phone (such as Address Book and Calander) to
prototype custom interactions, despite the fact that these
applications were not originally designed to accommodate
new interaction.

3.4 Visual Programming Support

Quartz Composer [Apple Quartz Composer] is a visualApple’s Quartz
Composer has been programming environment that is part of the Xcode de-

velopment environment that comes with Mac OS X 10.4adapted to define
Patch Panel
mappings for iStuff
components

”Tiger” (see Figure 3.8). It uses a cable patching metaphor
to establish data and control flow between different com-
ponents, establishing a composition. The editor is live, and
changes made in the workspace are immediately functional
without any compilation steps. In iStuff Mobile, work of
Rene Reiners [Reiners, 2006] extends the Quartz Composer
environment to define Patch Panel mapping using Visual
Programming. Library components for all iStuff proxies
have been added to this extension of Quartz Composer.
New processing modules have also been included in this
extension which are particularly useful for physical proto-
typing scenarios.



3.4 Visual Programming Support 47

Fig. 4. Apple’s Quartz Composer is a visual programming environment designed to
support rapid creation of 3D interactive visualizations. We have extended it to support
prototyping physical user interfaces. The main window provides a library of components
that the designer can drag onto the workspace and connect with other components. The
preview window in the top right of the image is a live 3D animation of the composition
and immediately shows the impact of the designer’s changes. The inspector window in
the bottom right allows the designer to adjust parameters and settings of the different
library components used in the composition.

3.2 Rapid Prototyping through Visual Programming

Quartz Composer is a visual programming environment that is part of the Xcode
development environment that comes with Mac OS X 10.4 “Tiger” (see Fig-
ure 4). It uses a cable patching metaphor to establish data and control flow be-
tween different components, establishing a composition. The editor is live, and
changes made in the workspace are immediately functional without any compila-
tion steps. In Proto Mobile, we have extended the Quartz Composer environment
to enable prototyping of physical interfaces. We added library components for
each of the iStuff proxies and new data processing modules that are particularly
useful in physical prototyping scenarios.

3.3 Sensor network support

Sensor network modules have been shown to be valuable tools in rapid proto-
typing scenarios [11]. Sensor network applications require low-cost, low-power,
wireless sensors. These requirements are pushing devices to be cheaper, smaller,

Figure 3.8: Apple’s Quartz Composer is a visual programming environment de-
signed to support rapid creation of 3D interactive visualizations. iStuff Mobile ex-
tends it to provided prototyping solution for physical interfaces. The main window
provides a library of components that the designer can drag onto the workspace
and connect with other components. The preview window in the top right of the
image is a live 3D animation of the composition and immediately shows the im-
pact of the designer’s changes. The inspector window in the bottom right allows
the designer to adjust parameters and settings of the different library components
used in the composition.





49

Chapter 4

Prototyping with iStuff
Mobile

“Interesting - I use a Mac to help me design the
next Cray.”

—Seymoure Cray (1925-1996) when he was told
that Apple Inc. had recently bought a Cray

supercomputer to help them design the next Mac

iStuff Mobile is a powerful prototyping toolkit which en-
ables interaction designers to prototype interaction using
mobile phones. To present the usability and domain cov-
erage of this toolkit, this chapter shows the interaction that
have been prototyped using the iStuff Mobile toolkit.

4.1 Recreating inspiring mobile phone in-
teraction

This section talks about recreating interactions that have Famous mobile
phone interactions
have been recreated

been proposed in previous literature. To demonstrate the
utility of iStuff Mobile, three of the classical inspiring mo-
bile phone interactions have been recreated:



50 4 Prototyping with iStuff Mobile

Figure 4.1: This figure shows a nokia series 60 mobile phone augmented with a
Smart-It(Particle) on the backside. A designer can attach a Particle to the mobile
phone in whatever position suitable. The Smart-Its board in pictures contains a 3D
accelerometer, light sensor, temperature sensor, audio sensor, pressure sensor and
a voltage sensor.

4.1.1 Tilt Scrolling

[Harrison et al., 1998] introduced a tilt scrolling techniqueTilt Scrolling
technique for mobile devices. The idea was to scroll through any

type of sequential list using the tilt. The implementation of
this technique included use of a Palm Pilot equipped with
pressure and tilt sensors. To activate the tilt scrolling, user
had to press the sides of the handheld device with his/her
thumb and forefinger. The degree of tilt was used to con-
trol the speed of scrolling i.e. the more the user tilted the
device, the faster it scrolled. Using iStuff Mobile, this ex-
ample interaction has been recreated.

Recreating this interaction involved taping a Particle to theTilt Scrolling has
been recreated using
iStuff Mobile

back of the mobile phone (See Figure 4.1) and configuring it
to transmit data of Force and Acceleration(Z-axis) sensors.
The interpretation of sensor data was done at the Patch
Panel level using the Quartz Composer GUI and appropri-
ate signals were sent to the iStuff Mobile Proxy. Figure 4.2



4.1 Recreating inspiring mobile phone interaction 51

Figure 4.2: The Quartz Composer implementation of the tilt-scrolling interaction
from [Harrison et al., 1998]. JavaScript nodes in Quartz Composer can manipulate
data using simple scripts. In this patch, it verifies that the force sensor is pressed
and detects various thresholds in the Z-direction of the gravity sensor. ”KeyCode”
represents the appropriate key (up or down arrow) depending on the current tilt.
”Repeat Rate” specifies how often the Signal node should fire. The Signal node
output (0 to 1 at regular intervals) specifies the Source Index for the multiplexer.
Source #0 (which defaults to 0) represents no key pressed, and Source #1 represents
the key specified from the JavaScript node.

which is the screen shot of the patch used for tilt scrolling,
explains how all the pieces fit together.

4.1.2 Changing Ringing Profile

[Schmidt et al., 1999] introduced a technique in which the Profile Change
according to user
context

mobile phone detects the context of a user and changes the
ringing profile accordingly. For example, when the mobile
phone is in the hand of a user, the ringing profile is changed
automatically to vibrator only, since an audio notification
is unnecessary. The context information was gathered us-
ing the TEA boards (See Section 2.3—“The TEA project”).
Currently, ringing profiles exists on all Symbian series 60
phones. Following profiles were defined by the original au-
thors and recreated on the phone for the experiment:

• Hand: If the phone is in hand of the user, audio in-
dication is not needed. Hence, phone rings by vibrat-
ing.

• Table: It is assumed that the user is in a meeting situa-
tion. Incoming calls and messages are indicated with
a gentle sound.



52 4 Prototyping with iStuff Mobile

Figure 4.3: The Quartz Composer implementation of the context based profile
change described in [Schmidt et al., 1999]. The ”JavaScript” node changes the pro-
file based on the values of Light, Audio and Force sensors

• Silent: In this case it is assumed that the phone has
been put away in a box or a briefcase, therefore it
should remain silent.

• Outside: It is assumed that the user is in a crowd.
Therefore the ringing volume goes as high as possible
and the vibrator alarm is also turned on.

• General: Where none of the above cases apply.

Using iStuff Mobile, handedness is detected using the pres-The profile change
technique has been
recreated using iStuff
Mobile

sure sensor on the Smart-Its. Difference between Table and
Silent profile is detected using the light sensor, since inside
a briefcase it would be dark. Finally Outside scenario is de-
tected using the audio sensor on the Smart-Its. Figure 4.3
shows the patch panel composition of this prototyping sce-
nario.

4.1.3 Tilt Typing

[Wigdor and Balakrishnan, 2003] introduces a techniqueOriginal TiltText
interaction uses tilt to
type characters on
the mobile phone

using which, text entry on the mobile phone has been sim-
plified. This technique works by typing a letter from the



4.2 Ubiquitous Computing Prototyping Scenarios 53

Figure 4.4: The Quartz Composer implementation of the TiltText [Wigdor and Bal-
akrishnan, 2003] first registers to incept keys on the mobile phone. Then it trans-
forms the numeric keys to the corresponding alphabet characters based on the tilt
thresholds (detected using acceleration sensors). The other keys on the mobile
phone are allowed directly to be sent back to the mobile phone.

numeric keypad using a combination of key presses and
device tilt. If the phone is tilted left and a key is pressed,
the first letter is typed, tilting upwards activates the sec-
ond letter, tilting to the right activates the third letter, tilting
downwards activates the fourth letter (Applicable for keys
’7’ and ’9’) and no tilt activates the standard numeric key
character. This technique has been proven to be faster than TiltText has been

recreated using iStuff
Mobile

MultiTap and comparable to the T9 dictionary based tech-
nique. Using iStuff Mobile, the prototype of TiltText was
recreated easily. Figure 4.4 shows the patch panel composi-
tion for TiltText scenario.

4.2 Ubiquitous Computing Prototyping
Scenarios

iStuff Mobile is not limited to creating interactions that are iStuff Mobile
simplifies Ubicomp
prototyping

local to the mobile phone. This section will demonstrate
how iStuff Mobile simplifies prototyping ubiquitous com-
puting scenarios.



54 4 Prototyping with iStuff Mobile

Figure 4.5: This Figure shows the Quartz Composer implementation of multi-
screen presentation patch. The far left is the ”MobilePhoneKeyListener” module
receives the key presses from the iStuff Mobile Proxy. On the far right are the two
instances of the same PowerPoint presentation, each running on a separate ma-
chine.

4.2.1 Multi-Screen Presentation Control

Mobile phones have recently emerged as popular presenta-iStuff Mobile has
tion controller. Salling Clicker [Salling Clicker] converts abeen used to create

a multi-screen
presentation
interaction with three
different screens
showing current,
previous and next
slide respectively

mobile phone or PDA into a two-way wireless remote con-
trol for a single computer. But in ubicomp environments
(e.g. interactive workspaces [Johanson et al., 2002a]) the
presence of multiple large displays can be taken advan-
tage of to enhance a presentation. Using iStuff Mobile a
multi-screen presentation interaction has been created. In
this scenario one screen displays the current slide (slide
that is being presented) and a second screen displays the
slide history (previous slide). By pressing a key on the
mobile phone the user can move the presentation in for-
ward or backward direction. In this scenario, the user is re-
motely controlling two PowerPoint [Microsoft PowerPoint]
application. These applications are controlled by two dif-
ferent proxies running on separate machines in interactive
workspace. Each proxy listens to an event containing the
machine name of the machine that its running on, so that
each machine can be individually controlled. Figure 4.5
shows the patch panel composition of multi-screen presen-
tation scenario.



4.2 Ubiquitous Computing Prototyping Scenarios 55

Figure 4.6: The left side of this figure shows a Java program that generates events
for each character that is typed into it. The floating window upon this program is
the iListen software for continuous speech recognition on Mac OS X. The right side
shows the patch panel composition in which the events generated by Java ”Text
Event Engine” are recognized by the ”Charactor Generator” module and transfered
to the mobile phone. This patch panel composition can be used to type a message
using computer keyboard onto the mobile phone or even dictate a message to be
typed on the mobile phone.

4.2.2 Keyboard Redirection

Projects like PointRight [Johanson et al., 2002b] and ARIS
[Biehl and Bailey, 2004] allow users to redirect mouse and
keyboard input to different machines in a room. Us-
ing iStuff Mobile a prototype interaction has been created
which demonstrates redirection of keyboard input to the
mobile phone. Figure 4.6 shows the patch panel composi-
tion of this prototype.

4.2.3 Speech Text

Using the keyboard input redirection, a prototype has been Using iStuff Mobile,
keyboard input can
be redirected to the
mobile phone

created in which user can dictate text to a mobile phone us-
ing continuous speech recognition. This is done by point-
ing the iListen software for continuous speech recognition
to type inside the text area of ”Text Event Engine” (See Fig-



56 4 Prototyping with iStuff Mobile

Figure 4.7: The Quartz Composer implementation for combining accelorometer
data with camera-based motion detection to improve the motion detection accu-
racy. The ”Sensor Fusion JavaScript” node implements the algorithm to combine
the sensor values in a meaningful way. The JavaScript logic can be modified at run-
time to test and refine the sensor fusion strategy. The standard ”Billboard” node of
Quartz Composer displays an image to the screen (e.g a cursor arrow). The output
of the sensor fusion algorithm in the JavaScript node controls the position of the
billboard on the screen.

ure 4.6). The processing power of phone phone these days
is not sufficient for continuous speech recognition but using
iStuff Mobile a functional prototype has been created.

4.2.4 Phone As Accurate Pointing Device

The Sweep technique [Ballagas et al., 2005] allows a mobileiStuff Mobile allows
mobile phone to be
used as an accurate
pointing device for
large public displays

phone to be used as a relative pointing device for large pub-
lic displays. It uses camera-based estimation algorithm for
motion detection. Since mobile phones are low-powered
devices, the motion estimation algorithm is not perfect and
suffers from estimation errors. Using iStuff Mobile, the mo-
tion information from the mobile phone camera can been
combined with accelerometer data from the Smart-Its sen-
sors to improve the motion estimation, as show in Figure
4.7. This allows mobile phone to serve as an accurate point-
ing device, for example when interacting with large public
displays.



57

Chapter 5

Summary and future
work

“Ask her to wait a moment - I am almost done.”

—Carl Friedrich Gauss (1777-1855), while
working, when informed that his wife is dying

5.1 Summary

iStuff Mobile is a rapidly prototyping toolkit which enables
interaction designer to explore novel interactions involving
mobile phone. iStuff Mobile extends the iStuff Framework
to provide following four architectural components:

• Support for physical sensors. iStuff Mobile provides a iStuff Mobile
provides support for
Smart-Its

Java proxy which communicates the Smart-Its, gath-
ers the sensor data and posts it onto the Event Heap.
A typical Smart-It contains 8 physical sensors includ-
ing light, acceleration (3D), sound, voltage, tempera-
ture and force sensors.

• A mobile phone application for Symbian Series 60 iStuff Mobile
provides a mobile
phone application

platform. This application communicates with the
Event Heap and executes high-level commands on
the mobile phone.



58 5 Summary and future work

• A proxy program which communicates the the mo-Mobile phone
bile phone using Bluetooth Serial port and re-communicates

through a proxy ceives/sends events on its behalf.

• Extensions for Apple’s Quartz Composer to enable
patch panel mapping through visual programming.

It has been demonstrated that using iStuff Mobile design-
ers can create low fidelity functional prototypes in no time.
iStuff Mobile not only allows designers to explore new mo-
bile phone interaction in ubicomp environments but it also
simplifies development of sensor-enhanced interaction.

5.2 Future work

iStuff Mobile is still an active research topic. Following are
the enhancements that would be

• Built new features into the mobile phone background
application (e.g. Camera Control, Turning Backlight
OFF).

• The camera based interaction techniques used in
4.2.4—“Phone As Accurate Pointing Device” have
been implemented as a separate Symbian Series 60
application. One task would be to integrate these
techniques into the iStuff Mobile smartphone appli-
cation.

• iStuff Mobile smartphone background application is
only available for Symbian Series 60 platform at the
moment. We plan to port this application to other
platforms like Windows Mobile 5.0 and Linux based
mobile phone platforms.

• Provide a mechanism to initiate inter-process com-
munication with the smartphone background appli-
cation allowing the foreground application to post
events. This could be done using publish/subscribe
mechanism in Symbian.



5.2 Future work 59

By making this tool available through open source to the iStuff Mobile is an
Open Source projectUbicomp research community, we hope to advance the

pace of innovation and improve the quality of interface de-
signs in ubiquitous computing.





61

Appendix A

Particle Framework
Implementation

“Your development cycle is much faster because
Java is interpreted. The

compile-link-load-test-crash-debug cycle is
obsolete.”

—James Gosling

Particle Framework is a GUI that allows a designer to scan Particle Framework
has been developed
using Java (J2SE)

for Smart-Its in the network, configure sensors according
to the need and post the sensor data onto the Event Heap
(See Section 3.1—“Particle Framework”). Particle Frame-
work has been developed keeping the cross-platform prop-
erty in focus. Therefore, the platform used is Java (J2SE)
[Java Platform, Standard Edition]. A Jave API is provided
by Teco which allows communication with the Smart-Its.
This Java API can be downloaded from Teco Particle Web-
site1 .

Figure A.1 shows the static structure of Particle Frame-
work. Following is a detail discussion of these classes:

1http://particle.teco.edu/software/index.html

http://particle.teco.edu/software/index.html
http://particle.teco.edu/software/index.html


62 A Particle Framework Implementation

ConfigureDialog extends Jdialog

Framework main
boolean cancelled
JButton btnCancel
JButton btnOK
JCheckBox chkAccXY
JCheckBox chkAccZ
JCheckBox chkAudio
JCheckBox chkLight
JCheckBox chkALight
JCheckBox chkForce
JCheckBox chkTemp
JCheckBox chkVoltage
JComboBox cmbRates[]

ConfigureDialog(Framework f)
init()
btnCancel_actionPerformed(ActionEvent e)
btnOK_actionPerformed(ActionEvent e)

Framework extends JFrame

String eventHeapIp
Scanner scan
EventLauncher eventLauncher
JList lstParticles
Vector configuredParticles
JButton btnScan
JButton btnConfigure
JButton btnStart
JButton btnStop
JButton btnExit
JButton btnAdd

init()
btnExit_actionPerformed(ActionEvent e)
btnScan_actionPerformed(ActionEvent e)
btnConfigure_actionPerformed(ActionEvent e)
btnAdd_actionPerformed(ActionEvent e)
btnStart_actionPerformed(ActionEvent e)
btnStop_actionPerformed(ActionEvent e)
particleListUpdated(ListSelectionEvent e)

EventLauncher implements Runnable

Vector particles
boolean running
ParticleSocket recSocket
ParticleFilter filter
Hashtable lastPacketList
EventHeap eventHeap
String eventHeapIp

EventLauncher(Vector configuredParticles, String eventHeapIp, String proxyID)
run()
stop()

ImagePanel extends Jpanel

private String path
private Image img

ImagePanel(String path)
void paint(Graphics g)

Scanner implements Runnable

Framework main

Scanner(Framework f)
run()
getData()

SensorConfig

Framework main
String particleId
ConfigureDialog conDialog
boolean successful

SensorConfig(Framework f,Object particle,ConfigureDialog cd)
startConfiguration()
isSuccessful()

Uses Con
str

uc
ts

Uses

Uses

Uses

Uses

Figure A.1: Class Diagram of Particle Framework. Only the relevant methods and
member variables have been displayed.

A.1 Framework class

The Framework class in the Particle Framework is the mainFramework class
constructs the main
GUI of the Particle
Framework

class that instantiates objects of all the other classes ac-
cording to need (See Figure A.1). The Framework class is
also responsible for constructing the main GUI of the Par-
ticle Framework by extending the JFrame class provided



A.1 Framework class 63

by J2SE (See Figure 3.2). The main functionality of the
Framework class can be portrayed as follows:

• Construct the main graphical user interface and dis-
play it to the user.

• When the user clicks the ”Scan Network” button, con-
struct an instance of the Scanner class and execute it
in a separate thread.

• When the user clicks on any Particle Id displayed in
the lstParticles list, enable the ”Configure Parti-
cle” button on the GUI.

• When the user clicks on the ”Configure Particle” but-
ton, create an instance of ConfigureDialog class
displaying the configuration options to the user.

• When the ConfigureDialog is closed, check if the
user cancelled/accepted the configuration. This is
done by checking a boolean variable cancelled in-
side the ConfigureDialog class (Details in Section
A.3—“ConfigureDialog class”).

• If the ConfigureDialog was closed success-
fully, construct an instance of SensorConfig
class and pass the Id of the selected Particle
in the lstParticles list and the instance of
ConfigureDialog class as constructor parameters.

• Enable the ”Start Framework” button if
isSuccessful() method of SensorConfig
class returns true.

• When the user clicks ”Start Framework” button, con-
struct an instance of EventLauncher class in a sep-
arate thread and pass list of configured Particles
configuredParticles and the event heap IP ad-
dress eventHeapIp (received as command-line ar-
gument) as constructor parameters, disable the ”Scan
Network” button, disable the ”Configure Particle”
button, disable the ”Start Framework” button and en-
able the ”Stop Framework” button.

• When the user clicks ”Stop Framework” button, call
stop() method on instance of EventLauncher



64 A Particle Framework Implementation

ParticleSocket socket = new ParticleSocket(5556); //5556 
denotes outgoing socket
ParticlePacket hello = new ParticlePacket();  //construct a 
new Particle packet
 short data[] = {255, 255, 255, 255, 255, 255, 255, 
255};  //set up the destination address as a broadcast 
address

short empt[] = {};
hello.aclAdd("acm", empt, 0);
hello.aclAdd("che", data, 0);
socket.send(hello);
socket.close();

Figure A.2: Code for broadcasting HELLO packet into the network in order to scan
the Particles. The ParticleSocket and ParticlePacket classes are the part
of Java API provided by Teco. Two tuples are added to the hello packet before
socket.send(hello) is called. The ”acm” tuple with no data denotes that this
packet is a HELLO packet and ”che” tuple contains the broadcast address.

class, enable all the disabled button and disable the
”Stop Framework” button.

A.2 Scanner class

The Scanner class in Particle Framework is responsibleScanner class is
responsible for
scanning network for
Particles

for scanning the network for Particles (See Section 3.1.1—
“Scanning Network for Particles”). This class implements
the Java Runnable interface which allows it to run in a sep-
arate thread.

As soon as an object of this class is instantiated, the run()Scanner class
broadcasts a HELLO
packet into the
network which is
responded by all
Particles

method of this class is invoked. Inside the run() method
a HELLO packet is broadcasted into the network and it is
expected that all the Particles will respond to this packet.
Code snip A.2 shows how a HELLO packet is constructed
and broadcasted into the network.

Once the HELLO packet is broadcasted into the network,



A.3 ConfigureDialog class 65

ParticleSocket socket = new ParticleSocket(5555);  //open a 
socker for receiving packets from "Particles"

socket.setAutoAck(0);  //dont send an acknowledgment
ParticlePacket pck = null;
socket.setBlocking(0); //dont block the thread
pck = socket.receive(socket);  //receive a packet
if (pck != null)
{
    ParticleSrcId src = pck.getSrcId();  //get the Source Id 
of the particle
    if (!main.listmodelParticles.contains(src.toString())) 
   {

main.listmodelParticles.addElement(src.toString());  //if the 
id doesnot exists in the list already, add it to the list
   }
}

Figure A.3: Code for handling Particle response to the HELLO packet (Only rele-
vant part has been shown). The getData() method opens a socket for reception,
checks an incoming packet, extracts the Particle Id from the packet and finally adds
the Particle Id to the list displayed on the Framework GUI. The Particle Id is added
to the list only if it does’nt already exists.

the particles start to respond to it. In order to check which Ids of the Particles
responding to
HELLO packet are
collected

particles have responded, getData()method of Scanner
class is called at the end of run() method. Code snip A.3
shows how the response of HELLO packet from Particles is
handled.

A.3 ConfigureDialog class

The ConfigDialog class is a secondary GUI which pops ConfigureDialog

provides a GUI to
configure sensors on
a particular Particle

up when the user clicks on the ”Configure Particle” button
on the main GUI (See right side of Figure 3.2). The pur-
pose of this GUI is to provide a user with options to config-
ure sensor module on a particular Particle. Once the user
has selected a particular configuration, he can either click



66 A Particle Framework Implementation

ParticlePacket packet = new ParticlePacket(); //create a new 
packet to be sent to the "Particle"
Vector sensorData = new Vector(); //holds the sensor 
numbers and sampling rates selected by the user
short data[] = new short[0];
packet.aclAdd( "aps", data, 0 ); //add an empty "aps" tuple to 
the packet

if(conDialog.chkAccXY.isSelected() == true) //if X/Y axis 
acceleration sensor is selected
{
    sensorData.add(new Short("0")); //add the sensor no. to the 
vector. Sensor no. 0 is X/Y axis acceleration sensor
    sensorData.add(new 
Short((short)conDialog.cmbRates[0].getSelectedIndex())); // add 
the index of selected transfer rate to the vector
}

data = new short[sensorData.size()];
for(int i=0;i<sensorData.size();i++)
 data[i] = ((Short) sensorData.get(i)).shortValue(); //collect 
the selected sensor and rates

packet.aclAdd( "crs", data, 0 ); //add the configuration data 
to the packet as a tuple

.....

Figure A.4: Code showing construction of a configuration packet. This code first
adds and empty ”aps” tuple to the packet. Then it checks which sensors were
selected for configuration and adds their sensor numbers and sampling numbers
to the sensorData Vector (only check for Acceleration sensors has been shown,
rest are similar). Finally the data from the sensorData Vector is transferred into
the data array and added to the packet as an ”crs” tuple

on ”Cancel” button in which case the cancelled boolean
variable becomes true and the GUI disappears from the
screen, or he can click the ”OK” button in which case the
cancelled boolean variable remains false and the GUI
disappears from the screen.



A.4 SensorConfig class 67

ParticleSrcId src = new 
ParticleSrcId(particleId.toString());
ParticleSocket sndSocket = new ParticleSocket(5556);
ParticleSocket recSocket = new ParticleSocket(5555);

recSocket.setBlocking(0);
sndSocket.sendAcked(recSocket, packet, src); // if this 
returns without exception the particle is configured
successful = true;

sndSocket.close();
recSocket.close();

Figure A.5: Code for transmitting configuration packet to a Particle. This code
starts by opening two sockets. sndSocket is for sending the configuration
packet packet and recSocket is for receiving acknowledgment from the Parti-
cle. Finally the packet is sent by calling sndSocket.sendAcked(recSocket,
packet, src). If this function call returns without an exception, the Particle is
configured.

A.4 SensorConfig class

After the sensor module configuration dialog disap-
pears, the Framework class checks if cancelled boolean
member of ConfigureDialog is true or false. If
cancelled is false an instance of SensorConfig class
is created passing the selected particle Id, the instance of
ConfigureDialog and a reference to Framework class.

Once the instance of SensorConfig class is created, its SensorConfig

constructs astartConfiguration() method is invoked. Inside this
method, the selected sensor numbers and sampling num- configuration packet

and transmits it to
the Particle

bers used to construct a configuration packet which is to
be transmitted to the particle. Code snip A.4 shows how
the configuration packet is constructed. For more informa-
tion on sensor numbers and sampling numbers see Section
3.1.2—“Configuring Particle Sensor Board”.

As soon as the Configuration packet is constructed, it is
sent to the Particle who’s id was passed as argument to the



68 A Particle Framework Implementation

SensorConfig class constructor, requiring an acknowl-
edgment from the Particle. Code snip A.5 shows how a
configuration packet is sent to the Particle.

A.5 EventLauncher class

The EventLauncher class in responsible for receiv-EventLauncher

class receives
sensor data, filters it
and posts it onto the
Event Heap

ing packets from all the configured Particles inside the
network, filtering packets for redundancy and posting
the sensor data onto the Event Heap. An instance
of EventLauncher class is constructed when ”Start
Framework” button on the main GUI is clicked and
there are one or more configured Particles inside the
configuredParticles vector in class Framework. The
EventLauncher class implements the java Runnable in-
terface which allows it to run in a separate thread.

As soon as the EventLauncher object is constructed, its
run() method is invoked. Inside the run() method, the
first piece of code starts to receive packets from all the con-
figured Particles. Code snip A.6 shows how packets are
received from all the Particles that have been configured
through Particle Framework.

After a single packet is received inside the run() method,Redundant sensor
values are discarded the code checks if the packet transmitted by the Particle

contains the same values as the previous one transmitted
by the same Particle. If the values are same the packet is
simply discarded. Code snip A.7 shows how the redundant
packet detection algorithm runs.

If the packet received from a Particle is different from the
previous one received from the same Particle, the sensor
data is extracted from the packet, it is interpreted and each
sensor value is converted to a single integer value, and fi-
nally the converted sensor values are posted onto the Event
Heap.



A.6 ImagePanel class 69

int filterMode = P_FILTER.FILTER_CONCAT_AND | 
P_FILTER.FILTER_TYPE_ID;
filter = new ParticleFilter("Id Filter");
ParticleSrcId recFrom = new ParticleSrcId((String) 
particles.get(0));
filter.add(filterMode,recFrom.toFilter()); //receive 
packets from this particle

if(particles.size() > 1) //if the particle list contains 
more than one particle
{
     filterMode = P_FILTER.FILTER_CONCAT_OR |
                        P_FILTER.FILTER_TYPE_ID;

     for (int i = 1; i < particles.size(); i++) 
     {
        recFrom = new ParticleSrcId((String) 
particles.get(i));
        filter.add(filterMode, recFrom.toFilter()); //add 
all the particles to the reception list
     }
 }

recSocket = new ParticleSocket(5555); //open a socket for 
reception of packets from particles

currPacket = recSocket.receiveFiltered(recSocket,filter);

Figure A.6: Code for receiving packets from configured Particles. The
code starts by setting a filter which is an instance of ParticleFilter
class to receive packets from all the Particles that are in particles vec-
tor. Then it opens recSocket socket for receiving packets. Finally the call
recSocket.receiveFiltered(recSocket,filter) receives a single packet
based on the filter

A.6 ImagePanel class

Class ImagePanel extends the java JPanel to provide a ImagePanel class
draws a panel with
an image inside

panel in which an image is loaded. An instance of this class
is used by the Framework class to load the i10 department



70 A Particle Framework Implementation

if(currPacket != null)
{
   currId = currPacket.getSrcId(); //get the Source Id of the packet received
   ParticlePacket lastPacket = (ParticlePacket) 
lastPacketList.get(currId.toString()); //get the previous packet transmitted by 
this Source from the hashtable

   if(lastPacket != null) //if the previous packet transfered from this particle 
exists
   {
      ParticleTuple currPacketTuple = currPacket.firstAcl(); //get the 1st tuple 
from the current packet
      ParticleTuple lastPacketTuple = 
lastPacket.findFirstAcl(currPacketTuple.getAclType()); //get the 1st tuple from 
the previous packet

      while (currPacketTuple != null)
      {
         short[] currPacketTupleData = currPacketTuple.toArray(); //get data of 
the current packet tuple
         short[] lastPacketTupleData = lastPacketTuple.toArray(); //get data of 
the previous packet tuple

         for(int i=0;i<currPacketTupleData.length;i++)
         {
            if(currPacketTupleData[i] != lastPacketTupleData[i]) //if the data 
is not equal
            {
                 same = false;
                 break;
            }
          }
          if(!same)
            break;

          currPacketTuple = currPacket.nextAcl(currPacketTuple); //get the next 
tuple from the current packet
          lastPacketTuple = lastPacket.nextAcl(lastPacketTuple); //get the next 
tuple from the previous packet
        }
     }
     else
       same = false;

Figure A.7: Code for detecting redundant packets. This code starts by retriev-
ing previous packet transmitted by the same Particle from the lastPacketList
hashtable. The code then compares the current packet and the previous packet tu-
ple by tuple and byte by byte inside a tuple. If difference is found at any byte, the
same boolean variable is set to false and comparison stops.



A.6 ImagePanel class 71

logo onto the GUI. The constructor of this class simply takes
the path of an image and constructs a Panel containing that
image.





73

Appendix B

iStuff Mobile Proxy
Implementation

“That’s what’s cool about working with
computers. They don’t argue, they remember

everything and they don’t drink all your beer.”

—Paul Leary

iStuff Mobile Proxy is a command line program which re- iStuff Mobile Proxy
has been
implemented using
Java (J2SE)

ceives/posts events on the behalf of the mobile phone.
Since mobile phone is not designed to communicate di-
rectly with the Event Heap, iStuff Mobile Proxy imple-
ments the interface which talks to the mobile phone
through Bluetooth serial port and establishes communica-
tion between the mobile phone and the Event Heap. iStuff
Mobile Proxy has been developed in Java (J2SE) [Java Plat-
form, Standard Edition] to make it available on different
platforms. iStuff Mobile Proxy comprises a single class
iStuffMobileProxy who’s static structure is portrayed
in Figure B.1. Following are the main functions of the
iStuffMobileProxy class:

• Initiate a serial port communication with the mobile
phone and register to receive events of type ”iStuff-
Mobile” from the Event Heap.



74 B iStuff Mobile Proxy Implementation

iStuffMobileProxy implements EventCallback

int OPCODE_DISCONNECT = 1
int OPCODE_BACKLIGHT_ON = 2
int OPCODE_BACKLIGHT_OFF = 3
int OPCODE_KEY_RECEIVED = 4
int OPCODE_PLAYSOUND = 5
int OPCODE_STOPSOUND = 6
int OPCODE_LAUNCHAPP = 7
int OPCODE_CLOSEAPP = 8
int OPCODE_KEY_PRESSED = 9
int OPCODE_START_KEYCAPTURE = 10
int OPCODE_STOP_KEYCAPTURE = 11
int OPCODE_CHANGEPROFILE = 12

EventHeap eventHeap
Event[] template
String comPort
SerialPort serPort = null
OutputStream outStream = null
InputStream inStream = null
byte[] buffer = new byte[512]

iStuffMobileProxy(String ip, String proxyID, String cmprt)
void Destroy()
boolean returnEvent(Event[] retEvents)
initSerial()
void read(InputStream in, byte[] buffer, int off, int len)
void run()
void redirectEvent(int command)
void getPathAndRedirect(Event recEvent)
void sendKey(Event recEvent)
sendChangeProfile(Event recEvent)

Figure B.1: Class Diagram of iStuff Mobile Proxy. Only the relevant methods and
member variables have been displayed.

• Decode the events received from the Event Heap and
redirect the decoded form of events to the mobile
phone.

• Listen to incoming key presses from the mobile
phone, encapsulate them into an event and post them
onto the Event Heap.



B.1 iStuffMobileProxy class 75

eventHeap = new EventHeap(ip);
template = new Event[1];
template[0] = new Event("iStuffMobile"); //the Events to be 
fetched should be of type iStuffMobile

template[0].addField("Command", Integer.class, 
FieldValueTypes.FORMAL, FieldValueTypes.FORMAL); //the events 
to be fetched should have a field Command of an Integer value 
type
eventHeap.registerForEvents(template,this); //register to 
receive events of type template

CommPortIdentifier portId = 
CommPortIdentifier.getPortIdentifier(comPort); //get the port 
ID for the port name received through command line
if (portId == null)
{
  throw new NullPointerException("no com port identifier");
}
serPort = (SerialPort)portId.open("iStuffMobile", 5000); //open 
the serial Port
outStream = serPort.getOutputStream(); //get output stream to 
the serial port
inStream = serPort.getInputStream(); //get input stram to the 
serial port

.....

Figure B.2: This code first shows how a template event template is used to reg-
ister for events of type ”iStuffMobile” containing an Integer type field ”Com-
mand”. The method call eventHeap.registerForEvents(template,this)
tells the Event Heap that boolean returnEvent(Event[] retEvents)
method of iStuffMobileProxy should be called whenever an event of type
template is posted onto the Event Heap. Second part of the code shows fetch-
ing the COM port identifier using COM port name comPort which was passed
as command-line argument, opening the serial port and finally getting the I/O
streams to the port.



76 B iStuff Mobile Proxy Implementation

read(inStream, buffer, 0, 1); //read the opcode received by the 
"iStuff Mobile" mobile phone application

switch (buffer[0]) {
case OPCODE_KEY_PRESSED:
read(inStream, buffer, 0, 4); //if the opcode is 
OPCODE_KEY_PRESSED, 4 bytes will follow. 2 bytes denoting the 
keycode and 2 bytes denoting the keytype
Event keyEvent = new Event("iStuffMobile");

char keyCode = 0;
keyCode |= buffer[0];//fill the keycode from two bytes into a 
char
keyCode <<= 8;
keyCode |= buffer[1];

char type = 0;
type |= buffer[2]; //fill the keytype from two bytes into a char
type <<= 8;
type |= buffer[3];

switch(type){

case 1: // type 1 denotes key was pressed
keyEvent.setPostValue("Activity", "KeyPress");

             keyEvent.setPostValue("KeyCode", new 
Integer(keyCode));   break;

case 2: // type 2 denotes key was released
keyEvent.setPostValue("Activity", "KeyUp");

  break;
case 3: // type 3 denoted key was hit
keyEvent.setPostValue("Activity", "KeyDown");

  break;
 default:
  System.out.println("Unrecognized Key Type");}

if (eventHeap.isConnected())
   eventHeap.putEvent(keyEvent); //post the received key press 
from the "iStuff Mobile" mobile

Figure B.3: This code first listens to a single byte on the incoming stream. If the byte
received is OPCODE KEY PRESSED, it expects 4 more bytes to follow containing key
code and key type respectively. Finally the 2 bytes of key code and key type are
filled into 2 chars keyCode and type, the type is interpreted according to Table
3.3, and both keyCode and type are encapsulated in an event and posted onto the
Event Heap



B.1 iStuffMobileProxy class 77

Integer command = (Integer)recEvent.getPostValue("Command");
//extract the Command field from the received Event

byte buffer[] = new byte[1];
buffer[0] = command.byteValue(); //convert the command to byte

outStream.write(buffer); //send the opcode to the "iStuff Mobile" 
mobile phone application

..... Extract other 
values

.. Post other 
values

Figure B.4: Code showing extraction of ”Command” field from an event and redi-
recting its value to the mobile phone through the output stream outStream (Ex-
traction of any other field would be similar)

B.1 iStuffMobileProxy class

The first function of iStuffMobileProxy when started, iStuffMobileProxy

class registers with
the Event Heap to
receive events of
type ”iStuffMobile”

is to register to the Event Heap for receiving events of
type ”iStuffMobile”. This is done by defining a template
event and telling the Event Heap to deliver events match-
ing the template to the proxy. The next function of the
iStuffMobileProxy is to initialize a serial port com-
munication with the COM port which was passed as a
command-line argument to the program. Code snip B.2
shows how the proxy registers for events and how the com-
munication streams are initialized.

Once the iStuffMobileProxy is initialized, its run() iStuffMobileProxy

class listens for
incoming key events
from mobile phone
and relays them to
the Event Heap

method is called from the main(). The run() method
starts to listen to the incoming stream for the mobile phone
key press events. The key events are relayed by the mobile
phone in form of 5 bytes. The first byte represent the op-
code sent by the mobile phone, next 2 bytes represent the



78 B iStuff Mobile Proxy Implementation

key code of the key pressed and the last 2 bytes represent
the key type. Code snip B.3 shows how key code and key
type are received from the mobile phone, embedded into
an event and posted onto the Event Heap.

Opcode Representation Opcode Value
OPCODE DISCONNECT 1

OPCODE BACKLIGHT ON 2
OPCODE BACKLIGHT OFF 3
OPCODE KEY RECEIVED 4

OPCODE PLAYSOUND 5
OPCODE STOPSOUND 6
OPCODE LAUNCHAPP 7

OPCODE CLOSEAPP 8
OPCODE KEY PRESSED 9

OPCODE START KEYCAPTURE 10
OPCODE STOP KEYCAPTURE 11
OPCODE CHANGEPROFILE 12

Table B.1: This table shows the values a ”Command” field
can contain in an event received by the iStuff Mobile Proxy

Since the iStuffMobileProxy class has regis-All the events of type
”iStuffMobile” are
sent to the
iStuffMobileProxy

through a call-back
method

tered for events matching a template, whenever
such an event occurs a callback method boolean
returnEvent(Event[] retEvents) is called with
the event as a parameter. The event can be of one of the
types described in Section 3.2.2—“Event Relaying Process”.
After receiving such an event, the iStuffMobileProxy
tries to decode the ”Command” field inside it. The ”Com-
mand” field can have one of the value shown in Table B.1.
Code snip B.4 shows how a field can be extracted from
an event. Incase a key event is received from the Event
Heap (See Section 3.2.2—“Event Relaying Process”), the
integer values of ”Code”, ”Repeat” and ”ScanCode” are
converted to six byte values and then transmitted to the
mobile phone, which is done as shown in code snip B.5.



B.1 iStuffMobileProxy class 79

byte buffer1[] = new byte[6];
//coversion of Code, Repeat and ScanCode fields from integer to 2 
bytes

buffer1[0] = 0;
buffer1[0] |= (0xFF00 & repeat) >> 8;
buffer1[1] = 0;
buffer1[1] |= (0x00FF & repeat);

buffer1[2] = 0;
buffer1[2] |= (0xFF00 & scancode) >> 8;
buffer1[3] = 0;
buffer1[4] |= (0x00FF & scancode);

buffer1[4] = 0;
buffer1[4] |= (0xFF00 & code) >> 8;
buffer1[5] = 0;
buffer1[5] |= (0x00FF & code);

.....

Extract other 
values

..Post other 
values

Figure B.5: Code showing conversion of code, scancode and repeat variables
from three integers to six bytes.





81

Appendix C

iStuff Mobile
SmartPhone Application
Implementation

“C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do, it blows

away your whole leg.”

—Bjarne Stroustrup

iStuff Mobile smartphone application is actually the back- iStuff Mobile
Smartphone
application has been
implemented using
Symbian series 60
SDK from Nokia

ground application running on the smartphone. A commu-
nication channel is established between the background ap-
plication and the Event Heap through iStuff Mobile proxy.
As explained earlier in Section 3.3.1—“Background Appli-
cation”, the first prototype of background application has
been implemented for Symbian Series 60 platform [Sym-
bian Series 60]. The SDK that has been used to implement
the iStuff Mobile smartphone background application is the
Nokia Series 60 SDK [Nokia Series 60]. This section ex-
plain how the functionalities described in Section 3.3.1—
“Background Application” have been implemented on the
mobile phone. Figure C.1 shows the static structure of the
iStuff Mobile smartphone background application. Follow-
ing is a detail discussion on implementation of classes rele-
vant to the functionality of the background application:



82 C iStuff Mobile SmartPhone Application Implementation

Instantiates

CiStuffMobileAppUi : public CAknAppUi

CiStuffMobileContainer* iAppContainer
CCodeListener* iProxyServer
TBool connected
RFileLogger iLog

SetConnected(TBool iConnect)
TKeyResponse HandleKeyEventL(const 
TKeyEvent& aKeyEvent,TEventCode aType)
MakeDir(const TDesC& aPath)

CiStuffMobileContainer : public 
CCoeControl, MCoeControlObserver

CFbsBitmap* iBackground
CEikLabel* iLabel

void SendToBackground()
void Draw(const TRect& aRect)

CCodeListener : public CActive

CiStuffMobileAppUi* iApplicationUi
iStuffMobileContainer* iApplicationContainer
TBuf8<1> data
RSocketServ iSocketServ
RSocket iSocket
RNotifier iDeviceSelector
TBTDeviceResponseParamsPckg iResponse
TBool isConnected
CBTDiscoverer* iServices
CBTServiceListContainer* iBtSlContainer
CSoundPlayer* iSoundPlayer
CKeyListener* iKeyListener
CDesCArrayFlat* iAppList
RFileLogger* iLog
CPeriodic* iPeriodic
TUint8 iProfileNo

void ConnectToServer()
void ConnectToService(TUint8 portNo)
void DisconnectFromServer()
void SendKeyToProxy(TUint16 code,TUint16 aType)
TBool GetConnected()
void StartReceiving()
void DecodeOpcode()
void DoCancel()
void RunL()
void DecodeReceivedKey()
void SendKeyToPhone(TUint16 repeat,TUint16 scancode,TUint16 code)
void PlaySoundFile()
void StopSoundFile()
void LaunchApp(TUint16* path)
void CloseApp(TUint16* name)
void StartKeyCapture()
void StopKeyCapture()
void ChangeProfile()
TInt ContinueChangeProfile(TAny* aObject)
TUint16* GetPath()

CBTServiceListContainer: public 
CCoeControl, public MEikListBoxObserver

CAknColumnListBox* iPortList
CCodeListener* iCodeListener
RFileLogger* iLog
CCodeListener* aCodeListener

void AddItemToList(TUint aServicePort, TUint16* 
aServiceName)
CBTServiceListContainer(RFileLogger* aLog, 
CCodeListener* aCodeListener)
void SetupScrollBarsL()
TKeyResponse OfferKeyEventL(const TKeyEvent& 
aKeyEvent, TEventCode aType)
void HandleListBoxEventL(CEikListBox* /
*aListBox*/, TListBoxEvent aListBoxEvent)

CBTDiscoverer : public MSdpAgentNotifier, 
public MSdpAttributeValueVisitor

CSdpAgent* iAgent
SdpSearchPattern* iSdpSearchPattern
CSdpAttrIdMatchList* iMatchList
TUint iServicePort
TUint iAttrId
TUint16* iServiceName
RFileLogger* iLog
CBTServiceListContainer* iBtSlContainer

void ListServicesL(const TBTDevAddr& aAddress)
void PrintSDPError(TInt aError)
void NextRecordRequestComplete(TInt aError, 
TSdpServRecordHandle aHandle, TInt aTotalRecordsCount)
void AttributeRequestResult(TSdpServRecordHandle 
aHandle, TSdpAttributeID aAttrID, CSdpAttrValue* 
aAttrValue)
void AttributeRequestComplete(TSdpServRecordHandle 
aHandle, TInt aError)
void StartListL(CSdpAttrValueList& aList)
void VisitAttributeValueL(CSdpAttrValue& aValue, 
TSdpElementType aType)
void EndListL()

CKeyListener : public Cactive

CCodeListener* iCodeListener
RWsSession ws
RWindowGroup* wg
RFileLogger* iLog
TInt32 keyHandles[21]
TInt32 keyUADHandles[21]

void StartL()
void StopL()
CKeyListener()
void InterceptKeys()
void RunL()
void DoCancel()

CSoundPlayer: public CBase, 
public MMdaAudioPlayerCallback

enum TState{ENotReady, EReady, 
EPlaying }
TState iState
CMdaAudioPlayerUtility* iMdaPlayer

void Play()
void Stop()
void MapcInitComplete(TInt aError, 
const TTimeIntervalMicroSeconds& 
aDuration)
void MapcPlayComplete(TInt aError)

Instantiates

Instantiates 
& Uses Instantiates 

& Uses

Instant-
iates & 
Uses

Instantiates & Uses

Instantiates & Uses
Uses

Figure C.1: Class Diagram of iStuff Mobile smartphone background application.
Only the relevant methods and member variables have been displayed.



C.1 Class CiStuffMobileAppUi 83

C.1 Class CiStuffMobileAppUi

The class CiStuffMobileAppUi as the name suggests, is CiStuffMobileAppUi

class is the UI of
application

the application UI of the application. Regarding the iStuff
Mobile application, this class has three main functionalities:

• Instantiate the CiStuffMobileContainer and the
CCodeListener class instances.

• Layout the options which are visible to the user
at bottom left and right side of the mobile phone
screen. These options can be selected through left
and right soft keys. The three options available at
left soft key are ”Connect To Proxy”, ”Disconnect
From Proxy” and ”Exit”. The option available at
right soft key is ”Back”. When the user selects
”Connect” option ConnectToServer() method
on CCodeListener instance is invoked, selecting
”Disconnect” invokes DisconnectFromServer()
method on CCodeListener, selecting ”Exit” ex-
its the application, and finally selecting ”Back”
invokes SendToBackground() method on
CiStuffMobileContainer instance.

• Forward a key to the iStuff Mobile Proxy in-
case the user presses a key which applica-
tion is in focus. Whenever a key is pressed
the HandleKeyEventL(const TKeyEvent&
aKeyEvent,TEventCode aType) method of the
CiStuffMobileAppUi is invoked implicitly receiv-
ing the key code and the key type of the pressed
key. This function then forwards the key by invoking
SendKeyToProxy(aKeyEvent.iCode,aType)
method on CCodeListener instance.

C.2 Class CiStuffMobileContainer

CiStuffMobileContainer class is a UI container which This class is a UI
containerdisplays the main window of the application. This class

has following two main functionalities regarding the im-
plementation of iStuff Mobile background application:



84 C iStuff Mobile SmartPhone Application Implementation

• Load the iStuff Mobile bitmap image into the back-
ground of the container.

• Send the application to background when
SendToBackground() method is invoked. This
functionality is shown in code snip C.2.

TApaTask task(iEikonEnv->WsSession());

// Initialise the object with the window group id of
// our application (so that it represent our app)
task.SetWgId(CEikonEnv::Static()-
>RootWin().Identifier());

// Request window server to bring our application
// to foreground
task.SendToBackground();

Figure C.2: Code for sending the iStuff Mobile application
to the background. These three lines are implementation of
SendToBackground() method.

C.3 Class CCodeListener

CCodeListener is the main class as far as the iStuff Mo-CCodeListener

implements the main
functionality of iStuff
Mobile

bile implementation is concerned. This class extends the
Symbian CActive class which allows it be an active object
and run in a cooperative threading environment (For more
details on Active objects check Nokia Series 60 SDK docu-
mentation). Following are the main functionalities of this
class:

• Allow the application to connect to a Bluetooth de-CCodeListener

allows the vice having Bluetooth serial port service. This ac-
tion takes place when the user selects ”Connect Tobackground

application to
connect to the iStuff
Mobile Proxy over
Bluetooth serial port

Proxy” option from the left soft key menu. The
code snip C.3 will bring up a Bluetooth station se-
lection GUI. Once the user has selected a machine
an object of CBTServiceListContainer class is
constructed and displayed onto the GUI as top con-
tainer. Then an object of CBTDiscoverer class is



C.3 Class CCodeListener 85

.....

TRequestStatus iLocalStatus;
User::LeaveIfError(iSocketServ.Connect());
User::LeaveIfError(iSocket.Open(iSocketServ, _L("RFCOMM")));

User::LeaveIfError(iDeviceSelector.Connect());
TBTDeviceSelectionParamsPckg selectionFilter;
TUUID serviceClass(0x1101); // SerialPort, uuid16: 0x1101, 

// see Bluetooth_11_Assigned_Numbers.pdf,
// 4.4 Service Classes

selectionFilter().SetUUID(serviceClass);

iDeviceSelector.StartNotifierAndGetResponse(iLocalStatus, 
KDeviceSelectionNotifierUid, selectionFilter, iResponse);
User::WaitForRequest(iLocalStatus);

Figure C.3: Code for bringing up the Bluetooth station search and selection GUI.
iSocketServer is an instance of RSocketServ class, iSocket is an instace
of RSocket class iDeviceSelector is an instance of class RNotifier and
iResponse is an instance of class TBTDeviceResponseParamsPckg

constructed and ListServicesL() is invoked on it
passing the Bluetooth address of the device selected.
This would cause the CBTDiscoverer object to pop-
ulate a list inside CBTServiceListContainer ob-
ject with Bluetooth serial port services of the device.
Finally when a user selects a service to connect to,
code snip C.4 is invoked.

• Allow the application to disconnect from the
proxy. This action takes place when the
user selects ”Disconnect From Proxy” option
from the left soft key menu which invokes
the DisconnectFromServer() method of
CCodeListener. The DisconnectFromServer()
method simply closes the socket and cleans up.

• Listen to the incoming opcodes from the proxy CCodeListener

listens to the
incoming opcodes
from the iStuff Mobile
Proxy

and react accordingly. As soon as the mobile
phone application is connected to the proxy, the
StartReceiving() method of CCodeListener
is invoked which checks if there is any opcode



86 C iStuff Mobile SmartPhone Application Implementation

.....TBTSockAddr address;
address.SetBTAddr(iResponse().BDAddr());
address.SetPort(portNo); //connect to the port number 
selected by the user

iSocket.Connect(address, iLocalStatus);
User::WaitForRequest(iLocalStatus);

Figure C.4: Code for connecting to a particular service us-
ing the port number of that service. portNo is the port
number of the service selected by the user.

from the proxy. If there is an opcode sent by the
proxy the RunL() is invoked and the data[0] con-
tains that opcode. The opcode is decoded in the
DecodeOpcode() method and appropriate series of
actions is initiated.

TPtrC Ptr(path);

CApaCommandLine * cmd = CApaCommandLine::NewL();
cmd->SetLibraryNameL(Ptr); //set library name to the path
cmd->SetCommandL(EApaCommandRun);
TRAP(error, EikDll::StartAppL(*cmd)); //execute the command

Figure C.5: Code for launching an external application on
the mobile phone. path variable contains the path of the
application

• Launch an external application. This action takesCCodeListener

enables launching of
an external
application

place when opcode OPCODE LAUNCHAPP is received
from the proxy. The background application expects
the path length and the path string of the application
to be launched to follow. After getting the path from
the incoming stream, code snip C.5 shows how an ex-
ternal application is launched.

• Close an external application. This action takes placeCCodeListener

enables closing of an
external application

when opcode OPCODE CLOSEAPP is received from
the proxy. The application expects the name length
and name string of the application to be close to fol-
low. The name should be the Caption of the appli-



C.3 Class CCodeListener 87

TApaAppInfo AppInfo;
TApaTaskList aList(CEikonEnv::Static()->WsSession()); //get the 
all tasks running on the phone

for(TInt i=0;i<AAppCount;i++){
    RSession.GetNextApp(AppInfo); //get info of the next 
application
    TApaTask ATask3 = aList.FindApp(AppInfo.iUid); //find the 
task in the task list
    if(ATask3.Exists()){
        if(AppInfo.iCaption.Find(Ptr) != KErrNotFound) {//if the 
caption of the task is equal to the name

ATask3.KillTask(); //kill the task
killed = ETrue;
break;}

    }
}

Figure C.6: Code for closing an external application on the mobile phone.
AAppCount holds the number of active application on the mobile phone,
RSession is an instance of RApaLsSession class, Ptr contains the name of the
application received from the proxy.

cation to be close. After getting the name of the ap-
plication to be closed, code snip C.6 shows how an
external application is closed.

• Turn on the Backlight of the mobile phone.
This action takes place when opcode
OPCODE BACKLIGHT ON is received from the
proxy. Backlight is switched on by invoking
User::ResetInactivityTime() method.

• Simulate a key press on the current foreground ap- CCodeListener

enables simulation of
key press on the

plication on the mobile phone. This action takes
place when opcode OPCODE KEY RECEIVED is re-
ceived from the proxy. After receiving this opcode, foreground

application6 more bytes and read from the serial port which are
values of repeat, scancode and code respectively (See
Also Section B.1—“iStuffMobileProxy class”). After
converting these 6 bytes into the integers, code snip
C.7 shows how a key is simulated on the foreground
application.



88 C iStuff Mobile SmartPhone Application Implementation

TKeyEvent event;
event.iRepeats = repeat;
event.iScanCode = scancode;
event.iCode = code;

TApaTask task(CCoeEnv::Static()->WsSession()); //get current window 
session
task.SetWgId(CCoeEnv::Static()->WsSession().GetFocusWindowGroup()); //get 
current foreground application

task.SendKey(event); //send the key to the foreground application

Figure C.7: This piece of code shows how a key can be simulated on the foreground
application of the mobile phone. Values of repeat, scancode and code are read
from the incoming bluetooth serial port

• Change the ringing profile on the mobile
phone. This action takes place when opcode
OPCODE CHANGEPROFILE is received from the
proxy. The profile number follows this opcode andCCodeListener

allows changing of
the ringing profile on
mobile phone

is read from the incoming bluetooth serial port.
The profile number denotes the profile in the list
of profiles displayed by the ”Profiles” application
on the mobile phone. To change a ringing profile,
the background application launches the Symbian
”Profiles” application, simulates key presses on the
”Profiles” application to select the desired ringing
profile and finally closes the application.

• Relay the user activity (key presses) from theCCodeListener

relays key presses to
the Event Heap
through iStuff Mobile
Proxy

mobile phone to the proxy. This action takes
place when either user is pressing keys with
iStuff Mobile application at the foreground or
if the key capture is enables (Discussed in Sec-
tion C.4—“Class CKeyListener”). In both cases
SendKeyToProxy(TUint16 code,TUint16
aType) method of CCodeListener is invoked and
this method relays the key to the proxy as shown in
code snip C.8.

• Initiate key interception. This action takes place when
opcode OPCODE START KEYCAPTURE is received
from the proxy. The CCodeListener class in this
case, simply creates an instance of CKeyListener



C.4 Class CKeyListener 89

.....

TBuf8<5> localData;

localData.Append(OPCODE_KEY_PRESSED); //send the opcode to the proxy
//send code and type of key as 4 bytes instead of 2 ints

localData.Append(code >> 8);
localData.Append(code);
localData.Append(aType >> 8);
localData.Append(aType);

iSocket.Write(localData,iLocalStatus);

Figure C.8: This code forwards a key from the mobile phone to the proxy. Conver-
sion of code and aType variables from integers to bytes is also shown

class and invokes StartL() method on it.

• Stop key interception. This action takes place when
opcode OPCODE START KEYCAPTURE is received
from the proxy. In this case the CCodeListener in-
vokes StopL() method on CKeyListener instance.

• Initiate sound playback. This action takes place
when opcode OPCODE PLAYSOUND is received from
the proxy. After receiving this opcode, path length
and path string of the sound file to be played is ex-
pected to follow. The CCodeListener class in this
case, simply creates an instance of CSoundPlayer
class passing path as constructor arguments.

• Stop sound playback. This action takes place when
opcode OPCODE STOPSOUND is received from the
proxy. In this case the CCodeListener invokes
Stop() method on CSoundPlayer instance.

C.4 Class CKeyListener

CKeyListener class is responsible for intercepting user CKeyListener is
responsible for
intercepting key
presses

activity (key presses) no matter which application is run-
ning on the foreground. This class extends the Symbian
CActive class which makes it an active object and allows
it to run in a cooperative threading environment. Making



90 C iStuff Mobile SmartPhone Application Implementation

User::LeaveIfError(keyHandles[index] = wg->CaptureKey(EKeyBackspace, 0, 0)); //
the backspace key i.e. c
User::LeaveIfError(keyUADHandles[index++] = wg-
>CaptureKeyUpAndDowns(EStdKeyBackspace, 0, 0));

Figure C.9: Code showing how a window group can register to intercept a
backspace key on the mobile phone (Other keys are registered in same matter).
wg is an instance of class RWindowGroup

this class as an active object was necessary so that other
classes of iStuff Mobile background application are active
while keys are being intercepted.

The CKeyListener class intercepts the key presses by cre-CKeyListener

registers to receive
all key presses from
the OS

ating a new window session and registering it to receive
all the key events from the mobile phone. Code snip C.9
shows how a single key is registered for interception.

Now, whenever user presses a key the RunL() method
of CKeyListener object is implicitly invoked. In-
side the RunL() method the key is retrieved from the
window session and passed to the proxy by invoking
SendKeyToProxy() method on a CCodeListener in-
stance.

C.5 Class CSoundPlayer

CSoundPlayer class is responsible for playbackCSoundPlayer

class is responsible
for playback and
stopping of a sound
file

of a sound file. This class extends the Symbian
MMdaAudioPlayerCallback class to implement the
sound playback. As soon as an object of CSoundPlayer
class is constructed with path of the file as constructor argu-
ments, an instance of class CMdaAudioPlayerUtilityis
created passing path as constructor arguments and
Play() method is invoked on it. Invoking Stop() on
CMdaAudioPlayerUtility object stops the playback of
the sound file.



C.6 Class CBTServiceListContainer 91

CTextListBoxModel* model = iPortList->Model(); //get the
most of the listbox
model->SetOwnershipType(ELbmOwnsItemArray);
CDesCArray* itemList =
STATIC_CAST(CDesCArray*,model->ItemTextArray()); //
get the list of item from the listbox
_LIT(KItem,"%d\t%s\t\t");
TBuf<256> item;
item.Format(KItem(),aServicePort,aServiceName);
itemList->AppendL(item); //add the item to the list
iPortList->HandleItemAdditionL(); //refresh action after
adding the item

Figure C.10: Code showing how service name and corresponding service port is
added to the list. iPortList is an object of CAknSingleNumberStyleListBox
class. aServicePort and aServiceName are received as parameters into this
method

C.6 Class CBTServiceListContainer

CBTServiceListContainer is a secondary container for CBTServiceListContainer

displays all the
services on a
particular device and
allows user to select
one of them

iStuff Mobile application which is constructed and dis-
played when user selects a device to connect to. This class
consists a List which is populated by CBTDiscoverer
class (Explained in next section). This container displays
the list of service names and corresponding ports, and
allows a user to select one of the services from the list.
Once user has selected a service the container invokes
ConnectToService() method on CCodeListener ob-
ject passing the port number from the selected service as
function arguments. Code snip C.10 shows how a service
is added to the list dynamically.



92 C iStuff Mobile SmartPhone Application Implementation

switch(aType){
case ETypeUint: //if the type of the attribute value is 
integer then it is port number

   if(iAttrId == 0x4)
      iServicePort = aValue.Uint(); //save the port number
break;

case ETypeString: //if the type of the attribute value is 
string then it is port name

   if(iAttrId == 0x100){
      TInt len = aValue.Des().Length(); //legth of the 
value
      iServiceName = new TUint16[len+1];
      for (int i = 0; i < len; i++){
         iServiceName[i] = aValue.Des()[i]; //save name 
characters one by one
    }

      iServiceName[len] = '\0'; //string terminating 
character
   }
break;

default:
break;
}

Figure C.11: Code showing how the bluetooth serial service name and port number
is extracted from an attribute value of a service record.

C.7 Class CBTDiscoverer

The CBTDiscoverer class is responsible for de-CBTDiscoverer

discovers all the BT
serial port services
on a machine

tecting services on a bluetooth serial port enabled
station, extracting the service names and port
numbers of serial port services and adding them
to the list in CBTServiceListContainer in-
stance. For this purpose CBTDiscoverer class
extends the Symbian MSdpAgentNotifier and
MSdpAttributeValueVisitor interfaces.



C.7 Class CBTDiscoverer 93

As soon as an object of CBTDiscoverer class is
constructed, its ListServicesL() method is invoked
with the bluetooth address of the device selected
by the user. Inside the ListServicesL() method
an instance of CSdpAgent class is constructed and
NextRecordRequestL() method is invoked on it. Now
when a record of a bluetooth serial port service is found on
the device NextRecordRequestComplete() method of
CBTDiscoverer is implicitly invoked.

To retrieve the attributes(port name and port number)
of the service record, AttributeRequestL() method is
called on CSdpAgent object. When a attribute of the ser-
vice record is found, AttributeRequestResult() of
CBTDiscoverer is invoked implicitly. Normally an at-
tribute value is a complex structure. In order to retrieve
the real port name and port number AcceptVisitorL()
is called on aAttrValue which is the attribute value re-
ceived.

Finally VisitAttributeValueL() method is implicitly Service name and
port number is added
to a list on container

invoked when a single value inside the complex attribute
value structure is visited. Code snip C.11 shows how the
port name and port number is saved when the attribute
value is visited.

Once a single service record is finished
AttributeRequestComplete() is implicitly invoked.
This is where the port number and port name is added to
the list inside CBTServiceListContainer and the next
record is requested.





95

Bibliography

Gregory D. Abowd, Gillian R. Hayes, Giovanni Iachello,
Julie A. Kientz, Shwetak N. Patel, Molly M. Stevens, and
Khai N. Truong. Prototypes and paratypes: Designing
mobile and ubiquitous computing applications. Pervasive
Computing, IEEE, pages 67–73, 2005.

Apple Quartz Composer. URL http://developer.
apple.com/documentation/GraphicsImaging/
Conceptual/QuartzComposer/qc_intro/
chapter_1_section_1.html.

Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan
Borchers. istuff: A physical user interface toolkit for
ubiquitous computing environments. In Proceedings of
the ACM CHI 2003 Conference on Human Factors in Com-
puting Systems, pages 537–544, Ft. Lauderdale, Florida,
USA, April 2003.

Rafael Ballagas, Andy Szybalski, and Armando Fox. Patch
panel: Enabling control-flow interoperability in ubicomp
environments. In PerCom 2004 Second IEEE International
Conference on Pervasive Computing and Communications,
Orlando, Florida, USA, March 2004.

Rafael Ballagas, Michael Rohs, Jennifer Sheridan, and Jan
Borchers. Sweep and point & shoot: Phonecam-based
interactions for large public displays. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing systems,
pages 1200–1203, New York, NY, USA, April 2005. ACM
Press. ISBN 1-59593-002-7. doi: http://doi.acm.org/10.
1145/1056808.1056876.

Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan
Borchers. istuff mobile: prototyping interactions for mo-
bile phones in interactive spaces. In Proc. PERMID, Work-

http://developer.apple.com/documentation/GraphicsImaging/ Conceptual/QuartzComposer/qc_intro/chapter_1_section_1.html
http://developer.apple.com/documentation/GraphicsImaging/ Conceptual/QuartzComposer/qc_intro/chapter_1_section_1.html
http://developer.apple.com/documentation/GraphicsImaging/ Conceptual/QuartzComposer/qc_intro/chapter_1_section_1.html
http://developer.apple.com/documentation/GraphicsImaging/ Conceptual/QuartzComposer/qc_intro/chapter_1_section_1.html


96 Bibliography

shop on Pervasive Mobile Interaction Devices at PERVASIVE
2006, Dublin, Ireland, 2006a. LNCS.

Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan
Borchers. Rapidly prototyping mobile phone interactions
in ubiquitous computing environments. In Submitted to
Ubicomp 2006, Orange County, California, USA, 2006b.

Michael Beigl, Albert Krohn, Tobias Zimmer, Christian
Decker, and Philip Robinson. AwareCon: Situation
Aware Context Communication. In Proceedings of Ubi-
comp 2003, Seattle, USA, October 2003a.

Michael Beigl, Tobias Zimmer, Albert Krohn, Christian
Decker, and Philip Robinson. Smart-Its – Communi-
cation and Sensing Technology for UbiComp Environ-
ments. ISSN 1432-7864 2003/2, University of Karlsruhe,
2003b.

Jacob T. Biehl and Brian P. Bailey. Aris: an interface for
application relocation in an interactive space. In GI
’04: Proceedings of the 2004 conference on Graphics inter-
face, pages 107–116, School of Computer Science, Univer-
sity of Waterloo, Waterloo, Ontario, Canada, 2004. Cana-
dian Human-Computer Communications Society. ISBN
1-56881-227-2.

CCC Cybelius Maestro. URL http://www.cybelius.
com/products/.

H.-W. Gellersen, G. Kortuem, M. Beigl, and A. Schmidt.
Physical Prototyping with Smart-Its. IEEE Pervasive Com-
puting Magazine, 3(3):74–82, July–September 2004.

Saul Greenberg and Chester Fitchett. Phidgets: easy devel-
opment of physical interfaces through physical widgets.
In UIST ’01: Proceedings of the 14th annual ACM symposium
on User interface software and technology, pages 209–218,
New York, NY, USA, 2001. ACM Press. ISBN 1-58113-
438-X. doi: http://doi.acm.org/10.1145/502348.502388.

Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos
Mochon, and Roy Want. Squeeze me, hold me, tilt me!
an exploration of manipulative user interfaces. In CHI
’98: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 17–24, New York, NY, USA,
1998. ACM Press/Addison-Wesley Publishing Co. ISBN

http://www.cybelius.com/products/
http://www.cybelius.com/products/


Bibliography 97

0-201-30987-4. doi: http://doi.acm.org/10.1145/274644.
274647.

Java Platform, Micro Edition. URL http://java.sun.
com/j2me/.

Java Platform, Standard Edition. URL http://java.
sun.com/j2se/.

Brad Johanson and Armando Fox. The event heap: A
coordination infrastructure for interactive workspaces.
In WMCSA ’02: Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, page 83,
Washington, DC, USA, 2002. IEEE Computer Society.
ISBN 0-7695-1647-5.

Brad Johanson, Armando Fox, and Terry Winograd. The
interactive workspaces project: Experiences with ubiqui-
tous computing rooms. IEEE Pervasive Computing, 1(2):
67–74, 2002a. ISSN 1536-1268. doi: http://dx.doi.org/
10.1109/MPRV.2002.1012339.

Brad Johanson, Greg Hutchins, Terry Winograd, and Mau-
reen Stone. Pointright: experience with flexible input
redirection in interactive workspaces. In UIST ’02: Pro-
ceedings of the 15th annual ACM symposium on User in-
terface software and technology, pages 227–234, New York,
NY, USA, 2002b. ACM Press. ISBN 1-58113-488-6. doi:
http://doi.acm.org/10.1145/571985.572019.

Scott R. Klemmer, Bjoern Hartmann, and Leila Takayama.
d.tools: Integrated prototyping for physical interaction
design. In Stanford University Computer Science Technical
Report, 2005.

Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi
Forlizzi, Paul H. Dietz, and Darren Leigh. The calder
toolkit: wired and wireless components for rapidly pro-
totyping interactive devices. In DIS ’04: Proceedings of
the 2004 conference on Designing interactive systems, pages
167–175, New York, NY, USA, 2004. ACM Press. ISBN 1-
58113-787-7. doi: http://doi.acm.org/10.1145/1013115.
1013139.

Macromedia Flash. URL http://www.macromedia.
com/software/flash/flashpro/.

http://java.sun.com/j2me/
http://java.sun.com/j2me/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://www.macromedia.com/software/flash/flashpro/
http://www.macromedia.com/software/flash/flashpro/


98 Bibliography

Macromedia Flash Lite. URL http://www.macromedia.
com/software/flashlite/.

Microsoft PowerPoint. URL www.microsoft.com/
powerpoint/.

Jakob Nielsen. Iterative user-interface design. Computer,
26(11):32–41, 1993. ISSN 0018-9162. doi: http://dx.doi.
org/10.1109/2.241424.

Nokia Series 60. URL http://www.forum.nokia.com/
main/0,6566,010_400,00.html.

OPI Artistic License. URL http://www.opensource.
org/licenses/artistic-license.php.

Trevor Pering, Rafael Ballagas, and Roy Want. Spontaneous
marriages of mobile devices and interactive spaces. Com-
mun. ACM, 48(9):53–59, 2005. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/1081992.1082020.

Python for Series 60. URL http://www.forum.nokia.
com/python.

Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu
Toivonen. Contextphone: A prototyping platform for
context-aware mobile applications. IEEE Pervasive Com-
puting, 4(2):51–59, 2005. ISSN 1536-1268. doi: http:
//dx.doi.org/10.1109/MPRV.2005.29.

René Reiners. The Patch Panel GUI: A Graphical Devel-
opment Environment For Rapid Prototyping Of Physi-
cal User Interfaces For Ubicomp Environments. Diploma
Thesis, 2006. URL http://www-i10.informatik.
rwth-aachen.de/reiners.html.

Michael Rohs and Beat Gfeller. Using camera-equipped
mobile phones for interacting with real-world objects.
In Alois Ferscha, Horst Hoertner, and Gabriele Kotsis,
editors, Advances in Pervasive Computing, pages 265–271,
Vienna, Austria, April 2004. Austrian Computer Society
(OCG). ISBN 3-85403-176-9.

Salling Clicker. URL http://www.salling.com/.

Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma,
Urpo Tuomela, Kristof Van Laerhoven, and Walter Van
de Velde. Advanced interaction in context. In HUC ’99:

http://www.macromedia.com/software/flashlite/
http://www.macromedia.com/software/flashlite/
www.microsoft.com/powerpoint/
www.microsoft.com/powerpoint/
http://www.forum.nokia.com/main/0,6566,010_400,00.html
http://www.forum.nokia.com/main/0,6566,010_400,00.html
http://www.opensource.org/licenses/artistic-license.php
http://www.opensource.org/licenses/artistic-license.php
http://www.forum.nokia.com/python
http://www.forum.nokia.com/python
http://www-i10.informatik.rwth-aachen.de/reiners.html
http://www-i10.informatik.rwth-aachen.de/reiners.html
http://www.salling.com/


Bibliography 99

Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, pages 89–101, London, UK,
1999. Springer-Verlag. ISBN 3-540-66550-1.

Symbian Series 60. URL http://www.s60.com/.

Technology for Enabling Awareness. URL http://www.
teco.edu/tea.

Teleo. URL http://www.makingthings.com/teleo.
htm.

Daniel Wigdor and Ravin Balakrishnan. Tilttext: using
tilt for text input to mobile phones. In UIST ’03: Pro-
ceedings of the 16th annual ACM symposium on User in-
terface software and technology, pages 81–90, New York,
NY, USA, 2003. ACM Press. ISBN 1-58113-636-6. doi:
http://doi.acm.org/10.1145/964696.964705.

http://www.s60.com/
http://www.teco.edu/tea
http://www.teco.edu/tea
http://www.makingthings.com/teleo.htm
http://www.makingthings.com/teleo.htm




101

Index

API, 15, 17, 33, 44, 45, 61, 64
AwareCon, 11

background application, 58
bluetooth, 18, 23, 29, 31, 39–44, 58, 73, 84, 85, 88, 92, 93

Calder, 18–20
- Global Master, 19
- Programming Infrastructure, 19
- Wired Components, 19
- Wireless Components, 18

CCC Cybelius Maestro, 26–27
- Connectivity Framework, 27
- Plug-in Tool Framework, 27

classes
- particle framework

ConfigureDialog, 63, 65, 67
EventLauncher, 63, 68
Framework, 62, 63, 69
ImagePanel, 69
JFrame, 62
JPanel, 69
ParticleFilter, 69
ParticlePacket, 64
ParticleSocket, 64
Runnable, 64, 68
Scanner, 63–65
SensorConfig, 63, 67, 68

- proxy
iStuffMobileProxy, 73, 75, 77, 78

- smartphone application
CActive, 84, 89
CAknSingleNumberStyleListBox, 91
CBTDiscoverer, 84, 85, 91–93
CBTServiceListContainer, 84, 85, 91–93
CCodeListener, 83–91
CiStuffMobileAppUi, 83
CiStuffMobileContainer, 83
CKeyListener, 88–90



102 Index

CMdaAudioPlayerUtility, 90
CSdpAgent, 93
CSoundPlayer, 89, 90
MMdaAudioPlayerCallback, 90
MSdpAgentNotifier, 92
MSdpAttributeValueVisitor, 92
RApaLsSession, 87
RNotifier, 85
RSocket, 85
RSocketServ, 85
RWindowGroup, 90
TBTDeviceResponseParamsPckg, 85

ContextPhone, 27–30
- Communication, 29
- Customizable Applications, 29
- Sensors, 29
- System Services, 29

D.Tools, 23–25
- Hardware Layer, 24
- Software Layer, 24

event field
- Activity, 41
- Code, 40, 78, 79
- Command, 39, 40, 75, 77, 78
- KeyCode, 41, 51, 76
- Path, 40
- ProfileNo, 40
- Repeat, 40, 78, 79
- ScanCode, 40, 78
- Scancode, 79

event heap, 3–7, 9, 31–35, 37–42, 57, 61, 63, 68, 73–78, 81, 88
- anonymous communication, 4
- default routing fields, 5
- expiration of tuples, 4
- interposability, 4
- query registration, 5
- snooping, 4
- tuple sequencing, 4
- tuplespace, 4

event translation, 7, 9

foreground application, 58
future work, 58–59

incremental integration, 7
interactive space, 2–4
iStuff component, 3, 5–7, 46
iStuff device, 5, 6



Index 103

logical sensor, 21, 29, 30

novel interaction, 1, 2, 57

particle framework, 32, 33
- aps, 36, 66
- crs, 36, 66

patch panel, 3, 7–9, 20, 31–33, 35, 38, 46, 50, 52–55
Phidgets, 15–19

- Phidget ActiveX controls, 17
- Phidget-specific COM objects, 17
- PhidgetsManager, 17
- Wire Protocol, 17

physical device, 5, 15–19, 27
physical sensor, 21, 25, 30, 31, 36, 57
post-desktop, 2
proxy, 5
public displays, 2

sensor board, 10–12, 18, 20, 23, 36, 43
smart-its

- core board, 10–12
- sampling rate, 34, 36, 37
- X-Bridge, 12, 13, 37

smartphone application
- background application, 42–46, 58, 81–84, 86, 88, 90

backlight control, 44
bluetooth communication, 44
camera control, 44
close external application, 44
foreground application key simulation, 44
key capture capability, 44
launch external application, 44
profile control, 44
run application in background, 44
sound playback, 44
vibrator control, 44

- foreground application, 2, 33, 40, 42–46, 87, 88

TEA, 20–23, 51
- Application and Scripting, 22
- Contexts, 21
- Cues, 21
- Sensors, 21

Teleo, 25–26
- Hardware Layer, 25
- Software Layer, 26

template, 4, 5, 75, 77, 78
toolkit, 1–3, 6, 15, 18–20, 23, 25, 26, 30, 32, 49, 57
transceiver, 5, 18



104 Index

tuple, 4–6, 36, 64, 66, 70

wireless, 3, 5, 11, 18, 19, 23, 25, 33, 44, 54



Typeset May 16, 2006


	Abstract
	Acknowledgements
	Conventions
	Introduction
	iStuff Toolkit
	iStuff Architecture
	Event Heap
	iStuff Components
	Event
	Event Communication
	Patch Panel

	Smart-Its Technology
	Smart-Its Architecture
	Smart-Its Core and Sensor Boards
	Smart-Its Communication


	Related work
	Phidgets
	Phidgets Architecture
	Phidgets vs. iStuff Mobile

	Calder
	Calder Architecture
	Calder vs. iStuff Mobile

	The TEA project
	TEA Architecture
	TEA vs. iStuff Mobile

	D.tools
	D.tools Architecture
	D.tools vs iStuff Mobile

	Teleo
	Teleo Architecture
	Teleo vs. iStuff Mobile

	CCC Cybelius Maestro
	CCC Cybelius Maestro Architecture
	CCC Cybelius Maestro vs. iStuff Mobile

	ContextPhone
	ContextPhone Architecture
	ContextPhone vs. iStuff Mobile


	iStuff Mobile Architecture
	Particle Framework
	Scanning Network for Particles
	Configuring Particle Sensor Board
	Particle Packet to Particle Event

	Mobile Phone Proxy
	Mobile Phone Proxy and Mobile Phone Communication
	Event Relaying Process
	User Action Relaying Process

	iStuff Mobile Smart Phone Applications
	Background Application
	Foreground Application

	Visual Programming Support

	Prototyping with iStuff Mobile
	Recreating inspiring mobile phone interaction
	Tilt Scrolling
	Changing Ringing Profile
	Tilt Typing

	Ubiquitous Computing Prototyping Scenarios
	Multi-Screen Presentation Control
	Keyboard Redirection
	Speech Text
	Phone As Accurate Pointing Device


	Summary and future work
	Summary
	Future work

	Particle Framework Implementation
	Framework class
	Scanner class
	ConfigureDialog class
	SensorConfig class
	EventLauncher class
	ImagePanel class

	iStuff Mobile Proxy Implementation
	iStuffMobileProxy class

	iStuff Mobile SmartPhone Application Implementation
	Class CiStuffMobileAppUi
	Class CiStuffMobileContainer
	Class CCodeListener
	Class CKeyListener
	Class CSoundPlayer
	Class CBTServiceListContainer
	Class CBTDiscoverer

	Bibliography
	Index

