
Survey of multiple tree visualisation

a

d

b c

e

Figure 3: Basic types of tree representation – (a) node-link,
(b) nested, (c) adjacency, (d) indented list and (e) matrix
representations.

A fourth representation style is indentation, in which
nodes are listed linearly in order of depth-based traversal
and then indented by an amount proportional to their
depth in the tree. Often, stylised links are drawn to make
parent–child relationships clearer, but this is not always
the case. This is the most common form of tree display
used in contemporary graphical user interfaces (GUIs),
seen in locations such as the folders view of Microsoft
Windows Explorer. In empirical evaluation by Cockburn
and Mackenzie40 this layout has shown to be the objec-
tively preferred choice when compared to other styles of
tree visualisation, though Kobsa41 suggested that much
of this performance advantage is explained by familiarity
because of the ubiquitous presence of Microsoft Windows.

Finally, individual trees can also be displayed via a
matrix representation, but this tends to be less common
than the previous styles for good reason. Firstly, this
is because of the difficulty in following edge paths in
matrices, as recognised by Shen and Ma.42 In Figures 3(a),
(c) and (d), it is clear that D is a ‘grandchild’ of A, and
while slightly trickier in the case of the nested repre-
sentation in Figure 3(b) (Lü and Fogarty43 discuss how
variation in nested representations can greatly affect
this property), in the matrix representation the A–B and
B–D edges need to be discerned independently and then
combined, making the relationship much more diffi-
cult to deduce. A second issue is that essentially a single
tree is not complicated enough in structure to warrant
a matrix representation. One of the main reasons cited
for using matrices to visualise graph types is that they
eliminate edge crossings that occur in other graph repre-
sentations, but a single tree can always be drawn with
no edge-crossings in the other representations and so
this reason no longer applies. Further to this point, a tree
with N nodes has N − 1 edges, and thus when displayed
as a matrix will only fill the square root of the total N2

possible entries, making it highly space-inefficient.
All the layout styles have associated advantages

and disadvantages and the choice of representation is

depending on the tasks that are to be performed with
the structures and the semantics of the data concerned.
Generally node-link representations are more understand-
able to the lay-person and communicate structure readily,
but use up screen space rapidly. Nested representations
allow more nodes to be displayed at once but structure is
more difficult to perceive due to lacking a global child-
parent orientation, plus they emphasise leaf nodes at the
expense of internal nodes. The adjacency and indented
list methods strive for a halfway house between these two
styles, utilising a higher proportion of screen space than a
node-link display, yet making structure relatively simple
to follow. Finally, the matrix reduces the tree essentially
to a look-up table. These basic layout styles are the foun-
dation for all tree visualisations that display internal tree
structure, and the styles themselves can be combined
within a visualisation of a single tree as demonstrated by
Zhao et al,44 in which portions of the tree are drawn as
either nested or node-link representations dependent on
screen space and user interaction. Further, Nguyen and
Huang’s EncCon technique.45 combines the enclosure
and node-link approaches across an entire tree; the tree
nodes being positioned using an optimised nested layout
algorithm and then connected with links.

Multiple tree models × Multiple tree representations

A logical starting point to categorise multiple tree visual-
isations is to distinguish whether ‘multiplicity’ is based
on the number of trees displayed, or the number of trees
modelled in the structure, or both. Table 1 shows a brief
tabular summary of this categorisation and the four basic
cases it produces – with the simplest case of a single tree
model represented as a single tree visualisation being
covered in the previous section.

The second case covers the scenario of one tree model
visualised many times; for instance Wilson and Bergeron’s
dynamic hierarchy visualization46 can display multiple,
differing representations of the same hierarchy, but does
not display multiple structures. A similar caveat applies
to Urbanek’s KLIMT system,47 Schedl et al’s48 stacked
radial tree visualisation and Teoh’s more recent work49

on multiple views for trees. Kules et al50 explore the
situation of simultaneously using two different, linked
representation styles of the same tree – one nested and
one node-link representation.

Of more interest to us are the approaches that deal with
multiple instances of trees in the data we wish to visu-
alise, and these can be divided into visualisations that are
shown as a single tree or show multiple trees. The former
case tends to be visualisations built for hierarchical facet
exploration, such as MoireTrees51 and Facet Folders,52

that try and give a fluid single tree view over a multi-
hierarchical structure for ease of navigation. The latter case
is that of visualisations that display multiple representa-
tions of multiple trees. Here there may not be a universal
coverage of leaves by each hierarchy – some may have

© 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 4, 235–252 239

 at Hochschulbibliothek RWTH Aachen on April 15, 2011ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/

