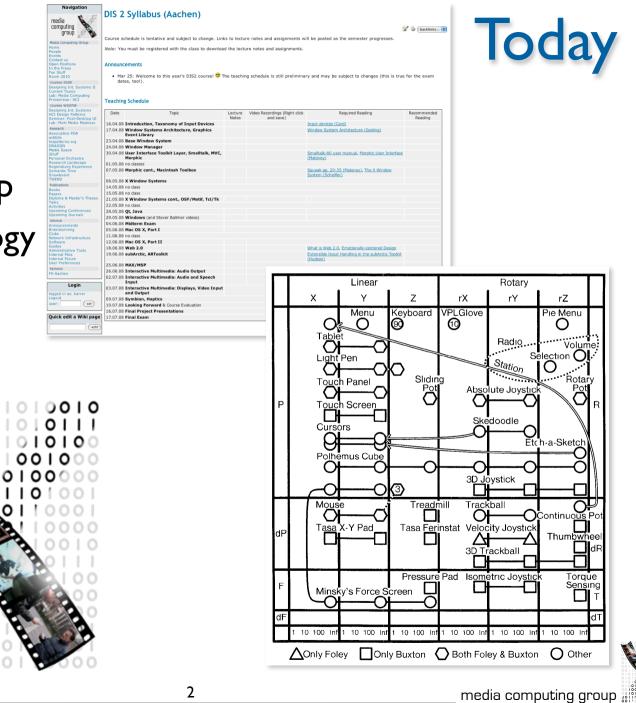


Designing Interactive Systems II

Computer Science Graduate Program SS 2011

Prof. Dr. Jan Borchers

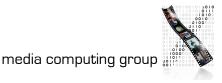
Media Computing Group RWTH Aachen University


http://hci.rwth-aachen.de/dis2

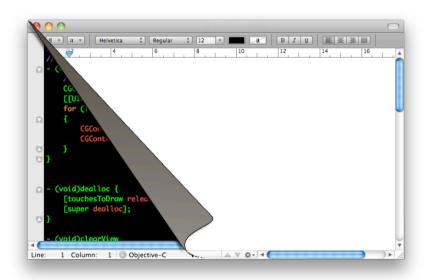
- Class syllabus ${\color{black}\bullet}$
- About our group ullet
- Device technology ullet

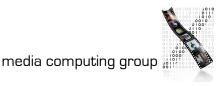
0 ο

О



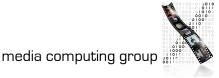
Administrivia

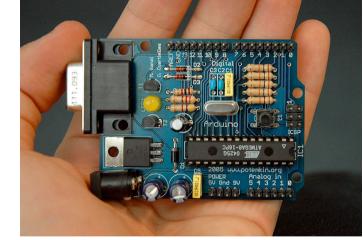

- Format: V3/Ü2
- Lecture: Wednesday, 9:00-12:00
- Lab: Monday, 14:15–15:45
- 6 credit points
- Final grade:
 - 50% midterm exam + 50% final exam
 - Use good exercise grades to gain points for the exams
- Lecture recordings on iTunes U



- What makes a UI tick?
- Technical concepts, software paradigms and technologies behind HCI and user interface development

Class Syllabus

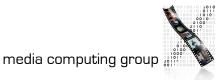

- Part I: Key concepts of UI systems
 - Device technologies
 - Window System Architecture Model
- Part II: Comparing seminal window systems
 - Mac, X/KDE, Java/Swing, Windows, NeXT/OS X, ...
 - Paradigms & problems, designing future UI systems
 - Overview of UI prototyping tools
- Part III: UIs Beyond The Desktop
 - Think beyond today's GUI desktop metaphor
 - Uls for Mobile, Physical Computing, Ubicomp, Multimedia

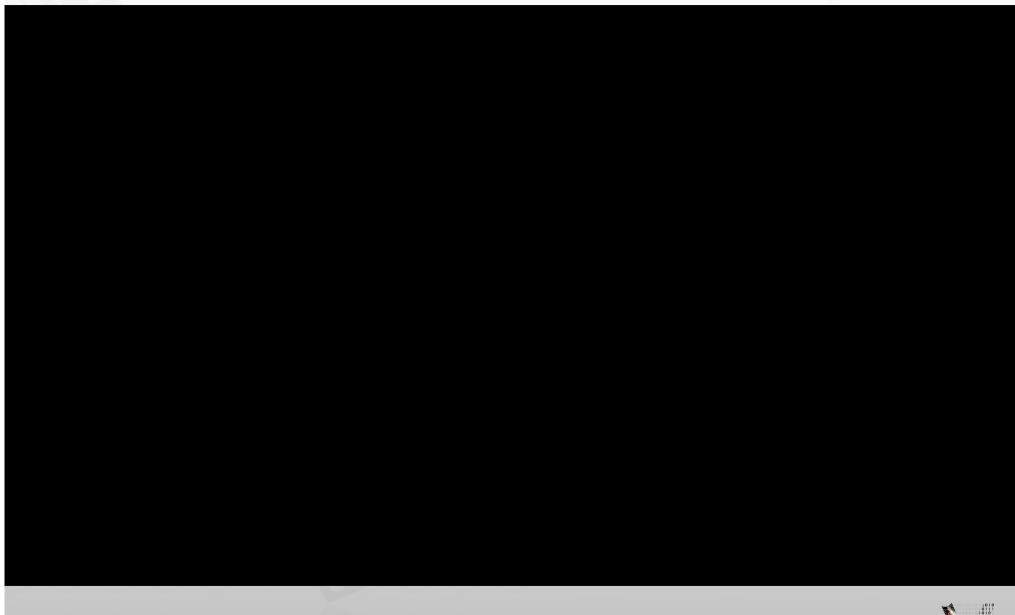


Jan Borchers

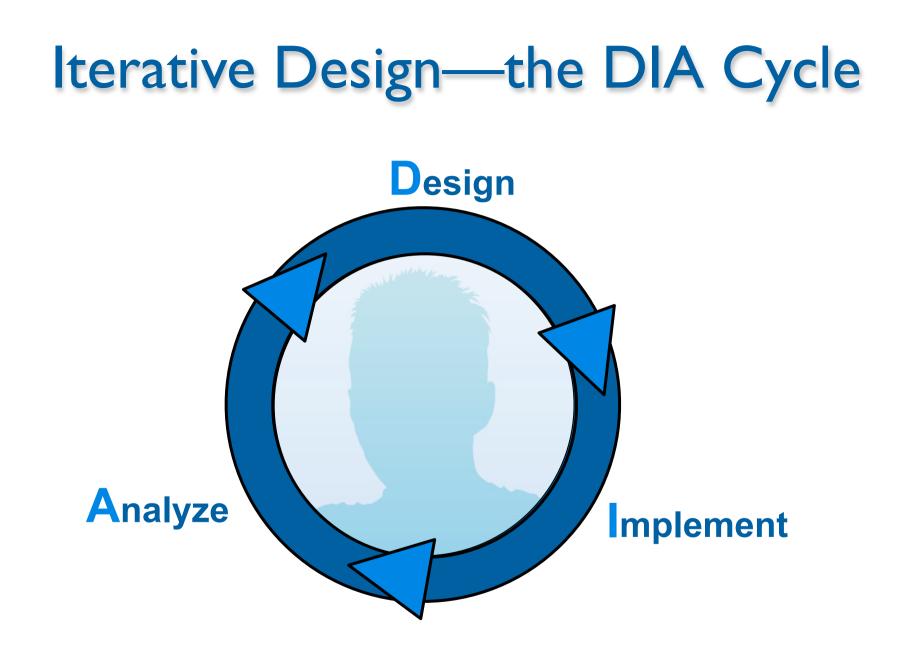
The Lab

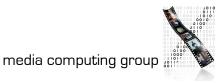
- Lab session on Mondays (14:15–15:45)
 - Part I: Implementing your own simple window system
 - Part II: Development using several existing GUI toolkits
 - Part III: Working with iPhone, Arduino, etc.
- The Fab Lab:
 - Easy prototyping of
 - Embedded circuits
 - Physical components




- Prof. Dr. Jan Borchers
- Dipl.-Inform. Moritz Wittenhagen
- Dipl.-Inform. Florian Heller

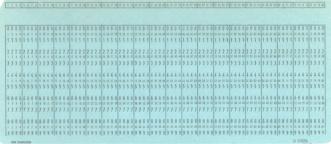
Current Research Projects




How DIS I and DIS II Cover HCI

Jan Borchers

9

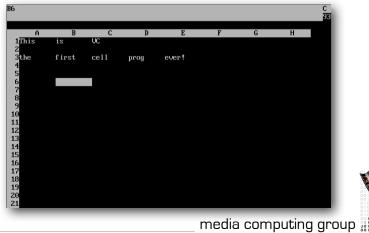


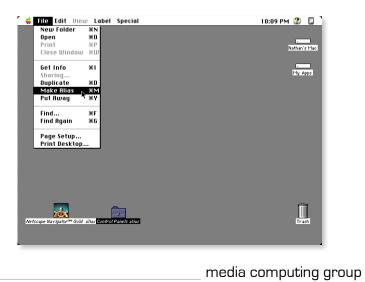
(Done in DIS I to understand the new interaction metaphors,

reviewed here to understand the new programming paradigms)

- Batch-processing
 - No interactive capabilities
 - All user input specified in advance (punch cards, ...)
 - All system output collected at end of program run (printouts, ...)
 - → Applications have no user interface component distinguishable from File I/O
 - Job Control Languages (example: IBM3090–JCL, anyone?) specify job and parameters

- Time-sharing Systems
 - Command-line based interaction with simple terminal
 - Shorter turnaround (per-line), but similar program structure

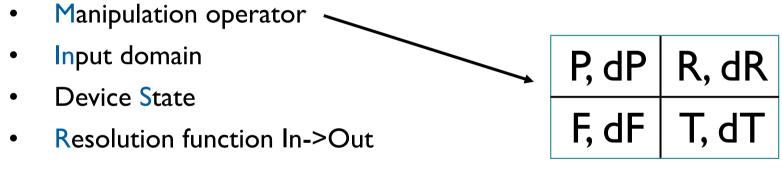

- → Applications read arguments from the command line, return results
- Example: still visible in Unix commands
- Full-screen textual interfaces
 - Shorter turnaround (per-character)
 - Interaction starts to feel "real-time" (e.g. vi)
 - → Applications receive UI input and react immediately in main "loop" (threading becomes important)



Menu-based systems

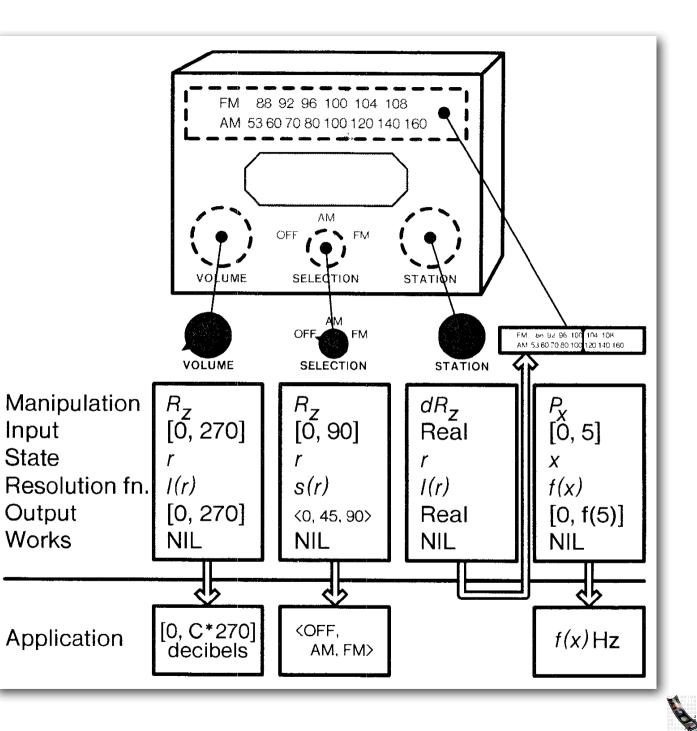
- Discover "Read & Select" over "Memorize & Type" advantage
- Still text-based!
- Example:VisiCalc
- \rightarrow Applications have explicit UI component
- But: choices are limited to a particular menu item at a time (hierarchical selection)
- → Application still "in control"

- Graphical User Interface Systems
 - From character generator to bitmap display (Alto/Star/Lisa..)
 - Pointing devices in addition to keyboard
 - \rightarrow Event-based program structure
 - Most dramatic paradigm shift for application development
 - User is "in control"
 - Application only reacts to user (or system) events
 - Callback paradigm
 - Event handling
 - Initially application-explicit
 - Later system-implicit

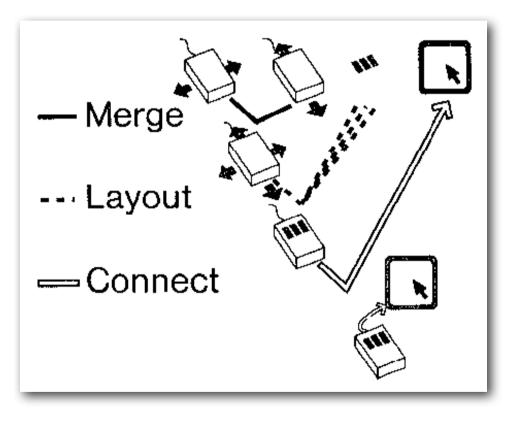

Design Space of Input Devices

- Card, Mackinlay, Robertson 1991
- Goal: Understand input device design space
 - Insight in space, grouping, performance reasoning, new design ideas
- Idea: Characterize input devices according to physical/ mechanical/spatial properties
- Morphological approach
 - Device designs = points in parameterized design space
 - Combine primitive moves and composition operators

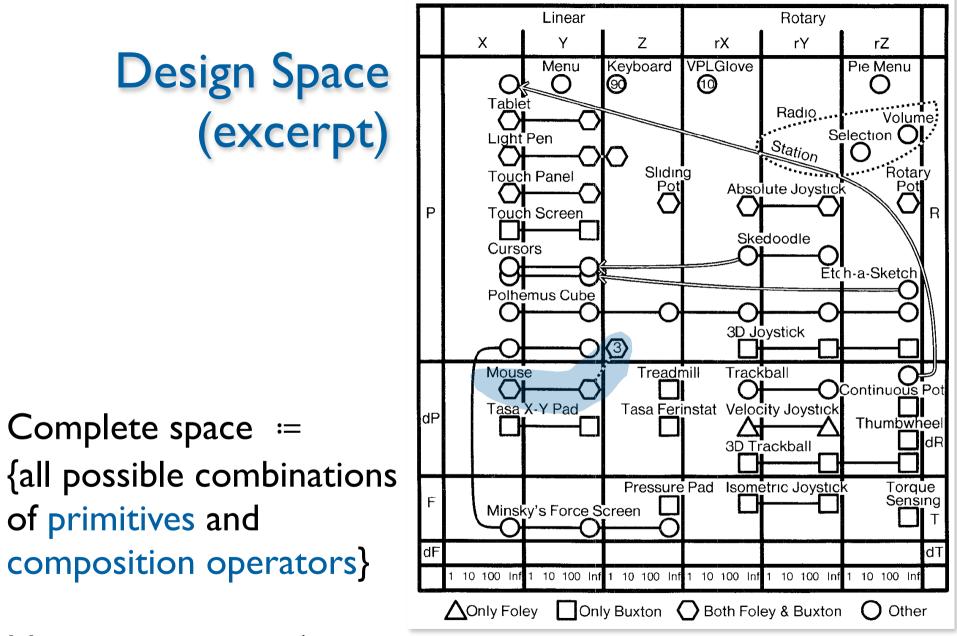
Primitive Movements


- Input device maps physical world to application logic
- Input device $\approx \langle M, In, S, R, Out, W \rangle$

- Output domain
- Additional work properties




Radio Example



Composition

- Merge
 - Result = Cartesian product
 - E.g., mouse coordinates:
 X⊕Y = {(x, y)}
- Layout
 - Spatial collocation
 - E.g., mouse (x, y) & buttons
 - How different from merge?
- Connect
 - Chaining
 - E.g., mouse output & cursor
 - Virtual devices

In-Class Group Exercise: SpaceBall

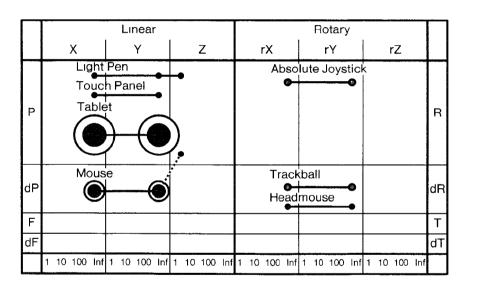
- Place the SpaceBall into the design space
 - Ball mounted on a plate with 12 buttons
 - Detects precise amount of pushing and twisting in all directions without moving
 - Auto-zeroes physically

Is This Space Complete?

- No—it focuses on mechanical movement
 - Voice
 - Other senses (touch, smell, ...)
- But: Already proposes new devices
 - Put circles into the diagram and connect them

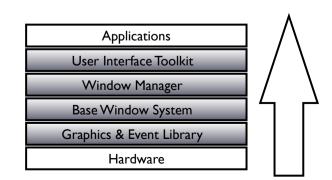
Testing Points

- Evaluate mappings according to
 - Expressiveness (conveys meaning exactly)
 - Effectiveness (felicity)
- Visual displays easily express unintended meanings
- For input devices, expressiveness suffers if $|\ln| \neq |Out|$
 - |In| < |Out|: Cannot specify all legal values
 - |In| > |Out|: Can specify illegal values



- How well can the intention be communicated?
- Various figures of merit possible
 - Performance-related
 - Device bandwidth (influences time to select target, ergonomics and cognitive load)
 - Precision
 - Error (% missed, final distance, statistical derivatives)
 - Learning time
 - Mounting / grasping time
 - Pragmatic
 - Device footprint, subjective preferences, cost,...

Example: Device Footprint


- Circle size ≔ device footprint
 - Black: with 12" monitor
 - White: with 19" monitor
- What do we see?
 - Tablet, mouse expensive
 - Worse with larger displays
- But:
 - Mouse Acceleration alleviates this (model of C:D ratio?)
 - Higher resolution mice

Now: Window Systems Part 1

- Window System Requirements
- 4-Layer Model
- Graphics and Event Library

Window Systems: Basic Tasks

- Basic window system tasks:
 - Input handling: Pass user input to appropriate application
 - Output handling: Visualize application output in windows
 - Window management: Manage and provide user controls for windows
 - This is roughly what our Simple Reference Window System will be implementing

Window Systems: Requirements

- Independent of hardware and operating system
- Legacy (text-based) software support (virt. terminals)
- No noticeable delays (few ms) for basic operations (edit text, move window); 5+ redraws/s for cursor
- Customizable look&feel for user preferences
- Applications doing input/output in parallel
- Small resource overhead per window, fast graphics
- Support for keyboard and graphical input device
- Optional: Distribution, 3-D graphics, gesture, audio,...

In-Class Exercise: Window Systems Criteria

- In groups of 2, brainstorm criteria that you would look at when judging a new window system
- We will compile the answers in class afterwards

Window Systems: Criteria

- Availability (platforms supported)
- **Productivity** (for application development)
- Parallelism
 - external: parallel user input for several applications possible
 - internal: applications as actual parallel processes
- Performance
 - Basic operations on main resources (window, screen, net), user input latency—up to 90% of processing power for UI
- Graphics model (RasterOp vs. vector)

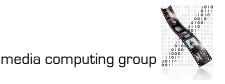
Window Systems: Criteria

- Appearance (Look & Feel, exchangeable?)
- Extensibility of WS (in source code or at runtime)
- Adaptability (localization, customization)
 - At runtime; e.g., via User Interface Languages (UILs)
- Resource sharing (e.g., fonts)
- Distribution (of window system layers over network)
- API structure (procedural vs. OO)
- API comfort (number and complexity of supplied toolkit, support for new components)

Window Systems: Criteria

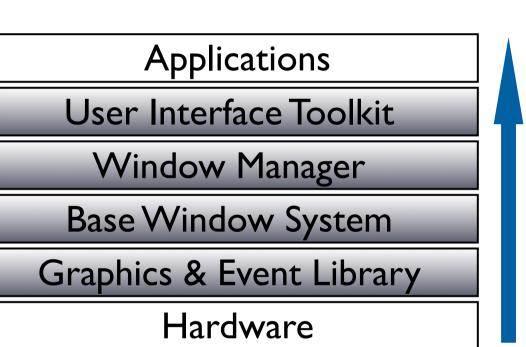
- Independence (of application and interaction logic inside programs written for the WS)
- IAC (inter-application communication support)
 - User-initiated, e.g., Cut&Paste

Technique	Selection	Clipboard	DDE	OLE
Duration	short	short	medium	long
Data types	special	special	special	any
Directed	yes	no	yes	no
Relation	1:1	m:1:n	1:1	m:n
Abstraction	low	low	medium	high



Window Systems: Conflict

- WS developer wants: elegant design, portability
- App developer wants: Simple but powerful API
- User wants: immediate usability+malleability for experts
- Partially conflicting goals



- Architecture model shows if/how and where to solve
- Real systems show sample points in tradeoff space

The 4-Layer Model of Window System Architectures

- Layering of virtual machines
- Idealized system model
- Where is the OS?
- Where is the user?
 - Physical vs. abstract communication
 - See ISO/OSI model

more abstract, user-oriented

Jan Borchers

The 4-Layer Model of Window System Architectures

- UI Toolkit (a.k.a. Construction Set)
 - Offers standard user interface objects (widgets)
- Window Manager
 - Implements user interface to window functions
- Base Window System
 - Provide logical abstractions from physical resources (e.g., windows, mouse actions)
- Graphics & Event Library (implements graphics model)
 - High-performance graphics output functions for apps, register user input actions, draw cursor

What to do next

- Register in CAMPUS
- For next lab(!), read:
 - Stuart K. Card, Jock D. Mackinlay and George G. Robertson: "A morphological analysis of the design space of input devices", ACM Transactions on Information Systems, 9(2), 99-122, 1991
 - Window System Architecture chapter from Gosling's NeWS book (James Gosling, David S. H. Rosenthal, and Michelle J.Arden, "The NeWS Book", Springer-Verlag, 1989, Chapter 3)
- See the L2P course room for all materials

