
Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Core Image is like Core Graphics and similar one of Apple’s
underlying work horses. It is an image processing and analysis
technology both for still and video images.

Compared to other technologies like Core Graphics, which is a rendering
API, it is not based on data but on representations.
At its center are CIFilters as processing units. They can create, as
generators, or manipulate existing CIImages.
In addition Core Image provides support for file formats, both as raw
from different kind of cameras with CIRawFilters, and for reading and
writing on file, like TIFF or heif.

Core Image as a core Technology

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

A CIImage is much more a recipe than a rectangular area of pixels.
Dimensions are not mandatory. Convenient initialisers from various
image sources are available. The property in UIImage is usually nil, so it
cannot be used.
To present a CIImage a CIContext is needed to render the image suitable
for further deployment through Core Graphics towards the UI. As
mentoined, CIImages can be written directly on file.

Characteristics

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

CIImage
CIFilter
CIContext

CIColor
CIVector
CIKernel

CIRawFilter
CIFeature
and more

Main data types in Core Image

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

CIImage is the major data type in Core Image. Usage is straightforward with some
handy initialisers. ‘ciImageWithErrorText’ here is a separate function.

CIImage

 func ciImageFromPath(path:String) -> CIImage
 {
 guard let img = UIImage.init(contentsOfFile: path)else
 {
 return ciImageWithErrorText(error: "No image at Path")
 }

 guard let ciImg = CIImage(image: img) else
 {
 return ciImageWithErrorText(error: "No CIImage from UIImage")
 }
 return ciImg
 }

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIContext provides the context for rendering the processed images into various places such
as CGImage, CVPixelBuffer or MTLTextures, or as data in various file formats to select from.

A CIContext should be created only once as a singleton. It is always immutable and thread safe, CIImages
from multiple threads may share it.
It is a common mistake to initialise a CIContext, use it once, forget about it and next time crate a new one.

Using the classical class-variable pattern the context is accessible from elsewhere like:

CIContext

class Helper {
. . .
static let context = CIContext(options:
 [.workingColorSpace: CGColorSpaceCreateDeviceRGB(),
 .outputColorSpace: CGColorSpaceCreateDeviceRGB()])

let context = Helper.context

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Filters are at the center of Core Image’s processing capabilities. The name is already shortcoming,
because some filters generate images based on types of input parameters other than images,e.g.
they do not filter the image. However, typically a filter takes one or more images as its source of
input and some parameters to alter the result.
Traditionally all CIFilters object are set and retrieved through the use of key-value pairs:

CIFilter with key and value

 let ctx = Helper.context
 let myFilter = CIFilter(name: "CISepiaTone")!
 var workerImage = CIImage(image: UIImage.init(named: "Mandrill.png")!)!
 myFilter.setValue(workerImage, forKey: kCIInputImageKey)
 myFilter.setValue(1.0, forKey: kCIInputIntensityKey)
 workerImage = myFilter.value(forKey: kCIOutputImageKey) as! CIImage
 let savePath = workerImage.saveJPEG("Mandr", quality: 0.1, inContext: ctx)

result image

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

To avoid key-value coding with its flexible types all 242 CiFilters are built-in. To access them, an
additional framework ‘CoreImage.CIFilterBuiltins’, is deployed. Otherwise the code and its result
are identical. From a swift point of view, the built-in filters should be preferred.

Built-in CIFilters

import CoreImage.CIFilterBuiltins

 let ctx = Helper.context
 let myFilter = CIFilter.sepiaTone()
 var workerImage = CIImage(image: UIImage.init(named: "Mandrill.png")!)!
 myFilter.inputImage = workerImage
 myFilter.intensity = 1.0
 workerImage = myFilter.outputImage!
 let savePath = workerImage.saveJPEG("Mandr", quality: 0.1, inContext: ctx)

result is the same

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

At first, all CIFilters must have one and only one output-value, the output image, which is always of type
CIImage. Commonly the output image is based on the input image, but there are filters with an output image
of only one pixel. It does not stop there. Sometimes even these color values must be translated into some
kind of CIVector or else.
The input parameters are ranging from one, as for a single color image, to almost infinite for color curves.
Hence a CIFilter has at least one input value and exactly one output value, which is always of type CIIimage.

Principal nature of a CIFilter

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

The power of Core Image unfolds once filter are chained. Because the CIImage is rather a recipe
to draw than an image by itself these CIImage can be directly injected into the next filter. At the
end of the chain the final image will be rendered only once.

A simple filter chain

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
21 categories for filters, not all are documented as public:

CICategoryBlur
CICategoryBuiltIn (242 filters)
CICategoryColorAdjustment
CICategoryColorEffect
CICategoryCompositeOperation
CICategoryDistortionEffect
CICategoryGenerator
CICategoryGeometryAdjustment
CICategoryGradient
CICategoryHalftoneEffect
CICategoryHighDynamicRange

CICategoryInterlaced
CICategoryNonSquarePixels
CICategoryReduction
CICategorySharpen
CICategoryStillImage
CICategoryStylize
CICategoryTileEffect
CICategoryTransition

CICategoryVideo
CICategoryXMPSerializable

Only one is
important.
The ‘video’-category
indicates, that the
filter is suitable for
live-viewing.
All 242 filters are
built-in.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
242 Filters on all platforms: MacOS and iOS

CIAccordionFoldTransition
CIAdditionCompositing
CIAffineClamp
CIAffineTile
CIAffineTransform
CIAreaAlphaWeightedHistogram
CIAreaAverage
CIAreaBoundsRed
CIAreaHistogram
CIAreaLogarithmicHistogram
CIAreaMaximum
CIAreaMaximumAlpha
CIAreaMinimum
CIAreaMinimumAlpha
CIAreaMinMax
CIAreaMinMaxRed
CIAttributedTextImageGenerator
CIAztecCodeGenerator
CIBarcodeGenerator
CIBarsSwipeTransition
CIBicubicScaleTransform
CIBlendWithAlphaMask
CIBlendWithBlueMask
CIBlendWithMask
CIBlendWithRedMask
CIBloom
CIBlurredRectangleGenerator
CIBokehBlur
CIBoxBlur
CIBumpDistortion

CIBumpDistortionLinear
CICannyEdgeDetector
CICheckerboardGenerator
CICircleSplashDistortion
CICircularScreen
CICircularWrap
CIClamp
CICMYKHalftone
CICode128BarcodeGenerator
CIColorAbsoluteDifference
CIColorBlendMode
CIColorBurnBlendMode
CIColorClamp
CIColorControls
CIColorCrossPolynomial
CIColorCube
CIColorCubesMixedWithMask
CIColorCubeWithColorSpace
CIColorCurves
CIColorDodgeBlendMode
CIColorInvert
CIColorMap
CIColorMatrix
CIColorMonochrome
CIColorPolynomial
CIColorPosterize
CIColorThreshold
CIColorThresholdOtsu
CIColumnAverage
CIComicEffect

CIConstantColorGenerator
CIConvertLabToRGB
CIConvertRGBtoLab
CIConvolution3X3
CIConvolution5X5
CIConvolution7X7
CIConvolution9Horizontal
CIConvolution9Vertical
CIConvolutionRGB3X3
CIConvolutionRGB5X5
CIConvolutionRGB7X7
CIConvolutionRGB9Horizontal
CIConvolutionRGB9Vertical
CICopyMachineTransition
CICoreMLModelFilter
CICrop
CICrystallize
CIDarkenBlendMode
CIDepthBlurEffect
CIDepthOfField
CIDepthToDisparity
CIDifferenceBlendMode
CIDiscBlur
CIDisintegrateWithMaskTransition
CIDisparityToDepth
CIDisplacementDistortion
CIDissolveTransition
CIDistanceGradientFromRedMask
CIDither
CIDivideBlendMode

CIDocumentEnhancer
CIDotScreen
CIDroste
CIEdges
CIEdgeWork
CIEightfoldReflectedTile
CIExclusionBlendMode
CIExposureAdjust
CIFalseColor
CIFlashTransition
CIFourfoldReflectedTile
CIFourfoldRotatedTile
CIFourfoldTranslatedTile
CIGaborGradients
CIGammaAdjust
CIGaussianBlur
CIGaussianGradient
CIGlassDistortion
CIGlassLozenge
CIGlideReflectedTile
CIGloom
CIGuidedFilter
CIHardLightBlendMode
CIHatchedScreen
CIHeightFieldFromMask
CIHexagonalPixellate
CIHighlightShadowAdjust
CIHistogramDisplayFilter
CIHoleDistortion
CIHueAdjust
CIHueBlendMode

CIHueSaturationValueGradient
CIKaleidoscope
CIKeystoneCorrectionCombined
CIKeystoneCorrectionHorizontal
CIKeystoneCorrectionVertical
CIMorphologyRectangleMaximum
CIMorphologyRectangleMinimum
CICameraCalibrationLensCorrection
CIPageCurlWithShadowTransition
CIPerspectiveTransformWithExtent
CIEdgePreserveUpsampleFilter
CIRoundedRectangleStrokeGenerator
CILabDeltaE
CILanczosScaleTransform
CILenticularHaloGenerator
CILightenBlendMode
CILightTunnel
CILinearBurnBlendMode
CILinearDodgeBlendMode
CILinearGradient
CILinearLightBlendMode
CILinearToSRGBToneCurve
CILineOverlay
CILineScreen
CILuminosityBlendMode
CIMaskedVariableBlur
CIMaximumComponent
CIMaximumCompositing
CIMaximumScaleTransform
CIRoundedRectangleGenerator

CIMaskToAlpha
CIKMeans
CIMedianFilter
C CIMeshGenerator
IMinimumComponent
CIMinimumCompositing
CIMix
CIModTransition
CIMorphologyGradient
CIMorphologyMaximum
CIMorphologyMinimum
CIMotionBlur
CIMultiplyBlendMode
CIMultiplyCompositing
CINinePartStretched
CINinePartTiled
CINoiseReduction
CIOpTile
CIOverlayBlendMode
CIPageCurlTransition
CIPaletteCentroid
CIPalettize
CIParallelogramTile
CIPDF417BarcodeGenerator
CIPersonSegmentation
CIPerspectiveCorrection
CIPerspectiveRotate
CIPerspectiveTile
CIPerspectiveTransform
CIPhotoEffectChrome

CIPhotoEffectFade
CIPhotoEffectInstant
CIPhotoEffectMono
CIPhotoEffectNoir
CIPhotoEffectProcess
CIPhotoEffectTonal
CIPhotoEffectTransfer
CIPinchDistortion
CIPinLightBlendMode
CIPixellate
CIPointillize
CIQRCodeGenerator
CIRadialGradient
CIRandomGenerator
CIRippleTransition
CIRowAverage
CISaliencyMapFilter
CISampleNearest
CISaturationBlendMode
CIScreenBlendMode
CISepiaTone
CIShadedMaterial
CISharpenLuminance
CISixfoldReflectedTile
CISixfoldRotatedTile
CISmoothLinearGradient
CISobelGradients
CISoftLightBlendMode
CISourceAtopCompositing
CISourceInCompositing

CISourceOutCompositing
CISourceOverCompositing
CISpotColor
CISpotLight
CISRGBToneCurveToLinear
CIStarShineGenerator
CIStraightenFilter
CIStretchCrop
CIStripesGenerator
CISubtractBlendMode
CISunbeamsGenerator
CISwipeTransition
CITemperatureAndTint
CITextImageGenerator
CIThermal
CIToneCurve
CIToneMapHeadroom
CITorusLensDistortion
CITriangleKaleidoscope
CITriangleTile
CITwelvefoldReflectedTile
CITwirlDistortion
CIUnsharpMask
CIVibrance
CIVignette
CIVignetteEffect
CIVividLightBlendMode
CIVortexDistortion
CIWhitePointAdjust
CIXRay
CIZoomBlur

The complete list

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Get all filters

 func ciFilters()
 {
 let names = CIFilter.filterNames(inCategories: [])
 let builtInNames = CIFilter.filterNames(inCategories: ["CICategoryBuiltIn"])
 if(names == builtInNames)
 {
 print("all filters are built in!")
 }
 . . .

There is one simple function in CIFilter to get all filter names.
CIFilter.filterNames(inCategories: nil).
If the category is nil or an empty array, it presents all filter
names, otherwise those of the selected category.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Get the attributes of a filter

 for aFilterName in filtersInCategory
 {
 print("\n\(aFilterName)\n")
 let filter = CIFilter.init(name: aFilterName)
 print(filter?.attributes ?? "")
 }

The filters have to be instantiated in order to access the attributes.
 Printing (filtersInCategory) yields about the same result, but almost not readable

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Some words about filters

Generators: Graphic generators like simple color, stripes
 or checkerboard, textual as text or some kind of barcodes.

Reduction filters like kMean or histogram evaluate and analyse an image. Their
output image contains these informations, hence these images are not
modified images. They cannot be part of a chain with reasonable results

General purpose filters like CIColorMatrix allow some customization based on
simple math to create individual filters. Probably even some of the built-in
filters were made this way.

At first an example of a simple chained filters, checkerboard
and twirl.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
The others

Core Image has a long history, starting with Mac OSX 10.4. Under the hood the kernels
changed from the the OpenGL shading language to Metal, the transition to iOS took years
and was very iterative. At some time filters were available in the simulator, as part of
OSX, but not on the device.

As consequence some people were tempted to write their own repository of kernels, like Brad
Larson with his GPUImage-framework, now as version 3. Like with all third party frameworks he
is busy keeping up with the ever changing technology, re-writing all filters from Objective-C and
shading language first to Swift and then to Metal.
Another approach are the attempts to create a unified interface for all filters. There is even an app,
that creates some code of it. But there some 20 filters are missing, and the question remains, who
needs it. How to feed all animals in a zoo? In essence, it is just a production of boilerplate-code.
Selecting and applying some filters is a task on its own and not necessarily subject to coding.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Original image

From Bonn
to Cologne

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

CIMaximumComponent
CIPhotoEffectTonal
CIPhotoEffectMono
CIMinimumComponent
CIPhotoEffectNoir

5 pre-configured black-and-white filters:

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIPhotoEffectNoir

Imitates black-
and-white
photography
film with
exaggerated
contrast.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIMinimumComponent

Returns a
grayscale
image from
min(r,g,b).

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIPhotoEffectMono

Applies a
preconfigured
set of effects
that imitate
black-and-
white
photography
film with low
contrast.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIPhotoEffectTonal

Applies a
preconfigured
set of effects that
imitate black-
and-white
photography film
without
significantly
altering
contrast.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
CIMaximumComponent

Returns a
grayscale
image from
max(r,g,b).

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Modified
image:

From Bonn
to Cologne

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Source images are the original, a b/w
image thereof and the grid.
With MaskToAlpha and some layerings
the final image was composed, as seen
before.

original final

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Better than perfect.
Autoadjustment filters
applied to the grid.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Original image

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Generate two pattern images

createCheckerBoard(color0: CIColor.yellow, color1: CIColor.green, width: 64.0, angle: 145.0, stretching: 640.0)

createCheckerBoard(color0: CIColor.blue, color1: CIColor.red, width: 0.52 * 64.0, angle: 20.0, stretching: 0.8)

(Own function)

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Select from 5 different Choice

Based on the b/w filters

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Pattern applied to both channels

With maskToAlpha and some composition kind of two different
channels are established as foreground and background.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Filters used:
CICheckerboardGenerator
[CGAffineTransform]

CIMaximumComponent
CIVignette
CIColorThreshold

[pattern cropped]
CIMaskToAlpha
CISourceInCompositing
CISourceOutCompositing
CISourceOverCompositing

Composite binary image

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
In VisionOS, simulator for eye-tracking

Both images are
sliced into tiles.
Once selected, each
tile can change
from the original
position into the
colored one, and
then back again just
by looking at it and
snipping with the
fingers.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Download it from here:
https://github.com/dialThat/FunWithPixels

Start by messing with the colors in ContentView:

Then collect some images and copy them into the bundle,
not the Asset-folder.
If running on a device, do not forget to inject your
credentials. The app should run on a working, but
otherwise empty code, like e.g. the original image can be
saved unaltered.

The demo-app to code with

https://github.com/dialThat/FunWithPixels

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

A. Search for it like ‘CIFilter sepia’.
B. Find the documentation on Apple’s webpage.
C. Find the example code oh that page and use it. The names are

meaningful and all parameters or attributes are set.

How to find a filter

 func sepiaTone(inputImage: CIImage) -> CIImage {
 let sepiaToneFilter = CIFilter.sepiaTone()
 sepiaToneFilter.inputImage = inputImage
 sepiaToneFilter.intensity = 1
 return sepiaToneFilter.outputImage!
 }

https://developer.apple.com/documentation/coreimage/cifilter/3228402-sepiatone

Directly from
the website

https://developer.apple.com/documentation/coreimage/cifilter/3228402-sepiatone

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Commonly most parameters or attribute are sparsely documented.
The major problem is, that the attributes are of all different types,
established historically through instances of ‘NSNumber’. Even more
confusing are the different ranges of the parameters, inside of which
they are suitable while outside they render the image as void.
Luckily the key-value encoding interface provide some help.
Just call:

How to set the values

print (sepiaToneFilter.attributes)

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Read through all the attributes

["CIAttributeFilterAvailable_Mac": 10.4, "CIAttributeFilterDisplayName": Sepia Tone,
"CIAttributeFilterCategories": <__NSArrayI 0x60000212fc00>(
 CICategoryColorEffect,
. . .
)
 , "inputIntensity": {
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeDescription = "The intensity of the sepia effect. A value of 1.0
creates a monochrome sepia image. A value of 0.0 has no effect on the image.";
 CIAttributeDisplayName = Intensity;
 CIAttributeIdentity = 0;
 CIAttributeMin = 0;
 CIAttributeSliderMax = 1;
 CIAttributeSliderMin = 0;
 CIAttributeType = CIAttributeTypeScalar;
 }, "inputImage": {
 CIAttributeClass = CIImage;
 CIAttributeDescription = "The image to use as an input for the effect.";
 CIAttributeDisplayName = Image;
 CIAttributeType = CIAttributeTypeImage;
 }, "CIAttributeFilterAvailable_iOS": 5, "CIAttributeReferenceDocumentation": http://
developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CoreImageFilterReference/
index.html#//apple_ref/doc/filter/ci/CISepiaTone, "CIAttributeFilterName": CISepiaTone]

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Besides the common ‘inputImage’ the name of the relevant parameter is ‘inputIntensity’. Applied to it
are some values. The related maximum value is labelled ‘CIAttributeSliderMax’ with a value of ‘1’,
while the corresponding ‘CIAttributeSliderMin’ is ‘0’. Note the identity value ‘CIAttributeIdentity’, which
is also ‘0’. Setting the identity value processes the image without changes when the filter is called.

Look for the name and its min/max values

inputIntensity”: { <-
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeDescription = "The . . . image.”;
 CIAttributeDisplayName = Intensity;
 CIAttributeIdentity = 0;
 CIAttributeMin = 0;
 -> CIAttributeSliderMax = 1;
 -> CIAttributeSliderMin = 0;
 CIAttributeType = CIAttributeTypeScalar;

Either set these values directly in
the slider provided by SwiftUI,
or use a normalised slider from
-1…1
and calculate the values in the
code.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Only three filters are needed: CIColorControls with brightness ranging from -1…1,
and saturation from 0…2. Contrast seems to be missing, instead there are blue and
red coefficients. Anyway, contrast works in the range -1 … 1.
The second filter CITemperatureAndTint needs extra care, while the third
CIHighlightShadowAdjust suggest the range 0…1 for both the highlight and
the shadow slider. The highlight-slider seems to be reversed.

First round of sliders

CIColorControls

CITemperatureAndTint

CI
Hi

gh
lig

ht
Sh

ad
ow

Ad
ju

st

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

The temperature and tint filter presents kind of a riddle with a CIVectors-values both as identity and
max as [6500 0], but no Min.
“CITemperatureAndTint has three input parameters: Image, Neutral and TargetNeutral. Neutral and
TargetNeutral are of CIVector type, and in both of them the first dimension refers to Temperature
and the second to Tint. What the CITemperatureAndTint filter basically does is computing a matrix
that adapts RGB values from the source white point defined by Neutral (srcTemperature, srcTint) to
the target white point defined by TargetNeutral (dstTemperature, dstTint), and then applying this
matrix on the input image (using the CIColorMatrix filter). If Neutral and TargetNeutral are of the
same values, then the image will not change after applying this filter. The two sliders give the
Temperature and Tint changes (i.e. differences between source and target Temperature and Tint
values already) added to the source image.”
As first step, the sliders are normalised.

Mysterious sliders

https://stackoverflow.com/questions/8629411/input-parameters-of-citemperatureandtint-cifilter

https://stackoverflow.com/questions/8629411/input-parameters-of-citemperatureandtint-cifilter

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
According to this diagram the min-value is set to ‘2000’. The max value, although

potentially infinite, is set to 10500. The tint is perpendicular bouncing along the
axis between -100 and 100. It works as expected.

CIELab colors and Kelvin

let vec = CIVector(x: 6500 + CGFloat(temperature)*4500,
 y: CGFloat(tint) * 100). // 2000 - 10500 Kelvin

Source: Wikipedia
Planckian locus

https://en.wikipedia.org/wiki/Planckian_locus

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

All sliders are globally instantiated. Although not thread safe they are only called
through SwiftUI, or, when an image is saved to disk. The code below is from each
the code examples directly copied out of the documentation.

With these three lines and the following function all seven sliders should already
work on the image.

Instantiating the sliders

 let colorControls = CIFilter.colorControls()
 let highlightShadowAdjustFilter = CIFilter.highlightShadowAdjust()
 let tempatureAndTintFilter = CIFilter.temperatureAndTint()

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
The main slider function

private func ciImageFromFilterWith(_ image: CIImage, exposure: Float, contrast: Float, highlights:
Float, shadows: Float, saturation: Float, temperature: Float, tint: Float) -> CIImage
{
 var workerImage = image

 colorControls.brightness = exposure
 colorControls.contrast = contrast
 colorControls.saturation = saturation
 colorControls.inputImage = workerImage
 workerImage = colorControls.outputImage!

 highlightShadowAdjustFilter.highlightAmount = highlights
 highlightShadowAdjustFilter.shadowAmount = shadows
 highlightShadowAdjustFilter.inputImage = workerImage
 workerImage = highlightShadowAdjustFilter.outputImage!

 tempatureAndTintFilter.neutral = CIVector(x: 6500, y: 0) // 2000 - 10500 Kelvin
 let vec = CIVector(x: 6500 + CGFloat(temperature)*4500, y: CGFloat(tint) * 100)
 tempatureAndTintFilter.targetNeutral = vec
 tempatureAndTintFilter.inputImage = workerImage
 workerImage = tempatureAndTintFilter.outputImage!

 return workerImage
 }

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Although a function of CIImage, the auto adjustment filters are a convenient set of pre-installed
and pre-configured filters to easily enhance an image. The function ‘autoAdjustmentFilters()’

Autoadjustment Filters

 private func autoAdjust(image: CIImage) -> CIImage
 {
 var workerImage = image
 if(autoAdjustFilters.isEmpty)
 {
 autoAdjustFilters = image.autoAdjustmentFilters()
 }

 for filter in autoAdjustFilters
 {
 filter.setValue(workerImage, forKey: kCIInputImageKey)
 workerImage = filter.outputImage!
 }
 return workerImage
 }

returns all
possible
automatically
selected and
configured filters
for adjusting the
image. These
filters are simply
subject to a loop,
wherein all the
filters are chained.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
In order to avoid the costly collection of the ‘autoAdjustmentFilters’ an intermediate
image is introduced to store the intermediate values of these filters. Scaling and

Implementation details

In ContentView

 func newIntermediate()
 {
 helper.intermediateImage(forIndex: selIndex, adjust: adjust, channels:
meanChannels, passes: meanPasses)
 }

And declaration in Helper:
 var autoAdjustFilters:[CIFilter] = []
 var intermediate = CIImage()
 let scaleFiter = CIFilter.lanczosScaleTransform()

later the mean-filters are here implemented as well. The function ‘newIntermediate’ is called, whenever
the selected image changes or the adjust button is selected. Otherwise these filters are not triggered.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

func intermediateImage(forIndex: Int, adjust: Bool,
 channels: Float, passes: Float) {
 autoAdjust = adjust

 selectedIndex = forIndex
 let originalImage = CIImage(image: allImages[selectedIndex])
 let max = originalImage!.extent.width > originalImage!.extent.height ?
 originalImage!.extent.width : originalImage!.extent.height

 scaleFiter.scale = 1000/Float(max)
 scaleFiter.inputImage = originalImage
 var inputImage = scaleFiter.outputImage!

 if(true == autoAdjust)
 {
 inputImage = autoAdjust(image: inputImage)
 }
 self.intermediate = inputImage
}

Scaling is already implemented.
The intermediate function

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Original image for CIKMeans

Already a very
reduced set of colors.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Color reduction via CIKMeans

By applying the kMean and the corresponding palletise filter the
colors are reduced to 4 and two. Result is an almost binary image.

Palette of only 4 colors Minimum of two colors

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Compared to simple linear chaining this procedure is somewhat more complex. At first the original
image is the input for the filter CIKMeans. Based on the count of channels for the number of colors
and the passes to calculate them the output image of the filter is a palette, meaning a height of one
pixel and a width corresponding to the count of channels. This palette of colored pixels will be one
parameter of the CIPalettize-filter. The other is again the original as inputImage, the output image is
the final image.
Most pieces and the interface in SwiftUI are already written, the documentation on Apple’s website
is sufficient. It should be no problem to fill in the code and correct the last line of the previous
function.

Implementing the mean filter.

private func filterMean(image: CIImage, channels: Float, passes: Float) -> CIImage
{ return image}

self.intermediate = filterMean(image: inputImage, channels: channels, passes: passes)

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Different channel and passes

2 passes

2/2-2/8 are the
same result

8 passes

Channels: 2 4 6 8

…and some tweaking

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
The Palette

Just to mention it, the palette of the image distributed as a CIImage

 8 channels and 8 passes.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Original and mean images

A collection of four Images side by side with their sources.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Average color filter

The average filter is the ultimate reduction filter. The output image
Is only one pixel
with one color.
To view that
pixel, the image
has to be
enlarged.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
A set of average colors

Naturally, the color tends to some shades of gray.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
The icing: implement the average color CIAreaAverage

There is some space left between the two arrows under the
source image suitable for the final task of displaying the

average color of the source. Just obtain a filter of type
CIAreaAverage and set the image and its extent
accordingly. Then run the filter. The main problem is
that the single result pixel has to be scaled up. The
common filter CILanczosScaleTransform is too sophisticated. The screenshot
indicates some shading, which upon examination is verified. What is needed
is a much more simple filter like the CIAffineTransform to get a flat filled
rectangle. Maybe instantiating the filter requires key-value-coding.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
One more thing: SwiftImage

There is a framework around with a total different approach:
https://github.com/koher/swift-image
Not atomising the image into pixels and kernels but keeping them around in a Swift-
array renders an holistic view on the image. As a standard array pixels all values
can be sorted, filtered and shuffled. With some constraints the framework then
renders the array back into an image.
The main difference is, that Core Image with its atomic pixels in the filters’ kernels
provides no means to address all pixels all at once.
Especially shuffle is a kind of a useful procedure here.

https://github.com/koher/swift-image

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Shuffled pixels of the image

Once a pixel
lost his place
in the grid, the
information of
its position is
gone. Mixed up
between all the
other pixels it
retains the only

value it is
reduced to,
its precious
color.
Although the
image looks
like a single
color, all
pixels are
still there.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Visibility of pixels

 What at first glance appears to be meaningless random noise, is
at second glance a remembrance of the source image. Finally the blue, white,
yellow and dark pixels are awaiting reconstruction in everybody’s mind.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Average color for comparison

Only at first
glance
the shuffled
and the
averaged
images
are looking
similar.

The image
here is
reduced to
one single
color and
lost almost
all of its
informations.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels
Sorted Pixel

Only at first
glance
the shuffled
and the
averaged
images
are looking
similar.

All pixels are
sorted
according to
their color
values.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Different grades of
noise applied to a
binary image.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Scaled up to get a
better view on the
effect.

Talk @ Cocoaheads-AC Werner Lonsing on Jan/30/2025

Fun with Pixels

Thank you.

