SIMD & Co

A tour through Accelerate.framework

CocoaHeads Aachen | 2023-03-30 | cocoaheads.de

Torsten Kammer @zcochrane https://github.com/cochrane/SIMDDemo

http://cocoaheads.de
https://github.com/cochrane/SIMDDemo

Accelerate.framework

2ction of sub-frameworks to get the most
but of Apple’s most powerful product:

The Power Mac G4 (...and newer)

Part one: SIMD

Single Instruction, Multiple Data

Normal:

a=Db+ ¢

DR 2 B 3

SIMD:

a=b + ¢

SIMD for Apple

e At all since 1999, everywhere since 2003
e PowerPCAltivee

o Intel: SSE2, SSE3, SSE4, AVX, AVX2

e ARM: Neon

SIMD Hardware

128 Bit

Float, Int32 Float, Int32 Float, Int32 Float, Int32

(Intel: Also 256 Bit, 512 Bit available.
And 64 Bit if you want.)

SIMD in Swift

e Built-in types
e SIMD2< SIMDScalar >, SIMD4< SIMDScalar >, ... SIMD64< SIMDScalar >
e SIMDScalar: Float, Double, Int, UInt, (U)Int8...(U)Inté64
e Some combinations exceed 128 Bit (at times very clearly)
* | egal but potentially slower; may become taster in tfuture

e Special case: SIMD3 - actually a SIMD4 with fourth lane hidden

SIMD in Swift

Generic Operations

e Normal operators: Act per lane
e Most maths functions are detfined for SIMD

e Operations with scalar: Automatically extended

a: SIMD3<Float>
b: SIMD3<Float>
c: SIMD3<Float>

generateVector()
generateVector()
a + b x

Booleans with Swift

tooSmall = vector .< deadzone
adjusted = vector - deadzone
adjusted.replacing(with: , where: tooSmall)

e Comparison operators start with dot
e Compare per lane, return SIMDMask
* Functions any(), all() give normal boolean

e SIMDN.replacing to choose per lane

Other interesting operations

e scalarCount, subscript - can iterate over elements
* |nit from sequence

e Horizontal min, max, add

indices: SIMD2<Int> = ..
vector: SIMD4<Float> = ..
chosenElements: SIMD2<Float> = vector[indices]

Philosophy of using SIMD

Approach 1: Exactly two, three, four floats

direction: SIMD3<Float> = positions[1] - positions[0]

e X,Y,Z, W,orR,G,B,A

e Fasyto reason about

e Use as general 2D/3D/3D affine point/direction structure
e \Wastes bits (rarely care about w)

e \Wastes bits on hypothetical future hardware

Philosophy of SIMD

Approach 2: N numbers, N depends on CPU

dirX: SIMD64<F loat>
dirY: SIMD64<F lLoat>
dirZ: SIMD64<F loat>

positionsX[1] - positionsX[0]
positionsY[1] - positionsY[0]
positionsZ[1] - positionsZ[0]

Every element has same meaning, just for different element

Higher performance

At times more difficult, more code

Requires special load, store logic

Not that easy in Swift

. \'J_c«\s S,
e -

LA
A

e

;_1
At

2T
&1,\&1'

simd
The Library

e C-based, in /usr

e Geometry functions for float and double

e Confusing name: SIMDN<Type> does not require simd
* Provides own type aliases e.g. simd_float4

e Functions for vectors, matrices, quaternions

simd

Vectors

e Generic functions:

* min, max, abs, clamp, sign, min element, ...
e Geometric functions:

e Normalize, Distance, reflect, refract

* Dot and cross products

e \/ery specific intersection tests

simd

Matrices

e Float, Double matrices from 2x2 to 4x4
e Swift operators for addition, multiplication
e |[nverse (full)

* No methods to generate standard matrices (rotation, projection...), need to
write these yourselt

simd

Quaternions

e Generalisation of complex numbers to tfour dimensions used to represent
rotations in 3D space that | don't really understand

 Supports all standard operations
e Multiplication with each other
* Transforming vectors

 Turning from and into matrices

vForce

Finally Accelerate.framework

cos, sgrt, floor, ...
for large arrays

Image Processing

e Slower than Core Image

e Can do things Cl can't

* Processing before/after Corelmage, OpenGL, Metal...
Scaling, Shearing, Flipping

Format Conversion

Histograms

e DSP operations

e Fourier Transtorms, Cosine Transtorms

vBigNum

Basic operations on 256-1024 bit numbers
+-%/
Signed and unsigned

Interface not very Switt-like

Quadrature

e Numeric integration of functions

e Special Switt AP

BLAS, LAPACK

e |Industry standard for large linear maths operations

e Apple's version specifically optimised

AR
.

Sparse Solvers

v
BRULLL\ W

1
aaae

17

e Equivalent to LAPACK for sparse
matrices

e Special data structures to
describe which items are non-
Zero

L.
" A % T\
- | §‘
L
25 B AV L
.

c o

Y -
Y -

1.5
nz = 4444880

BNSS

e Fast operations for neural networks

* Probably useful if you don't like CoreML

Spatial

e 3D geometry library
e Types for transtormations, primitives

e Uses own type system - not designed to easily generate matrices for use
anywhere

Compression, Apple Archive

e Compress raw data

e \Write and read Zip files

Questions?

