End User Programming

Christian Brockly Klaus Meyer
RWTH Aachen RWTH Aachen
Templergraben 55 Templergraben 55
52056 Aachen, Germany 52056 Aachen, Germany
Christian.Brockly@rwth-aachen.de Klaus.Meyer@rwth-aachen.de
ABSTRACT able interfaces. For example, modern office suites and op-

There has always been and there will always be a wide gulf erating systems provide so-callegicro recorderghat sim-
between creators and users of computer programs. Whileply record the actions that the user performs and create a
only a few users actually know how to program in usual pro- program out of them, sometimes even in an imperative lan-
gramming languages, almost all users want to modify exist- guage Spreadsheetsre somehow paper-style tables extended
ing applications by adding additional features or spenifyi by features that let end users define automatic calculations
their behavior, and even inventing new ones becomes im-diagrams.Visual programmingnterfaces like Max/MSP or
portant when looking at technology-enriched homes. There LabView let users connect visual components by a plug and
would be a greater benefit of the added technology when cable metaphor to compose their programs. Recent develop-
users were able to decide how their devices should work andments likewikis andblogs where common internet users are
react instead of just using the pre-defined actions. enabled to create complex web pages and huge databases,
follow the idea of end user development as well—very suc-
That is the point wherEnd User Programmin@EUP) comes cessfully. And all of them have one in common, they require
into play. This paper shows the importance of providing no coding but just visual-based development.
more natural and intuitive programming tools for end users,
gives an overview on different styles of End User Program- End User Programming becomes important when it comes to
ming, presents some example applications that are alreadyubiquitous computing in home environments. In technology-
implemented and gives an outlook on possible future devel- enriched homes it is not obvious how the technology is con-
opments. trolled. Instead of supplying many separated task specific
applications to the end users, it is more effective to let the
users specify themselves how to use the available ubicgiitou
1. INTRODUCTION technologies.
End User Programming, or in general End User Develop-
ment, is a research topic within the field of human com- 1.1 Threshold and Ceiling

puter interaction, concerning techniques to enable entsuse Threshold and ceiling are important aspects of user interfa
to create and modify (extend as well as adapt) applicationstggls: Thethresholdis how difficult it is to learn using a sys-
for their needs. tem, and theeilingis how much can be done with|it [10]. Of

) . course the goal is a system with low threshold and high ceil-
Usually, a software developer has a degree in computer sCi-ing. we will discuss threshold and ceiling of each example
ence or taken courses in software engineering. His primary system in the following sections.
job function is to write and maintain software [11]. There-
fore he knows how to write a program in a programming
language, uséor- andwhile-constructs and create class hi- 2. APPROACHES TO EUP
erarchies, while, in general, he is not an expert in the field
that his software serves for. The experts are on the user side
Constabile et al| [4] call therdomain-expert useras ‘they
are experts in a specific domain, not necessarily experts in
computer science, who use computer environments to per-
form their daily tasks Therefore it should be their task, orat o \jsual Programming
least they should be enabled, to decide how a computer pro-
gram acts. According to Myers et al. [11], they then would e Programming by Demonstration

be “End User Programmers, people who write programs, but .
not as their primary job function.” e Better support by the development environment

This section gives an overview over the different approache
to End User Programming. The research focuses in this area
can be grouped in these four categories:

e Simplified textual languages

End User Programming is not limited to programming tasks 2.1 Simplified Textual Languages

as we know them from usual programming languages. It The most naive approach to enable end users to write pro-
is more a principle that is used to enable users to include grams is to create programming languages which are easier
their knowledge and ideas in their computer software. Of- to learn and to use. The probably first language which tries

ten natural metaphors are used to provide easily understandto achieve this goal was BASIC, developed in the 1960s,

which stands foBeginner’s All-purpose Symbolic Instruc-
tion Code Many other programming and scripting languages
followed, e.g. HyperTalk for Apple’s HyperCard, or Action-
Script for Adobe Flash. However, all those languages are
still not really suitable for end users for the same reasons:
Users still have learn the syntax and have to deal with unfa-
miliar programming concepts like abstraction, variabéesl
loops.

2.1.1 Chickenfoot
A step in the right direction i€hickenfoot, an automation
tool for the Firefox browser by Bolin [2, 3]. Using Chicken-

foot, end users can manipulate the appearance of web page

without knowing their source code. It serves as an interface
to JavaScript, but instead of having a fixed syntax it uses
keyword pattern matching: By recognizing keywords in the
command, Chickenfoot determines the action. All parame-
ters refer to the web page appearance, not to the source cod
For example, the keywordd i ck, pr ess, andpush de-
note clicking a link or a button on the web page, so on the
Google home page the command

click feeling |ucky

is sufficient to invoke a click on the button “I'm feeling lugk
To avoid ambiguity, such commands can also be written like
JavaScript function calls:

click("feeling |ucky")

Due to the flexibility and the lack of a fixed syntax Chick-
enfoot is very easy to learn and almost intuitive to use. For
simple programming web automation tasks, the threshold is
relatively low. However, for more complex scripts the pro-

grammer needs a deeper understanding of JavaScript's con-

cepts, so there is a second thresholavadl, which is still
lower than the JavaScript threshold but may be too high for

end users. The ceiling of Chickenfoot is the same as the high®

JavaScript ceiling.

2.1.2 HANDS

Pane [14] conducted user studies to investigate how peo-

ple, especially children, solve problems and think aboat pr
gramming tasks. The goal is to develop programming sys-

tems and tools which enable users to program in a more “nat-

ural” way, thus Myers et al. call this approablatural Pro-
gramming[12].

Some results of the studies were:

e Event-based structure: The program description devel-

oped by an end user is usually not flow-based (with loops

and branches) but rather event-based or rule-based, that is
events are described and how the program should react top

them.

Aggregate operations:A typical pattern was the use of

aggregate operators, which operate on a set of objects in-
stead of on just a single object. Such operations were pre-

http://groups.csail.mit.edu/uid/chickenfoot/

136 F a5

Figure 1. The GUI of the HANDS programming system. The dog

Q-Iandy in the upper left corner visualizes the execution of inguctions

by manipulating cards.

ferred to iterations through the set. An example for an
aggregate operation is “Set a, b, and ¢ to 0” instead of
“Setato0,bto0,andcto 0.

e Content-based queriesThe use of control structures like
lists or sets is not stated explicitly but rather implieds@ll
the construction of subsets of existing sets was only im-
plied using queries, e.g. in a PacMan game, a set was ref-
erenced with “all of the blue monsters.” So again, iterating
a set was untypical for end users.

e No boolean expressions:The participants did not use
Boolean expressions very often, and it turned out that they
have a different interpretation from usual programming
languages. In 2.2.4 we show how to overcome this prob-

lem.

Visual vs. Textual: Although the participants used textual
descriptions for actions and behaviors, they often used a
visual representation of the overall program layout.

The programming systemuman-centered Advances for the
Novice Development of Softwa(elANDS) was designed

based on these results. Some aspects are represented visu-
ally instead of textually, the language is event-based,itand
features aggregate operations and content-based queries.

All objects in HANDS are represented bgrds which have
user-defined properties. The program execution, thatés, th
manipulation of cards, is represented by an Agent called
Handy (see Figure|1).

The keywordal | denotes a query. If it is followed by only
ne word, it matches all cards which have this value in any
roperty, e.g. if all cards representing flowers have thepro
ertygr oup instantiated witl | ower , they are matched by
the query

0

all flower

It is even allowed to append a plural-s, fSsoower s works

as well. Conditions are also possible, e.g.:
all (nectar < 100)

Since queries return lists of cards, queries and aggregate o
erations can be combined. In a limited version of HANDS

tions that record events for convenience, e.g. to keep track
of the car key.

e Preserve Memories of Experiences:Applications that
record events in advance so that no special memorable
events are lost, e.qg. if there is no handheld camera nearby.

which does not support aggregate operators, it is necessary

to iterate through a list:

with flowerList calling each flower
set the nectar of the flower to O
end with

In the full version of HANDS, an aggregate operation sim-
plifies this a lot:

set the nectar of all flowers to O

A study with children showed that the participants were more
successful in solving programming tasks using HANDS than
using a limited version of HANDS, which did not feature

gueries and aggregate operations and had reduced data vis

bility. Overall, the participants enjoyed the full versiorore
and found it less difficult than the limited version. Thus,

HANDS has a very low threshold and is suitable as program-

ming system for beginners, especially for children. Itd-cei
ing is moderate: One the one hand, HANDS allows for pro-

gramming reasonably complex games and general programs

e.g. a prime number calculation, but it lacks modularity and
abstraction. It is not possible to create subroutines, lwhic
are essential for higher complexity.

2.1.3 CAMP: Capture and Access Magnetic Poetry

CAMP [18] is a programming system which enables end
users to build ubicomp capture-and-access applicatians fo
their home. The actions supported by CAMP aspture
access anddelete and the possible capture data types are
still-pictures audio, andvidea CAMP requires that the used

technology is context-aware, i.e. it can recognize the con-

texts of people and objects, such as locations and activitie

Many participants perceived the system agfi@ctor which
executes user commands. However, some participants per-
ceived it as arassistantwhich helps the user performing a
task, and some perceived it as a hybrid of effector and as-
sistant. Common to all models is the use of the “W dimen-
sions”, i.e.who, what, where andwhen to describe capture
situations.

CAMP Design

Initially the vocabulary and the layout of the magnetic po-
etry GUI were designed based on this study, in particular all
words are grouped in the categoneso, what where when
andgeneral Users can drag words from the vocabulary area
fo the authoring area and arrange them to phrases (see Fig-
ure[2). They can also add new words to the vocabulary and
define their meaning, e.gdihner happens between 7 and 9
PM in dining rooni to define “dinner.”

When the “run” button is pressed, CAMP processes the phrase
and gives feedback by displaying an interpretation in the in
terface. First the phrase is simplified and normalized by re-
placing synonymous expressions, egjatting at 7 PM cap-

ture kitchen for 2 hoursis rephrased to between 7:00 PM
and 9:00 PM record kitcheh Then the phrase is decom-
posed into sub-clauses, especially when the Boolean con-
nectives “or” or “and” are involved. To resolve conflicts and
ambiguity, CAMP assigns priorities to the used statements
and assumptions, so that explicitly stated values are more
important than implicit ones. For example, icdpture din-

ner everywherethe word “everywhere” overrides the fact
that dinner happens in the dining room. If a dimension is
missing, e.g. the time is not specified, it is marked so that
the user can refine the phrase.

The user interface is based on the magnetic poetry metaphora common pattern in the study was that the participants

Magnetic poetry sets consist of small magnetic tiles which
are typically put on a refrigerator door. Each tile has a word

made implicit assumptions about the type of recording tbey.
used statements like “record conversations” without gpeci

or aword fragment printed on it, so the tiles can be combined ing “audio” recording. CAMP takes that into account. If no

to form phrases or “poems.” The advantage of magnetic po- recording type is specified, recording of still-picturesis
etry is that end users can use a natural language to createmed.

flexible applications but they are also restricted by the vo-
cabulary, which allows for evaluation of the formed phrases
by the system.

User Study

Because of the magnetic poetry metaphor, CAMP works sim-
ilar to the keyword pattern matching of Chickenfoot, so it

mainly uses the approach of “better textual languages.” It
also relies on extensive support by the development envi-

CAMP was developed based on a user study to find out howronment, since this controls the availability, visibilitgnd
end users perceive and describe home applications for caparrangement of the tiles.

ture and access. The authors collected ideas and desgsiptio
for such applications and found the following categories:

e Provide Peace of Mind: Applications that make users
feel secure, e.g. by monitoring their children.

e Collect Records of Everyday Tasks/Objects:Applica-

Preliminary Evaluation

The authors of CAMP conducted a preliminary evaluation
to verify the assumptions on which the CAMP interface is
based. The results were similar to the results of the ini-
tial study: The applications invented by the participaats f

HHo: Eﬂf-:i- g) NEH, HAGNET
R N - ™

wrere: [g
WHEN: e

WHAT:
GENERAL:

=g
b =—

“always record pictures of baby |

RUN BUTTON

POEM
AUTHORING
AREA

Billy and display at my location

IETERPRETATION
a picture of baby Billy” AREA

Figure 2. The CAMP interface consists of a vocabulary area, ag@em authoring area, and an interpretation area. To form poens, the user can drag
magnets from the vocabulary to the authoring area. When presing the “run” button, CAMP displays an interpretation.

into the three categories mentioned above, and all partici- defined and shown. Each VI has inputs and outputs which
pants were able to describe their applications easily usingcan be connected by wires. Not only virtual components are
the CAMP interface, so the vocabulary seems to be suffi- available but real world control and measure instrumems ca
cient for most capture-and-access applications. Not all ap be controlled and used to deliver data.

plications were correct the first time but it was no problem to

correct them. Overall, the participants found the CAMP in- With newer version even object-oriented programming has
terface easy to learn and intuitive to use. This shows tleat th become possible, including inheritance and polymorphism.
CAMP system has a low threshold. The ceiling is just high Even multithreading, here eveautomatic parallelization
enough so that the system serves its purpose very well: Thecan be used by simply building up two independent data
development of ubicomp capture-and-access applications. flows.

The other environmeniMax/MSR is a similar programming
environment for multimedia applications. It offers a véyie

of components that are to be plugged together by wires to
build up a data flow. Again, these components provide input
and output plugs as a visualization for giving data to a func-
“tion and reading the computation results. Max/MSP enables
even hobby musicians to develop real time audio and video
' processing interfaces.

2.2 Visual Programming
There exists a variety of visual programming environments
which generally try to visualize code by some kind of flow

diagram. Visual programming languages can be further clas-
sified into diagram-based, icon-based and form-based lan
guages. We will first take a look at two popular implementa-
tions of diagram-based languages, LabVIEW and Max/MSP
then discuss the principle of form-based applicationshat t

end we will show approaches for enabling users to visually g, | ahv/IEW and Max/MSP have full expressive power in
construct boolean expressions and define ubicomp applicay,qgjean logic and come with a huge set of predefined com-

tions, which do not fit exactly into the three mentioned cate- ponents. Actually, they provide a full higher programming

gories. language and although LabVIEW and Max/MSP thus have
got a very high ceiling factor, simple programs can be build
2.2.1 Diagram-based languages up easily with low threshold. More complex programs using

Diagram-based languages usually use a data flow metaphorall functionality (or only half of it), as in every other high

e.g. the data is sent to and received from visual componentsprogramming language, need to be planned carefully to keep
via wires plugged into slots, usually on the upper (input) an the structures clean and understandable. One major problem
lower (output) side. In general, an input serves for connect in handling complex programs of diagram-based visual pro-

ing one wire while output slots support connecting multiple gramming languages is obviously the lack of flexibility when
ones. refining code. If new actions are to be included the existing

components and wires need to be rearranged or enclosed in
LabVIEW(Laboratory Virtual Instrument Engineering Work- subroutines to provide enough space to insert the new ones.
bench) is a system designed to enable primarily scientist to
perform and control tests, measure their outcomes and eval-2.2.2 Form-based languages
uate or even visualize them. So-called Wstual instru- Form-based visual programming environments provide an
ments have the same meaning as methods in imperative lan-interface for the creation and manipulation of cells on ferm
guages. They can be combined to build up new virtual in- The cells’ values can be either specific values, or formulas
struments and further consist of two sides. One the one sidethat reference values contained in other cells. The underly
the developer can specify the actions by arranging and con-ing evaluation engine then recalculates all influencedeslu
necting VIs, on the other side a graphical interface can be whenever a cell’s value is changed or formula is redefined.

objects that match objects that match

[I
[1
[[

Figure 4. Two conjunctions combined to one disjunction usig match
forms.

Figure 3. Jigsaw pieces used to combine the doorbell with a Wweam

and a portable display As said before the the jigsaw editor does not aim at program-

ming devices but only at reconfiguring them. Therefore the
expressive power is quite restricted. iCAP and CAMP pro-
The most prominent examples of such languages are spready/9€ the user with much more freedom in defining complex
o action sequences. On the other hand, even very unexperi-
sheet applications. ; - ;
enced users can rapidly use the jigsaw editor. Thus, we have

Research [16] has shown that the main problem of form- 90t 0w ceiling and low threshold.

based visual programming languages is that errors are fre- o)

quently commited and that users have low confidence in the 2:2-4 Match forms for defining boolean expressions

reliability of their programs. This tells us that for the effi A user study conducted by Myers and Pane [13] revealed
cient and correct use of such environments much effort hasthat users have certain problems with accurately defining
to be done. Depending on the complexity of the particular Poolean expressions using textual methods whereas the use

form-based language the user encounters both a high ceiling?f so-called match forms has a significant impact on improv-
and a high threshold. ing the performance. The main problems were the following

ones.

1. Users interpret the AND operator depending on the con-
text. Inselect the objects that match blue and cir&lD

is generally interpreted correctly, while gelect the ob-
jects that match blue and the objects that match circle
55% of the users read it as a disjunction.

2.2.3 Icon-based languages
As an example of icon-based visual programming languages
we will discuss the model gigsaw pieceq7] for config-
uring applications for technology-enriched home environ-
ments.

, , 2. Users assign to the NOT operator a higher priority in OR
As user studies showed that users are more interested in clauses while AND clauses are in general interpreted cor-
kn0W|ng hOW the|r deV|CeS are Intel’connected than In ac- rectly (Se|ect the Objects that match not red and Square

tually programming them, the jigsaw editor was constructed andselect the objects that match not triangle or grgen
to let them easily define connections and simple action se-

quences. In the jigsaw editor users can connect jigsawpiece3. Users misinterpret parentheses assitect the objects that

which act agligital/physical transformerscomponents tak- match (not circle) or blue
ing physical or digital effects and each transforming them _)
into the other type. For deeper semantic actitigéal trans- Figure[4 shows match forms that let users define attribute-

formersare used. This component class can perform calcu- value pairs on cards which themselves can be put onto other
lations on digital information. One piece can consist of one cards. Statements on the same form are then interpreted as
or more transformers. Coupling of pieces is done in a left to & conjunction while distinct forms adjacent to each other ar
right fashion, providing the image of an information flow. ~ combined to disjunctions. In other words, match forms in-
terpret horizontal arrangement as disjunction and veidica
The editor is composed of two panels. On the upper one therangement as conjunction. A precedimgt negates the cor-
user can select all available pieces which are automaticall responding match form. The study then showed that users
collected in a distrubuted dataspace to which the installed perform significantly better in generating queries usingama
ubicomp devices export their properties. The lower one is forms than using text.
the actual workspace serving for the assembly of pieces. To
avoid assembling pieces that would not result in plausible a Both ceiling and threshold level of match forms are very low,
tions those pieces are shadowed and disabled when the usdiut this model helps to understand how to enable users to
tries to establish connections. When two or more pieces arespecify boolean expresions easily, a problem which is of-
put together the underlying engine connects the correspond ten underestimated. We will look at iCAP now, an applica-
ing input and output properties (if there are multiple corre tion that enables users to configure context-aware dewices i
sponding properties a dialog will ask the user to choose the technology enriched homes, which uses Myers’ match forms
desired one). As an example, Figure 3 shows how a webcamto formulateif-then-rules
can be configured to take a photo and send it to a portable
display device when the doorbell button is pushed. 2.2.5 iCAP, an icon-based programming environment

£ Cortobun ; mER)

Foes Situation Sheets
) [y phone Inputs That Match \ﬂputs That Match
[Activity
Y shone sensor acation: kitchel Joe | Locatior: outsids
]j&.é::ii:: sensor phona-ssnacr Jjfiocation: ichar—onoesliloa 0 =
2 T ootz B
[default location T i L B
[People gt Mo N
S a8 ﬁ E 4 3
=3 Time 2 518 B & 2 i
" music sensor phone sensor Lacation: kitthen =3 |
‘Repasntory [j E ' s
@ gt B
—_— ko
|_Repository [Rutes | L 5

Narne: phone Actions

Category: Sound —— Location Kitthen =

phone % &

Type: Binary . il =k Zaom 2

T e L RO v
2 3 & File \

Icon: B 8 & ||

. —t =87 5 e | —_—
[| \)
\L[| ! £ /

aBule Exit

Pratatype

Action

Figure 5. The iCAP interface with its repository, situation sheets with different slots and a sample action to be perfored when the situation sheets
are matched.

iCAP [6], an interactive Context-Aware Protopyer, follows specific behavior definitions were more common than de-
roughly the same idea as CAMP. Itis a tool to build context- scriptions of preferred actions (86% vs. 14%).
aware ubicomp applications and tries to bridge the gulf be-
tween low-level toolkits for capture devices and fast proto Based on this, iCAP was designed to enable usersi¢s “
typing results. Without iCAP, designers prototyping caite scribe an object’s situation and command the house to act
aware applications have to write a lot of code to get use- on that state, describing specific behaviors rather thari-pre
ful results as low-level toolkits rather support for acigr erenceg6].”
the context than for creating applications. Writing softevar
from scratch when no toolkits are available requires even ;cap design and interaction
more ef_fort. The iICAP _des.igners find that this fact inhibits jcap consists of two main components. The first one is a
the design of new applications as end users are not able tq,ig4| interface for the creation of rules, the second oee th
express their ideas freely and have only little control @ thhgerlying engine for storage and evaluation. The visual in
behavior of context-aware applications. terface itself consists of an element repository to thedett

a rule creation area to the right. The upper part of the rule

Initial. user study o creation area is reserved for so-calkbtliation sheetsthe
The iCAP design was inspired by the results of a user study lower part for the desired actions that have to be taken if the
that focused on retrieving information éwwnon-program- context matches the defined conditions (see Figure 5).

mers want to buildvhich context-aware applications. Thus,

participants were asked to think of possible applicatidifre The interaction with iCAP can be divided into three diffaren

study showed the following: steps—ereating elementsconstructing ruleandambiguity

and conflict resolution

e RulesEveryparticipant used-then rulesto describe his
application in contrast to only 5% that used declarative Creating elementsBased on the user study, iCAP distin-
statements. Almost 80% of all rules used simipithen guishes five categories of elements: objects, activities,
rules while the rest was based on temporal, spatial and |ocations, people and time. All created elements have a
personal relationship rules (approx. 7% each). Only 1% user-sketched graphical icon and are stored in the reposi-
focused on environmental personalization. tory, which is shown on the left side of the interface win-

. . dow. Furthermore, they can be connected to real or simu-
* CategoriesThe rules had a low level of complexity and 3104 canture hardware (or to a combination of both)
could be split up into six categorieactivity, object, loca- '

tion, time, persorand state The average rule contained Both activities and objectsare treated in the same way.

about 2.5 different categories. They have either a binary (e.gn/off) or a gradient state
]]] (e.g.volumg. Additionally, objects can output a string

e Involved items About 56% of the rules involved Ob]ects. to simulate a certain behavior’ e.g. an mp3 p|ayer p|ay_
Other important items were aCtiVitieS, |Ocati0n, time and |ng “La bamba.” As activity Objects Capture home or user
people other then the subject. activities they can only be placed on the situation side.

e Situations, actions, preference#\bout 70% of the rules Locationelements are used to specify a binding of the rule
concerned the state of the subject (éfd:m doing..), to a specific location. They can be related to make use of
only 30% the state of the house (eadhen the water starts spatial adjancencies and convey environmental personal-
to boil..). Almost all rules interpreted the house asedin ization features that are tried to be satisfidReopleel-
fector, only 7 of 371 rules as aassistant Furthermore, ements are quite similar. iCAP supports the creation of

groups family member, roommate By default, an “I” An example of PBD is Stagecast Creator, formerly known

people object is createdimeelements can be created to as KidSim or Cocoa [17]. Stagecast uses the spreadsheet

restrict rules to a specific moment. paradigm by providing a game board with discrete cells.

)) Some cells are occupied by objects, so-cadlgdnts which

Constructing Rules As described before, rules can be com- 514 act according to given rules in each time step. The

posed by adding elements to condition sheets. Different graphical rewrite rulesconsist of a “before” part and an “af-

elements on one sheet are evaluated as a conjunction, disger” part and are created by demonstration. For example, by

tinct sheets combined to a disjunction. If needed, sheetsygying an agent in a rule window into an empty cell on the

can be subdivided to create more complex structures. Weyight hand side, this allows the agent to move to the right in
have seen, that using this match form scheme [13] evengach time step if the right cell is empty.

non-mathematical users can easily create rules without us-

ing usual boolean logic paradigms. A common problem of PBD systems is the kind of represen-
The action to be taken is specified below the situation tation of the final program, which allows end users to modify
sheets. This rule concept provides a high ceiling. it. Usually PBD systems use textual or visual programming

languages for such representations, e.g. Stagecast has a vi
Ambiguity and conflict resolution Initially, rules canbe de- sual representation of existing rewrite rules.

fined using ambiguous locations, people etc. represented
by wildcards anyone, anywheje If there are conflicting ~ PBD has the great advantage that end users can create pro-
wildcards in a rule iCAP asks the user to disambiguate grams without any conventional knowledge about program-
them. For example, ambiguity fiwhen | am in an un- ming. But on the other hand, such systems do not scale well.
defined location AND my friend is in an undefined loca- For relatively complex programs, e.g. sorting algorith@as,
tion...” could be resolved by specifying whether the two huge number of similar rules are necessary because of the
locations are equal or distinct. lack of abstraction. Using the underlying programming lan-

Furthermore, iCAP checks whether there are conflicts a- 9uage could be easier than using the PBD technique. Espe-
mong distinct rules. When saving, such rules are automat- ¢ially graphical rewrite rules have very strong affordas)ce
ically highlighted by iCAP. If conflicts appear at runtime ~Which lead the end user programmer on a wrong way [15].
the last updated rule is chosen. So in general PBD systems have low threshold and low ceil-
ing.
Scenarios can be evaluated using a Wizard-of-Oz interface,
real world sensors or a combination of both. An interface 5 4 petter Support by Development Environment

to the Context Toolkit (CTK) [5] can automatically fill the the most important aspect of EUP is increasing the support
repository, pass events and execute actions on real devices,y the programming environment, both for creating and for
This allows for rapid prototyping of new context-aware ap- jepugging programs. Two notable collaborations in this re-

plications. search area are the EUSES Consortium (End Users Shaping
Effective Software) and the Network of Excellence on End-
Evaluation user study User Development Although they focus on end user soft-

In an evaluation study participants were asked to think of ware engineering, i.e. increasing the effectiveness and de
own applications and given a set of actions by the user studypendability of end user programs, this is mainly achieved
conductors. Then they had to express both types of rules ashy user-friendly and supportive programming environments
precise as possible using iCAP. The study showed that usersand debugging tools.
were successful in building a rich variety of rules—spatial,
temporal and personal relationship were used, as well asNot only end users can benefit from improvements in this
simple if-then rules and personalization. FurthermordRC area, but also professional programmers are concerned. In-
supported almost all context-aware behaviors that usetd co tegrated Development Environments (IDEs) assist them in
imagine, only high ambiguity, actions based on time inter- the development. Most of the usual techniques for program-
vals and rules using complex concepts likevould be good ming and debugging, such as syntax highlighting, break-
if music was playing that was based on what | was cooking” points, and step-by-step execution, are already many years
were not expressable. old, some have not even changed in the past 30 years [8].
New techniques that improve the quality of end users’ pro-
Users did perform well on defining their rules without ex- grams are probably also suitable for professional IDEs.
traordinary training or skills and the expressive power of
iCAP is sufficient to define almost all thinkable applicagon

Thus, iCAP has a high ceiling with low threshold. 2.4.1 Syntax-Directed Editors

Some environments, for example Alice, remove or reduce

, , the possibility of syntax errors and resulting bugs by “ayat

2.3 Programming by Demonstration , directed editors” [1]. In Alice, an educational programmin

In systems using the Programming by Demonstration (PBD) system, the language and the environment are not separated.

how the desired program should work. An application is

formed by generalizing the user interaction to “beforedft 2http://eusesconsortium.org/
rules [11]. 3http://giove.cnuce.cnr.it/eud-net.htm

commands, arguments, variables, etc. via drag-and-drop or | System [RS[SD [VP [Support|

pop-up menus. This both lowers threshold and ceiling com- Chickenfoot | Yes| no | no low
pared to usual editors, since there are no syntax errors but i HANDS Yes| no | no low
makes the development more tedious. However, there are CAMP Yes| Yes| no | medium
also syntax directed editors which allow direct typing, or LabVIEW no | no | Yes| medium
both. Max/MSP no | no | Yes | medium
. i i Jigsaw Editor | no | no | Yes| medium
Syntax-directed programming environments are already com iCAP no | no | Yes ' medium
mon in pr_ofessional programming. Microsoft Vis.ual Stu- Stagecast no | no 1 Yes 'medium
dio’s IntelliSense parses the source code and provideslusef Alice + Whyline | no | Yes| no high

information when needed. The Java IDE of Eclipse even
supports incremental compilation so that errors and warn- tupie 1. comparison of programming systems.
ings can be displayed immediately in the editor. RS = Relaxed syntax, SD = Syntax-directed, VP = Visual Programing

2.4.2 Whyline

The Whyline [8] is a debugging tool for the Alice program-
ming environment which uses a new debugging paradigm
called Interrogative Debugging Whyline is the first tool
which supportdypothesizingctivities, that is, making as-
sumptions about what runtime actions caused failure. Espe-
cially when programmers make false assumptions due to a
weak hypothesis, debugging will take much longer and even
more errors are introduced. In conventional systems pro-
grammers can only verify their assumptions indirectly by
mapping debugging strategies to the available tools, but us
ing Whyline they can do this explicitly by asking questions

Java

JFC/Swing

LabVIEW

hickenfi
Max/MSP Chickenfoot

Alice + Whyline

Full JavaScript

Difficulty of Use

HANDS

of the formWhy didor Why didn’t

- Stagecast Creator
User studies showed that questions of the forms “Why didn't” ICAP
and “Why did” cover almost all questions asked by Alice MP
programmers during debugging. To ask such a question, the Asaw Editor High Ceilin
user can click on the “Why” button in the Alice interface. 7
From there, he can compose the question via a series of pop- Program Complexity
up menus. For example, when testing a Pac-Man simulation,
the user assumes that the methesizeof the object Pacwas Figure 7. This diagram compares the mentioned programming \s-
not calld and asks "Wy didnt Pac resize 52", Ifthe re- (ST cug1 WP Eopen o ey At of o, Seperilon e
. m_ethOd was actually called, Whyline 'nforms th.e.user threspholdé/of the sypstems are the gorrgesponding y-intercép, while the
about it, because he made a false assumption. But if it Wasceilings are the points at which the lines stop. Some systerhave ver-
not called, the Whyline (which is actually a timeline at the tical walls, where the programmer “needs to stop and learn smething
bottom of the interface, see Figure 6) shows the sequencegntirely new” [10].
of runtime actions which prevented the method from being
called. The user can then browse in the timeline to highlight
the according code. the Omniscient DebuggdB®] for Java. Although it does not

allow for asking “Why” questions explicitly, it provides the
In user studies to test the usability of the Whyline, it turned necessary functionality to find the answers.
out to be very successful. It reduced debugging time dramat-
ically by almost a factor of 8, and enabled the participants Overall, with good support by the development environment,
to complete 40% more tasks, compared to an Alice version it is possible to lower the threshold due to better usabisy
without the Whyline. So it raises the ceiling a lot. well as to raise the ceiling, because it becomes easier to get
to a higher level of complexity, which has been out of reach
The Whyline is also a concept which could be extremely before due to insatisfactory tools.
useful even for professional programmers. It is very likely
that “Why” questions are very common in all debugging en-
vironments. However, it is not trivial to provide answers to 3. CONCLUSION
such questions. Showing the current run-time state of a pro-We have seen a lot of already implemented but not necessar-
gram is not a problem, but “Why” questions usually refer to ily perfect interfaces enabling users to create and mogify a
events that happened in the past. For the Whyline and similarplications for their special needs without any programming
systems it is necessary to keep track of all important eventsknowledge. Many of the shown concepts are already widely
that happen during run-time. The first tool which achieves accepted and used in today'’s offices and homes—the spread-
this efficiently in a conventional programming language is sheet calculator might be a good example for that.

93 Light

When

Pac's details

[@ World.move Pac

: Pac

Dothiz ance, when f becamas true |2

camera focuses on subject of question }

is within 1 meter of Big Dot becomes true

#[EDoin order

= Big Dot set isShowing to false mare...

: Big Dot.isEaten set value to true more... [

:7." both Pac is within 2 meters

color|=

opacity = 1 (100%) Pac resize 0.5 — more...

properties [Fiethads [questions |

\EI current direction|= forwal =l World.move Pac No parameters tooltips show properties’
o vananies current values
: Pac move Pac.current direction — |3 meters duration =1 second = | style= qem@ more... ’>

of Ghost and | nol BigDotisEaten

access to previous
questions and answers

LT

World

| Do in order| [ZDo together| [i/Elsa) | Loop| | While

wehicle =
T

WL code related to the

f - ammD

selection is highlighted ===t B
| Questions I've asked ||

3821010 ‘// l

(Blg Dot.isEaten set to true | 2,
NAGETE 4
=N
A

e

Ny

854011

N

\}Domg clsn]

S frue
(Pac is within 2 of Ghost j~———{and ju,_ -

=
e —

3 A raise
not |

time cursor traverses execution history &

Figure 6. When asking a “Why didn’t"-question in Alice, the W hyline at the bottom of the interface visualizes the sequems of runtime actions which
prevented an event from happening. The user can move the timairsor to navigate to earlier events; the code is highlightg accordingly.

Now, almost 20 years after Weiser’s discussion on ubiqui-
tous computing, industry and research institutes provide t
necessary technology for arriving at a level that allowssise
to create and use computer software, in this our case mainly
context-aware applications, in a simple way letting the com
puter itself proceed another step into the background. ,Both
CAMP and iCAP, enable end users to specify a rich vari-
ety of scenarios, with iCAP as a tool for the development of
almost every thinkable application of this kind.

3.1 Comparison hd

We have seen a lot of sample applications and there are many
more available using similar or different metaphors. We use
the following criteria to compare the mentioned program-
ming systems. Table 1 shows these aspects for all systems at
a glance.

¢ Relaxed syntax:This applies to textual programming sys-
tems whose language does not have a strict syntax. This
avoids the necessity to learn a strict language, allows for a

special support.

Visual Programming: Of course all systems mentioned

in 2.2 use the Visual Programming paradigm. Further-
more, the PBD system Stagecast Creator uses visual pro-
gramming to represent before-after rules. Visual Program-
ming is not to be confused syntax-directed textual pro-
gramming: Although Alice and CAMP use graphical as-
pects to support the programmer, e.g. drag&drop tech-
nigues, the actual programming is text-based.

Support by Development Environment: Since the syntax-
directed aspect was already discussed above, we consider
only additional aspects here. Chickenfoot and HANDS
have almost no special support for editing and debugging.
In CAMP one can at least find magnets easily by pressing
their first letter, which speeds up the development. The
Whyline extension for Alice is particularly noteworthy; it
makes end user programs less error-prone and enables the
end user to develop applications much more efficiently.

relatively natural language, and thus yields a low thresh- Figure 7 visualizes the connection between ceiling andthre
old. Relaxed syntax is a major feature of Chickenfoot. old in the discussed environments. We can see, that in gen-
This pattern can also be found in CAMP: Although the eral low threshold and low ceiling go together. Environnsent
vocabulary is restricted, there is a great latitude of the ar With a relatively high ceiling and low threshold are usually

rangement of words. The HANDS syntax is also relaxed 'estricted to a certain field, e.g. iCAP to context-aware ap-
by allowing variations in the expression of queries, how- Plications. Complex applications cannot be created withou
ever, it does not go as far as in Chickenfoot. a high threshold or high wall.

Syntax-directed: As described in 2.4]1, Alice has a syntax- 3.2 An outlook on future developments

directed editor. Since in CAMP the selection of words What will the future bring us concerning end user program-

is restricted by the available vocabulary, and the arrange- ming languages? Certainly a lot. Users will still need to be

ment is directed by the magnetic poetry metaphor, CAMP enabled to configure their applications, operating systems

is also syntax-directed. The editors of the other textual home theater equipment and even cell phones while the com-
systems, Chickenfoot and HANDS, do not feature any plexity of those devices is growing day by day. The devel-

opment of programming environments like those we have
discussed in this paper is ongoing. Most probably, there
will be mixtures of the different approaches. Along with

the research on new ways of human computer interaction
like for example tabletop displays and gesture recognition
visual programming languages have a huge potential as they ©-
do not depend on keyboard inputs. Simpler debugging envi-
ronment can then be integrated to provide a higher accuracy
when constructing more powerful and complex languages.

We believe that even in office environments end user pro-
gramming will play an important role in the future. Printers ¢
scanners, copy machines, cameras, other capture devices,
tabletop displays, wall-mounted large scale displaysdhan
helds etc. could be quickly interconnected and reconfigured
by every employee to, for example, build up more powerful
conference rooms and working environments.

On the ubicomp side, hopefully someday, all devices on the 10.

market will have a common digital interface to access their
properties easily through a distributed dataspace. Tegeth
with end user programming languages, then there will not
rest many obstacles on the way to the perfectly configured 1
eHome.

4. REFERENCES
1. Farah Arefi, Charles E. Hughes, and David A.

Workman. Automatically generating visual 12.

syntax-directed editor€ommun. ACM
33(3):349-360, 1990.

2. Michael Bolin. End-user programming for the web. 13.

Master’s thesis, Massachusetts Institute of Technology,
2005.

3. Michael Bolin, Matthew Webber, Philip Rha, Tom

Wilson, and Robert C. Miller. Automation and 14.

customization of rendered web pagesUIsT '05:
Proceedings of the 18th annual ACM symposium on
User interface software and technologages

163-172, New York, NY, USA, 2005. ACM Press. 15

4. M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, and
A. Piccinno. Domain-expert users and their needs of
software development. IHCI 2003 End User
Development Session Papexetwork of Excellence
on End-User Development, 2003.

5. AK. Dey, D. Salber, and G.D. Abowd. A conceptual

framework and a toolkit for supporting the rapid 16.
prototyping of context-aware application.

Human-Computer Interaction Journal 16(2;fgges 17
97-166, 2001.

6. Anind K. Dey, Timothy Sohn, Sara Streng, and Justin
Kodama. icap: Interactive prototyping of context-aware 1g
applicationsProceedings of the Fourth International
Conference on Pervasive Computipgges 974 — 975,

2006.

7. Jan Humble, T. Hemmings, A. Crabtree, B. Koleva, and
T. Rodden. 'playing with your bits’: user-composition

10

of ubiquitous domestic environments.Pnoceedings
of the 5th Annual Conference on Ubiquitous
Computing (UBICOMP 2003 5eattle, WA, USA,
October 2003. Springer-Verlag.

8. Andrew J. Ko and Brad A. Myers. Designing the

whyline: a debugging interface for asking questions
about program behavior. I@HI '04: Proceedings of

the SIGCHI conference on Human factors in computing
systemspages 151-158, New York, NY, USA, 2004.
ACM Press.

. Bil Lewis and Mireille Ducasse. Using events to debug

java programs backwards in time. @OPSLA '03:
Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applicationpages 96—97, New York,
NY, USA, 2003. ACM Press.

Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
present, and future of user interface software tools.
ACM Trans. Comput.-Hum. Interac?(1):3-28, 2000.

1. Brad A. Myers, Andrew J. Ko, and Margaret M.

Burnett. Invited research overview: end-user
programming. INCHI '06: CHI '06 extended abstracts
on Human factors in computing systerpages 75-80,
New York, NY, USA, 2006. ACM Press.

Brad A. Myers, John F. Pane, and Andy Ko. Natural
programming languages and environmetsmmun.
ACM, 47(9):47-52, 2004.

J.F. Pane and B.A. Myers. Tabular and textual methods
for selecting objects from a group. IBEE

International Symposium on Visual Languagesges
157-164, 2002.

John Francis Pana.programming system for children
that is designed for usability?hD thesis, Carnegie
Mellon University, Pittsburgh, PA, 2002.
Co-Chair-Brad A. Myers and Co-Chair-David Garlan.

Alexander Repenning and Andri loannidou.
Agentcubes: Raising the ceiling of end-user
development in education through incremental 3d. In
VLHCC '06: Proceedings of the Visual Languages and
Human-Centric Computing (VL/HCC’'0g)ages

27-34, Washington, DC, USA, 2006. IEEE Computer
Society.

G. Rothermel, L. Li, and M. Burnett. Testing strategies
for form-based visual programs, 1997.

. David Canfield Smith, Allen Cypher, and Jim Spohrer.

Kidsim: programming agents without a programming
languageCommun. ACM37(7):54-67, 1994.

. Khai N. Truong, Elaine M. Huang, and Gregory D.

Abowd. Camp: A magnetic poetry interface for
end-user programming of capture applications for the
home. InUbiComp 2004: Ubiquitous Computing
volume 3205/2004, pages 143-160. Springer Berlin /
Heidelberg, 2004.

	Introduction
	Threshold and Ceiling

	Approaches to EUP
	Simplified Textual Languages
	Chickenfoot
	HANDS
	CAMP: Capture and Access Magnetic Poetry

	Visual Programming
	Diagram-based languages
	Form-based languages
	Icon-based languages
	Match forms for defining boolean expressions
	iCAP, an icon-based programming environment

	Programming by Demonstration
	Better Support by Development Environment
	Syntax-Directed Editors
	Whyline

	Conclusion
	Comparison
	An outlook on future developments

	References
	REFERENCES

