
End User Programming

Christian Brockly
RWTH Aachen

Templergraben 55
52056 Aachen, Germany

Christian.Brockly@rwth-aachen.de

Klaus Meyer
RWTH Aachen

Templergraben 55
52056 Aachen, Germany

Klaus.Meyer@rwth-aachen.de

ABSTRACT
There has always been and there will always be a wide gulf
between creators and users of computer programs. While
only a few users actually know how to program in usual pro-
gramming languages, almost all users want to modify exist-
ing applications by adding additional features or specifying
their behavior, and even inventing new ones becomes im-
portant when looking at technology-enriched homes. There
would be a greater benefit of the added technology when
users were able to decide how their devices should work and
react instead of just using the pre-defined actions.

That is the point whereEnd User Programming(EUP) comes
into play. This paper shows the importance of providing
more natural and intuitive programming tools for end users,
gives an overview on different styles of End User Program-
ming, presents some example applications that are already
implemented and gives an outlook on possible future devel-
opments.

1. INTRODUCTION
End User Programming, or in general End User Develop-
ment, is a research topic within the field of human com-
puter interaction, concerning techniques to enable end users
to create and modify (extend as well as adapt) applications
for their needs.

Usually, a software developer has a degree in computer sci-
ence or taken courses in software engineering. His primary
job function is to write and maintain software [11]. There-
fore he knows how to write a program in a programming
language, usefor- andwhile-constructs and create class hi-
erarchies, while, in general, he is not an expert in the field
that his software serves for. The experts are on the user side.
Constabile et al. [4] call themdomain-expert usersas “they
are experts in a specific domain, not necessarily experts in
computer science, who use computer environments to per-
form their daily tasks.” Therefore it should be their task, or at
least they should be enabled, to decide how a computer pro-
gram acts. According to Myers et al. [11], they then would
be “End User Programmers, people who write programs, but
not as their primary job function.”

End User Programming is not limited to programming tasks
as we know them from usual programming languages. It
is more a principle that is used to enable users to include
their knowledge and ideas in their computer software. Of-
ten natural metaphors are used to provide easily understand-

able interfaces. For example, modern office suites and op-
erating systems provide so-calledmacro recordersthat sim-
ply record the actions that the user performs and create a
program out of them, sometimes even in an imperative lan-
guage.Spreadsheetsare somehow paper-style tables extended
by features that let end users define automatic calculationsor
diagrams.Visual programminginterfaces like Max/MSP or
LabView let users connect visual components by a plug and
cable metaphor to compose their programs. Recent develop-
ments likewikisandblogs, where common internet users are
enabled to create complex web pages and huge databases,
follow the idea of end user development as well—very suc-
cessfully. And all of them have one in common, they require
no coding but just visual-based development.

End User Programming becomes important when it comes to
ubiquitous computing in home environments. In technology-
enriched homes it is not obvious how the technology is con-
trolled. Instead of supplying many separated task specific
applications to the end users, it is more effective to let the
users specify themselves how to use the available ubiquitous
technologies.

1.1 Threshold and Ceiling
Threshold and ceiling are important aspects of user interface
tools: Thethresholdis how difficult it is to learn using a sys-
tem, and theceiling is how much can be done with it [10]. Of
course the goal is a system with low threshold and high ceil-
ing. We will discuss threshold and ceiling of each example
system in the following sections.

2. APPROACHES TO EUP
This section gives an overview over the different approaches
to End User Programming. The research focuses in this area
can be grouped in these four categories:

• Simplified textual languages

• Visual Programming

• Programming by Demonstration

• Better support by the development environment

2.1 Simplified Textual Languages
The most naive approach to enable end users to write pro-
grams is to create programming languages which are easier
to learn and to use. The probably first language which tries
to achieve this goal was BASIC, developed in the 1960s,

1



which stands forBeginner’s All-purpose Symbolic Instruc-
tion Code. Many other programming and scripting languages
followed, e.g. HyperTalk for Apple’s HyperCard, or Action-
Script for Adobe Flash. However, all those languages are
still not really suitable for end users for the same reasons:
Users still have learn the syntax and have to deal with unfa-
miliar programming concepts like abstraction, variables,and
loops.

2.1.1 Chickenfoot
A step in the right direction isChickenfoot1, an automation
tool for the Firefox browser by Bolin [2, 3]. Using Chicken-
foot, end users can manipulate the appearance of web pages
without knowing their source code. It serves as an interface
to JavaScript, but instead of having a fixed syntax it uses
keyword pattern matching: By recognizing keywords in the
command, Chickenfoot determines the action. All parame-
ters refer to the web page appearance, not to the source code.
For example, the keywordsclick, press, andpush de-
note clicking a link or a button on the web page, so on the
Google home page the command

click feeling lucky

is sufficient to invoke a click on the button “I’m feeling lucky.”
To avoid ambiguity, such commands can also be written like
JavaScript function calls:

click("feeling lucky")

Due to the flexibility and the lack of a fixed syntax Chick-
enfoot is very easy to learn and almost intuitive to use. For
simple programming web automation tasks, the threshold is
relatively low. However, for more complex scripts the pro-
grammer needs a deeper understanding of JavaScript’s con-
cepts, so there is a second threshold, awall, which is still
lower than the JavaScript threshold but may be too high for
end users. The ceiling of Chickenfoot is the same as the high
JavaScript ceiling.

2.1.2 HANDS
Pane [14] conducted user studies to investigate how peo-
ple, especially children, solve problems and think about pro-
gramming tasks. The goal is to develop programming sys-
tems and tools which enable users to program in a more “nat-
ural” way, thus Myers et al. call this approachNatural Pro-
gramming[12].

Some results of the studies were:

• Event-based structure: The program description devel-
oped by an end user is usually not flow-based (with loops
and branches) but rather event-based or rule-based, that is,
events are described and how the program should react to
them.

• Aggregate operations:A typical pattern was the use of
aggregate operators, which operate on a set of objects in-
stead of on just a single object. Such operations were pre-

1http://groups.csail.mit.edu/uid/chickenfoot/

Figure 1. The GUI of the HANDS programming system. The dog
Handy in the upper left corner visualizes the execution of instructions
by manipulating cards.

ferred to iterations through the set. An example for an
aggregate operation is “Set a, b, and c to 0” instead of
“Set a to 0, b to 0, and c to 0.”

• Content-based queries:The use of control structures like
lists or sets is not stated explicitly but rather implied. Also
the construction of subsets of existing sets was only im-
plied using queries, e.g. in a PacMan game, a set was ref-
erenced with “all of the blue monsters.” So again, iterating
a set was untypical for end users.

• No boolean expressions:The participants did not use
Boolean expressions very often, and it turned out that they
have a different interpretation from usual programming
languages. In 2.2.4 we show how to overcome this prob-
lem.

• Visual vs. Textual: Although the participants used textual
descriptions for actions and behaviors, they often used a
visual representation of the overall program layout.

The programming systemHuman-centered Advances for the
Novice Development of Software(HANDS) was designed
based on these results. Some aspects are represented visu-
ally instead of textually, the language is event-based, andit
features aggregate operations and content-based queries.

All objects in HANDS are represented bycards, which have
user-defined properties. The program execution, that is, the
manipulation of cards, is represented by an Agent called
Handy (see Figure 1).

The keywordall denotes a query. If it is followed by only
one word, it matches all cards which have this value in any
property, e.g. if all cards representing flowers have the prop-
ertygroup instantiated withflower, they are matched by
the query

all flower

It is even allowed to append a plural-s, soflowers works

2



as well. Conditions are also possible, e.g.:

all (nectar < 100)

Since queries return lists of cards, queries and aggregate op-
erations can be combined. In a limited version of HANDS
which does not support aggregate operators, it is necessary
to iterate through a list:

with flowerList calling each flower
set the nectar of the flower to 0

end with

In the full version of HANDS, an aggregate operation sim-
plifies this a lot:

set the nectar of all flowers to 0

A study with children showed that the participants were more
successful in solving programming tasks using HANDS than
using a limited version of HANDS, which did not feature
queries and aggregate operations and had reduced data visi-
bility. Overall, the participants enjoyed the full versionmore
and found it less difficult than the limited version. Thus,
HANDS has a very low threshold and is suitable as program-
ming system for beginners, especially for children. Its ceil-
ing is moderate: One the one hand, HANDS allows for pro-
gramming reasonably complex games and general programs,
e.g. a prime number calculation, but it lacks modularity and
abstraction. It is not possible to create subroutines, which
are essential for higher complexity.

2.1.3 CAMP: Capture and Access Magnetic Poetry
CAMP [18] is a programming system which enables end
users to build ubicomp capture-and-access applications for
their home. The actions supported by CAMP arecapture,
access, anddelete, and the possible capture data types are
still-pictures, audio, andvideo. CAMP requires that the used
technology is context-aware, i.e. it can recognize the con-
texts of people and objects, such as locations and activities.

The user interface is based on the magnetic poetry metaphor:
Magnetic poetry sets consist of small magnetic tiles which
are typically put on a refrigerator door. Each tile has a word
or a word fragment printed on it, so the tiles can be combined
to form phrases or “poems.” The advantage of magnetic po-
etry is that end users can use a natural language to create
flexible applications but they are also restricted by the vo-
cabulary, which allows for evaluation of the formed phrases
by the system.

User Study
CAMP was developed based on a user study to find out how
end users perceive and describe home applications for cap-
ture and access. The authors collected ideas and descriptions
for such applications and found the following categories:

• Provide Peace of Mind: Applications that make users
feel secure, e.g. by monitoring their children.

• Collect Records of Everyday Tasks/Objects:Applica-

tions that record events for convenience, e.g. to keep track
of the car key.

• Preserve Memories of Experiences:Applications that
record events in advance so that no special memorable
events are lost, e.g. if there is no handheld camera nearby.

Many participants perceived the system as aneffector, which
executes user commands. However, some participants per-
ceived it as anassistant, which helps the user performing a
task, and some perceived it as a hybrid of effector and as-
sistant. Common to all models is the use of the “W dimen-
sions”, i.e.who, what, where, andwhen, to describe capture
situations.

CAMP Design
Initially the vocabulary and the layout of the magnetic po-
etry GUI were designed based on this study, in particular all
words are grouped in the categorieswho, what, where, when,
andgeneral. Users can drag words from the vocabulary area
to the authoring area and arrange them to phrases (see Fig-
ure 2). They can also add new words to the vocabulary and
define their meaning, e.g. “dinner happens between 7 and 9
PM in dining room” to define “dinner.”

When the “run” button is pressed, CAMP processes the phrase
and gives feedback by displaying an interpretation in the in-
terface. First the phrase is simplified and normalized by re-
placing synonymous expressions, e.g. “starting at 7 PM cap-
ture kitchen for 2 hours” is rephrased to “between 7:00 PM
and 9:00 PM record kitchen.” Then the phrase is decom-
posed into sub-clauses, especially when the Boolean con-
nectives “or” or “and” are involved. To resolve conflicts and
ambiguity, CAMP assigns priorities to the used statements
and assumptions, so that explicitly stated values are more
important than implicit ones. For example, in “capture din-
ner everywhere” the word “everywhere” overrides the fact
that dinner happens in the dining room. If a dimension is
missing, e.g. the time is not specified, it is marked so that
the user can refine the phrase.

A common pattern in the study was that the participants
made implicit assumptions about the type of recording, e.g.they
used statements like “record conversations” without specify-
ing “audio” recording. CAMP takes that into account. If no
recording type is specified, recording of still-pictures isas-
sumed.

Because of the magnetic poetry metaphor, CAMP works sim-
ilar to the keyword pattern matching of Chickenfoot, so it
mainly uses the approach of “better textual languages.” It
also relies on extensive support by the development envi-
ronment, since this controls the availability, visibility, and
arrangement of the tiles.

Preliminary Evaluation
The authors of CAMP conducted a preliminary evaluation
to verify the assumptions on which the CAMP interface is
based. The results were similar to the results of the ini-
tial study: The applications invented by the participants fall

3



Figure 2. The CAMP interface consists of a vocabulary area, a poem authoring area, and an interpretation area. To form poems, the user can drag
magnets from the vocabulary to the authoring area. When pressing the “run” button, CAMP displays an interpretation.

into the three categories mentioned above, and all partici-
pants were able to describe their applications easily using
the CAMP interface, so the vocabulary seems to be suffi-
cient for most capture-and-access applications. Not all ap-
plications were correct the first time but it was no problem to
correct them. Overall, the participants found the CAMP in-
terface easy to learn and intuitive to use. This shows that the
CAMP system has a low threshold. The ceiling is just high
enough so that the system serves its purpose very well: The
development of ubicomp capture-and-access applications.

2.2 Visual Programming
There exists a variety of visual programming environments
which generally try to visualize code by some kind of flow
diagram. Visual programming languages can be further clas-
sified into diagram-based, icon-based and form-based lan-
guages. We will first take a look at two popular implementa-
tions of diagram-based languages, LabVIEW and Max/MSP,
then discuss the principle of form-based applications. At the
end we will show approaches for enabling users to visually
construct boolean expressions and define ubicomp applica-
tions, which do not fit exactly into the three mentioned cate-
gories.

2.2.1 Diagram-based languages
Diagram-based languages usually use a data flow metaphor,
e.g. the data is sent to and received from visual components
via wires plugged into slots, usually on the upper (input) and
lower (output) side. In general, an input serves for connect-
ing one wire while output slots support connecting multiple
ones.

LabVIEW(Laboratory Virtual Instrument Engineering Work-
bench) is a system designed to enable primarily scientist to
perform and control tests, measure their outcomes and eval-
uate or even visualize them. So-called VIs,virtual instru-
ments, have the same meaning as methods in imperative lan-
guages. They can be combined to build up new virtual in-
struments and further consist of two sides. One the one side
the developer can specify the actions by arranging and con-
necting VIs, on the other side a graphical interface can be

defined and shown. Each VI has inputs and outputs which
can be connected by wires. Not only virtual components are
available but real world control and measure instruments can
be controlled and used to deliver data.

With newer version even object-oriented programming has
become possible, including inheritance and polymorphism.
Even multithreading, here evenautomatic parallelization,
can be used by simply building up two independent data
flows.

The other environment,Max/MSP, is a similar programming
environment for multimedia applications. It offers a variety
of components that are to be plugged together by wires to
build up a data flow. Again, these components provide input
and output plugs as a visualization for giving data to a func-
tion and reading the computation results. Max/MSP enables
even hobby musicians to develop real time audio and video
processing interfaces.

Both LabVIEW and Max/MSP have full expressive power in
boolean logic and come with a huge set of predefined com-
ponents. Actually, they provide a full higher programming
language and although LabVIEW and Max/MSP thus have
got a very high ceiling factor, simple programs can be build
up easily with low threshold. More complex programs using
all functionality (or only half of it), as in every other higher
programming language, need to be planned carefully to keep
the structures clean and understandable. One major problem
in handling complex programs of diagram-based visual pro-
gramming languages is obviously the lack of flexibility when
refining code. If new actions are to be included the existing
components and wires need to be rearranged or enclosed in
subroutines to provide enough space to insert the new ones.

2.2.2 Form-based languages
Form-based visual programming environments provide an
interface for the creation and manipulation of cells on forms.
The cells’ values can be either specific values, or formulas
that reference values contained in other cells. The underly-
ing evaluation engine then recalculates all influenced values
whenever a cell’s value is changed or formula is redefined.

4



Figure 3. Jigsaw pieces used to combine the doorbell with a webcam
and a portable display

The most prominent examples of such languages are spread-
sheet applications.

Research [16] has shown that the main problem of form-
based visual programming languages is that errors are fre-
quently commited and that users have low confidence in the
reliability of their programs. This tells us that for the effi-
cient and correct use of such environments much effort has
to be done. Depending on the complexity of the particular
form-based language the user encounters both a high ceiling
and a high threshold.

2.2.3 Icon-based languages
As an example of icon-based visual programming languages
we will discuss the model ofjigsaw pieces[7] for config-
uring applications for technology-enriched home environ-
ments.

As user studies showed that users are more interested in
knowing how their devices are interconnected than in ac-
tually programming them, the jigsaw editor was constructed
to let them easily define connections and simple action se-
quences. In the jigsaw editor users can connect jigsaw pieces
which act asdigital/physical transformers, components tak-
ing physical or digital effects and each transforming them
into the other type. For deeper semantic actionsdigital trans-
formersare used. This component class can perform calcu-
lations on digital information. One piece can consist of one
or more transformers. Coupling of pieces is done in a left to
right fashion, providing the image of an information flow.

The editor is composed of two panels. On the upper one the
user can select all available pieces which are automatically
collected in a distrubuted dataspace to which the installed
ubicomp devices export their properties. The lower one is
the actual workspace serving for the assembly of pieces. To
avoid assembling pieces that would not result in plausible ac-
tions those pieces are shadowed and disabled when the user
tries to establish connections. When two or more pieces are
put together the underlying engine connects the correspond-
ing input and output properties (if there are multiple corre-
sponding properties a dialog will ask the user to choose the
desired one). As an example, Figure 3 shows how a webcam
can be configured to take a photo and send it to a portable
display device when the doorbell button is pushed.

Figure 4. Two conjunctions combined to one disjunction using match
forms.

As said before the the jigsaw editor does not aim at program-
ming devices but only at reconfiguring them. Therefore the
expressive power is quite restricted. iCAP and CAMP pro-
vide the user with much more freedom in defining complex
action sequences. On the other hand, even very unexperi-
enced users can rapidly use the jigsaw editor. Thus, we have
got low ceiling and low threshold.

2.2.4 Match forms for defining boolean expressions
A user study conducted by Myers and Pane [13] revealed
that users have certain problems with accurately defining
boolean expressions using textual methods whereas the use
of so-called match forms has a significant impact on improv-
ing the performance. The main problems were the following
ones.

1. Users interpret the AND operator depending on the con-
text. Inselect the objects that match blue and circleAND
is generally interpreted correctly, while inselect the ob-
jects that match blue and the objects that match circle
55% of the users read it as a disjunction.

2. Users assign to the NOT operator a higher priority in OR
clauses while AND clauses are in general interpreted cor-
rectly (select the objects that match not red and square
andselect the objects that match not triangle or green).

3. Users misinterpret parentheses as inselect the objects that
match (not circle) or blue.

Figure 4 shows match forms that let users define attribute-
value pairs on cards which themselves can be put onto other
cards. Statements on the same form are then interpreted as
a conjunction while distinct forms adjacent to each other are
combined to disjunctions. In other words, match forms in-
terpret horizontal arrangement as disjunction and vertical ar-
rangement as conjunction. A precedingnot negates the cor-
responding match form. The study then showed that users
perform significantly better in generating queries using match
forms than using text.

Both ceiling and threshold level of match forms are very low,
but this model helps to understand how to enable users to
specify boolean expresions easily, a problem which is of-
ten underestimated. We will look at iCAP now, an applica-
tion that enables users to configure context-aware devices in
technology enriched homes, which uses Myers’ match forms
to formulateif-then-rules.

2.2.5 iCAP, an icon-based programming environment

5



Figure 5. The iCAP interface with its repository, situation sheets with different slots and a sample action to be performed when the situation sheets
are matched.

iCAP [6], an interactive Context-Aware Protopyer, follows
roughly the same idea as CAMP. It is a tool to build context-
aware ubicomp applications and tries to bridge the gulf be-
tween low-level toolkits for capture devices and fast proto-
typing results. Without iCAP, designers prototyping context-
aware applications have to write a lot of code to get use-
ful results as low-level toolkits rather support for acquiring
the context than for creating applications. Writing software
from scratch when no toolkits are available requires even
more effort. The iCAP designers find that this fact inhibits
the design of new applications as end users are not able to
express their ideas freely and have only little control on the
behavior of context-aware applications.

Initial user study
The iCAP design was inspired by the results of a user study
that focused on retrieving information onhownon-program-
mers want to buildwhichcontext-aware applications. Thus,
participants were asked to think of possible applications.The
study showed the following:

• RulesEveryparticipant usedif-then rulesto describe his
application in contrast to only 5% that used declarative
statements. Almost 80% of all rules used simpleif-then
rules while the rest was based on temporal, spatial and
personal relationship rules (approx. 7% each). Only 1%
focused on environmental personalization.

• CategoriesThe rules had a low level of complexity and
could be split up into six categories:activity, object, loca-
tion, time, personandstate. The average rule contained
about 2.5 different categories.

• Involved items About 56% of the rules involved objects.
Other important items were activities, location, time and
people other then the subject.

• Situations, actions, preferencesAbout 70% of the rules
concerned the state of the subject (e.g.if I’m doing...),
only 30% the state of the house (e.g.when the water starts
to boil...). Almost all rules interpreted the house as anef-
fector, only 7 of 371 rules as anassistant. Furthermore,

specific behavior definitions were more common than de-
scriptions of preferred actions (86% vs. 14%).

Based on this, iCAP was designed to enable users to “de-
scribe an object’s situation and command the house to act
on that state, describing specific behaviors rather than pref-
erences[6].”

iCAP design and interaction
iCAP consists of two main components. The first one is a
visual interface for the creation of rules, the second one the
underlying engine for storage and evaluation. The visual in-
terface itself consists of an element repository to the leftand
a rule creation area to the right. The upper part of the rule
creation area is reserved for so-calledsituation sheets, the
lower part for the desired actions that have to be taken if the
context matches the defined conditions (see Figure 5).

The interaction with iCAP can be divided into three different
steps—creating elements, constructing rulesandambiguity
and conflict resolution.

Creating elementsBased on the user study, iCAP distin-
guishes five categories of elements: objects, activities,
locations, people and time. All created elements have a
user-sketched graphical icon and are stored in the reposi-
tory, which is shown on the left side of the interface win-
dow. Furthermore, they can be connected to real or simu-
lated capture hardware (or to a combination of both).

Both activities and objectsare treated in the same way.
They have either a binary (e.g.on/off) or a gradient state
(e.g. volume). Additionally, objects can output a string
to simulate a certain behavior, e.g. an mp3 player play-
ing “La bamba.” As activity objects capture home or user
activities they can only be placed on the situation side.

Locationelements are used to specify a binding of the rule
to a specific location. They can be related to make use of
spatial adjancencies and convey environmental personal-
ization features that are tried to be satisfied.Peopleel-
ements are quite similar. iCAP supports the creation of

6



groups (family member, roommate). By default, an “I”
people object is created.Timeelements can be created to
restrict rules to a specific moment.

Constructing Rules As described before, rules can be com-
posed by adding elements to condition sheets. Different
elements on one sheet are evaluated as a conjunction, dis-
tinct sheets combined to a disjunction. If needed, sheets
can be subdivided to create more complex structures. We
have seen, that using this match form scheme [13] even
non-mathematical users can easily create rules without us-
ing usual boolean logic paradigms.

The action to be taken is specified below the situation
sheets. This rule concept provides a high ceiling.

Ambiguity and conflict resolution Initially, rules can be de-
fined using ambiguous locations, people etc. represented
by wildcards (anyone, anywhere). If there are conflicting
wildcards in a rule iCAP asks the user to disambiguate
them. For example, ambiguity in“when I am in an un-
defined location AND my friend is in an undefined loca-
tion. . . ” could be resolved by specifying whether the two
locations are equal or distinct.

Furthermore, iCAP checks whether there are conflicts a-
mong distinct rules. When saving, such rules are automat-
ically highlighted by iCAP. If conflicts appear at runtime
the last updated rule is chosen.

Scenarios can be evaluated using a Wizard-of-Oz interface,
real world sensors or a combination of both. An interface
to the Context Toolkit (CTK) [5] can automatically fill the
repository, pass events and execute actions on real devices.
This allows for rapid prototyping of new context-aware ap-
plications.

Evaluation user study
In an evaluation study participants were asked to think of
own applications and given a set of actions by the user study
conductors. Then they had to express both types of rules as
precise as possible using iCAP. The study showed that users
were successful in building a rich variety of rules—spatial,
temporal and personal relationship were used, as well as
simple if-then rules and personalization. Furthermore, iCAP
supported almost all context-aware behaviors that users could
imagine, only high ambiguity, actions based on time inter-
vals and rules using complex concepts like“it would be good
if music was playing that was based on what I was cooking”
were not expressable.

Users did perform well on defining their rules without ex-
traordinary training or skills and the expressive power of
iCAP is sufficient to define almost all thinkable applications.
Thus, iCAP has a high ceiling with low threshold.

2.3 Programming by Demonstration
In systems using the Programming by Demonstration (PBD)
technique, the user interacts with the system to demonstrate
how the desired program should work. An application is
formed by generalizing the user interaction to “before-after”
rules [11].

An example of PBD is Stagecast Creator, formerly known
as KidSim or Cocoa [17]. Stagecast uses the spreadsheet
paradigm by providing a game board with discrete cells.
Some cells are occupied by objects, so-calledagents, which
can act according to given rules in each time step. The
graphical rewrite rulesconsist of a “before” part and an “af-
ter” part and are created by demonstration. For example, by
moving an agent in a rule window into an empty cell on the
right hand side, this allows the agent to move to the right in
each time step if the right cell is empty.

A common problem of PBD systems is the kind of represen-
tation of the final program, which allows end users to modify
it. Usually PBD systems use textual or visual programming
languages for such representations, e.g. Stagecast has a vi-
sual representation of existing rewrite rules.

PBD has the great advantage that end users can create pro-
grams without any conventional knowledge about program-
ming. But on the other hand, such systems do not scale well.
For relatively complex programs, e.g. sorting algorithms,a
huge number of similar rules are necessary because of the
lack of abstraction. Using the underlying programming lan-
guage could be easier than using the PBD technique. Espe-
cially graphical rewrite rules have very strong affordances,
which lead the end user programmer on a wrong way [15].
So in general PBD systems have low threshold and low ceil-
ing.

2.4 Better Support by Development Environment
The most important aspect of EUP is increasing the support
by the programming environment, both for creating and for
debugging programs. Two notable collaborations in this re-
search area are the EUSES Consortium (End Users Shaping
Effective Software)2 and the Network of Excellence on End-
User Development3. Although they focus on end user soft-
ware engineering, i.e. increasing the effectiveness and de-
pendability of end user programs, this is mainly achieved
by user-friendly and supportive programming environments
and debugging tools.

Not only end users can benefit from improvements in this
area, but also professional programmers are concerned. In-
tegrated Development Environments (IDEs) assist them in
the development. Most of the usual techniques for program-
ming and debugging, such as syntax highlighting, break-
points, and step-by-step execution, are already many years
old, some have not even changed in the past 30 years [8].
New techniques that improve the quality of end users’ pro-
grams are probably also suitable for professional IDEs.

2.4.1 Syntax-Directed Editors
Some environments, for example Alice, remove or reduce
the possibility of syntax errors and resulting bugs by “syntax-
directed editors” [1]. In Alice, an educational programming
system, the language and the environment are not separated.
Instead of typing the program, the programmer can choose

2http://eusesconsortium.org/
3http://giove.cnuce.cnr.it/eud-net.htm

7



commands, arguments, variables, etc. via drag-and-drop or
pop-up menus. This both lowers threshold and ceiling com-
pared to usual editors, since there are no syntax errors but it
makes the development more tedious. However, there are
also syntax directed editors which allow direct typing, or
both.

Syntax-directed programming environments are already com-
mon in professional programming. Microsoft Visual Stu-
dio’s IntelliSense parses the source code and provides useful
information when needed. The Java IDE of Eclipse even
supports incremental compilation so that errors and warn-
ings can be displayed immediately in the editor.

2.4.2 Whyline
The Whyline [8] is a debugging tool for the Alice program-
ming environment which uses a new debugging paradigm
called Interrogative Debugging. Whyline is the first tool
which supportshypothesizingactivities, that is, making as-
sumptions about what runtime actions caused failure. Espe-
cially when programmers make false assumptions due to a
weak hypothesis, debugging will take much longer and even
more errors are introduced. In conventional systems pro-
grammers can only verify their assumptions indirectly by
mapping debugging strategies to the available tools, but us-
ing Whyline they can do this explicitly by asking questions
of the formWhy didor Why didn’t.

User studies showed that questions of the forms “Why didn’t”
and “Why did” cover almost all questions asked by Alice
programmers during debugging. To ask such a question, the
user can click on the “Why” button in the Alice interface.
From there, he can compose the question via a series of pop-
up menus. For example, when testing a Pac-Man simulation,
the user assumes that the methodresizeof the object Pac was
not called and asks “Why didn’t Pac resize .5?”. If the re-
size method was actually called, Whyline informs the user
about it, because he made a false assumption. But if it was
not called, the Whyline (which is actually a timeline at the
bottom of the interface, see Figure 6) shows the sequences
of runtime actions which prevented the method from being
called. The user can then browse in the timeline to highlight
the according code.

In user studies to test the usability of the Whyline, it turned
out to be very successful. It reduced debugging time dramat-
ically by almost a factor of 8, and enabled the participants
to complete 40% more tasks, compared to an Alice version
without the Whyline. So it raises the ceiling a lot.

The Whyline is also a concept which could be extremely
useful even for professional programmers. It is very likely
that “Why” questions are very common in all debugging en-
vironments. However, it is not trivial to provide answers to
such questions. Showing the current run-time state of a pro-
gram is not a problem, but “Why” questions usually refer to
events that happened in the past. For the Whyline and similar
systems it is necessary to keep track of all important events
that happen during run-time. The first tool which achieves
this efficiently in a conventional programming language is

System RS SD VP Support
Chickenfoot Yes no no low

HANDS Yes no no low
CAMP Yes Yes no medium

LabVIEW no no Yes medium
Max/MSP no no Yes medium

Jigsaw Editor no no Yes medium
iCAP no no Yes medium

Stagecast no no Yes medium
Alice + Whyline no Yes no high

Table 1. Comparison of programming systems.
RS = Relaxed syntax, SD = Syntax-directed, VP = Visual Programming

Java

JFC/Swing

LabVIEW
Max/MSP

Stagecast Creator

Chickenfoot

Full JavaScript

HANDS

Alice + Whyline

CAMP

iCAP

Jigsaw Editor
�

�

�

�
High Ceiling

�

�

�

�
High Threshold

D
iffi

cu
lty

of
U

se

Program Complexity

Figure 7. This diagram compares the mentioned programming sys-
tems roughly with respect to their difficulty of use, dependent on the
complexity and sophistication of programs created with them. The
thresholds of the systems are the corresponding y-intercepts, while the
ceilings are the points at which the lines stop. Some systemshave ver-
tical walls, where the programmer “needs to stop and learn something
entirely new” [10].

theOmniscient Debugger[9] for Java. Although it does not
allow for asking “Why” questions explicitly, it provides the
necessary functionality to find the answers.

Overall, with good support by the development environment,
it is possible to lower the threshold due to better usability, as
well as to raise the ceiling, because it becomes easier to get
to a higher level of complexity, which has been out of reach
before due to insatisfactory tools.

3. CONCLUSION
We have seen a lot of already implemented but not necessar-
ily perfect interfaces enabling users to create and modify ap-
plications for their special needs without any programming
knowledge. Many of the shown concepts are already widely
accepted and used in today’s offices and homes—the spread-
sheet calculator might be a good example for that.

8



Figure 6. When asking a “Why didn’t”-question in Alice, the W hyline at the bottom of the interface visualizes the sequences of runtime actions which
prevented an event from happening. The user can move the timecursor to navigate to earlier events; the code is highlighted accordingly.

Now, almost 20 years after Weiser’s discussion on ubiqui-
tous computing, industry and research institutes provide the
necessary technology for arriving at a level that allows users
to create and use computer software, in this our case mainly
context-aware applications, in a simple way letting the com-
puter itself proceed another step into the background. Both,
CAMP and iCAP, enable end users to specify a rich vari-
ety of scenarios, with iCAP as a tool for the development of
almost every thinkable application of this kind.

3.1 Comparison
We have seen a lot of sample applications and there are many
more available using similar or different metaphors. We use
the following criteria to compare the mentioned program-
ming systems. Table 1 shows these aspects for all systems at
a glance.

• Relaxed syntax:This applies to textual programming sys-
tems whose language does not have a strict syntax. This
avoids the necessity to learn a strict language, allows for a
relatively natural language, and thus yields a low thresh-
old. Relaxed syntax is a major feature of Chickenfoot.
This pattern can also be found in CAMP: Although the
vocabulary is restricted, there is a great latitude of the ar-
rangement of words. The HANDS syntax is also relaxed
by allowing variations in the expression of queries, how-
ever, it does not go as far as in Chickenfoot.

• Syntax-directed: As described in 2.4.1, Alice has a syntax-
directed editor. Since in CAMP the selection of words
is restricted by the available vocabulary, and the arrange-
ment is directed by the magnetic poetry metaphor, CAMP
is also syntax-directed. The editors of the other textual
systems, Chickenfoot and HANDS, do not feature any

special support.

• Visual Programming: Of course all systems mentioned
in 2.2 use the Visual Programming paradigm. Further-
more, the PBD system Stagecast Creator uses visual pro-
gramming to represent before-after rules. Visual Program-
ming is not to be confused syntax-directed textual pro-
gramming: Although Alice and CAMP use graphical as-
pects to support the programmer, e.g. drag&drop tech-
niques, the actual programming is text-based.

• Support by Development Environment:Since the syntax-
directed aspect was already discussed above, we consider
only additional aspects here. Chickenfoot and HANDS
have almost no special support for editing and debugging.
In CAMP one can at least find magnets easily by pressing
their first letter, which speeds up the development. The
Whyline extension for Alice is particularly noteworthy; it
makes end user programs less error-prone and enables the
end user to develop applications much more efficiently.

Figure 7 visualizes the connection between ceiling and thresh-
old in the discussed environments. We can see, that in gen-
eral low threshold and low ceiling go together. Environments
with a relatively high ceiling and low threshold are usually
restricted to a certain field, e.g. iCAP to context-aware ap-
plications. Complex applications cannot be created without
a high threshold or high wall.

3.2 An outlook on future developments
What will the future bring us concerning end user program-
ming languages? Certainly a lot. Users will still need to be
enabled to configure their applications, operating systems,
home theater equipment and even cell phones while the com-
plexity of those devices is growing day by day. The devel-

9



opment of programming environments like those we have
discussed in this paper is ongoing. Most probably, there
will be mixtures of the different approaches. Along with
the research on new ways of human computer interaction
like for example tabletop displays and gesture recognition,
visual programming languages have a huge potential as they
do not depend on keyboard inputs. Simpler debugging envi-
ronment can then be integrated to provide a higher accuracy
when constructing more powerful and complex languages.

We believe that even in office environments end user pro-
gramming will play an important role in the future. Printers,
scanners, copy machines, cameras, other capture devices,
tabletop displays, wall-mounted large scale displays, hand-
helds etc. could be quickly interconnected and reconfigured
by every employee to, for example, build up more powerful
conference rooms and working environments.

On the ubicomp side, hopefully someday, all devices on the
market will have a common digital interface to access their
properties easily through a distributed dataspace. Together
with end user programming languages, then there will not
rest many obstacles on the way to the perfectly configured
eHome.

4. REFERENCES
1. Farah Arefi, Charles E. Hughes, and David A.

Workman. Automatically generating visual
syntax-directed editors.Commun. ACM,
33(3):349–360, 1990.

2. Michael Bolin. End-user programming for the web.
Master’s thesis, Massachusetts Institute of Technology,
2005.

3. Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. Automation and
customization of rendered web pages. InUIST ’05:
Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages
163–172, New York, NY, USA, 2005. ACM Press.

4. M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, and
A. Piccinno. Domain-expert users and their needs of
software development. InHCI 2003 End User
Development Session Papers. Network of Excellence
on End-User Development, 2003.

5. A.K. Dey, D. Salber, and G.D. Abowd. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware application.
Human-Computer Interaction Journal 16(2-4), pages
97–166, 2001.

6. Anind K. Dey, Timothy Sohn, Sara Streng, and Justin
Kodama. icap: Interactive prototyping of context-aware
applications.Proceedings of the Fourth International
Conference on Pervasive Computing, pages 974 – 975,
2006.

7. Jan Humble, T. Hemmings, A. Crabtree, B. Koleva, and
T. Rodden. ’playing with your bits’: user-composition

of ubiquitous domestic environments. InProceedings
of the 5th Annual Conference on Ubiquitous
Computing (UBICOMP 2003), Seattle, WA, USA,
October 2003. Springer-Verlag.

8. Andrew J. Ko and Brad A. Myers. Designing the
whyline: a debugging interface for asking questions
about program behavior. InCHI ’04: Proceedings of
the SIGCHI conference on Human factors in computing
systems, pages 151–158, New York, NY, USA, 2004.
ACM Press.

9. Bil Lewis and Mireille Ducasse. Using events to debug
java programs backwards in time. InOOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 96–97, New York,
NY, USA, 2003. ACM Press.

10. Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
present, and future of user interface software tools.
ACM Trans. Comput.-Hum. Interact., 7(1):3–28, 2000.

11. Brad A. Myers, Andrew J. Ko, and Margaret M.
Burnett. Invited research overview: end-user
programming. InCHI ’06: CHI ’06 extended abstracts
on Human factors in computing systems, pages 75–80,
New York, NY, USA, 2006. ACM Press.

12. Brad A. Myers, John F. Pane, and Andy Ko. Natural
programming languages and environments.Commun.
ACM, 47(9):47–52, 2004.

13. J.F. Pane and B.A. Myers. Tabular and textual methods
for selecting objects from a group. InIEEE
International Symposium on Visual Languages, pages
157–164, 2002.

14. John Francis Pane.A programming system for children
that is designed for usability. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, 2002.
Co-Chair-Brad A. Myers and Co-Chair-David Garlan.

15. Alexander Repenning and Andri Ioannidou.
Agentcubes: Raising the ceiling of end-user
development in education through incremental 3d. In
VLHCC ’06: Proceedings of the Visual Languages and
Human-Centric Computing (VL/HCC’06), pages
27–34, Washington, DC, USA, 2006. IEEE Computer
Society.

16. G. Rothermel, L. Li, and M. Burnett. Testing strategies
for form-based visual programs, 1997.

17. David Canfield Smith, Allen Cypher, and Jim Spohrer.
Kidsim: programming agents without a programming
language.Commun. ACM, 37(7):54–67, 1994.

18. Khai N. Truong, Elaine M. Huang, and Gregory D.
Abowd. Camp: A magnetic poetry interface for
end-user programming of capture applications for the
home. InUbiComp 2004: Ubiquitous Computing,
volume 3205/2004, pages 143–160. Springer Berlin /
Heidelberg, 2004.

10


	Introduction
	Threshold and Ceiling

	Approaches to EUP
	Simplified Textual Languages
	Chickenfoot
	HANDS
	CAMP: Capture and Access Magnetic Poetry

	Visual Programming
	Diagram-based languages
	Form-based languages
	Icon-based languages
	Match forms for defining boolean expressions
	iCAP, an icon-based programming environment

	Programming by Demonstration
	Better Support by Development Environment
	Syntax-Directed Editors
	Whyline


	Conclusion
	Comparison
	An outlook on future developments

	References
	REFERENCES 

