
SIMD & Co

CocoaHeads Aachen | 2023-03-30 | cocoaheads.de

Torsten Kammer @zcochrane https://github.com/cochrane/SIMDDemo

A tour through Accelerate.framework

http://cocoaheads.de
https://github.com/cochrane/SIMDDemo

Accelerate.framework

Vast collection of sub-frameworks to get the most
out of Apple’s most powerful product:

The Power Mac G4 (…and newer)

Part one: SIMD
Single Instruction, Multiple Data

Normal:
a = b + c

SIMD:
a = b + c

1 2+ ➞ 3

1 2 3
2 3 5
3 4 7
4 5

+ ➞

9

SIMD for Apple

• At all since 1999, everywhere since 2003
• PowerPC: Altivec
• Intel: SSE2, SSE3, SSE4, AVX, AVX2
• ARM: Neon

SIMD Hardware

128 Bit

Double, Int64 Double, Int64

Float, Int32 Float, Int32Float, Int32 Float, Int32

Int16 Int16Int16 Int16Int16 Int16Int16 Int16

Int8 Int8Int8 Int8Int8 Int8Int8 Int8Int8 Int8Int8 Int8Int8 Int8Int8 Int8

(Intel: Also 256 Bit, 512 Bit available.
And 64 Bit if you want.)

SIMD in Swift

• Built-in types

• SIMD2< SIMDScalar >, SIMD4< SIMDScalar >, … SIMD64< SIMDScalar >

• SIMDScalar: Float, Double, Int, UInt, (U)Int8…(U)Int64

• Some combinations exceed 128 Bit (at times very clearly)

• Legal but potentially slower; may become faster in future

• Special case: SIMD3 - actually a SIMD4 with fourth lane hidden

SIMD in Swift
Generic Operations

• Normal operators: Act per lane

• Most maths functions are defined for SIMD

• Operations with scalar: Automatically extended

let a: SIMD3<Float> = generateVector()
let b: SIMD3<Float> = generateVector()
let c: SIMD3<Float> = a + b * 2

Booleans with Swift

let tooSmall = vector .< deadzone
let adjusted = vector - deadzone
return adjusted.replacing(with: 0.0, where: tooSmall)

• Comparison operators start with dot

• Compare per lane, return SIMDMask

• Functions any(), all() give normal boolean

• SIMDN.replacing to choose per lane

Other interesting operations

• scalarCount, subscript - can iterate over elements

• Init from sequence

• Horizontal min, max, add

let indices: SIMD2<Int> = …
let vector: SIMD4<Float> = …
let chosenElements: SIMD2<Float> = vector[indices]

Philosophy of using SIMD
Approach 1: Exactly two, three, four floats

let direction: SIMD3<Float> = positions[1] - positions[0]

• X, Y, Z, W, or R, G, B, A

• Easy to reason about

• Use as general 2D/3D/3D affine point/direction structure

• Wastes bits (rarely care about w)

• Wastes bits on hypothetical future hardware

Philosophy of SIMD
Approach 2: N numbers, N depends on CPU

let dirX: SIMD64<Float> = positionsX[1] - positionsX[0]
let dirY: SIMD64<Float> = positionsY[1] - positionsY[0]
let dirZ: SIMD64<Float> = positionsZ[1] - positionsZ[0]

• Every element has same meaning, just for different element

• Higher performance

• At times more difficult, more code

• Requires special load, store logic

• Not that easy in Swift

Part 2
Accelerate

(…and others)

simd
The Library

• C-based, in /usr

• Geometry functions for float and double

• Confusing name: SIMDN<Type> does not require simd

• Provides own type aliases e.g. simd_float4

• Functions for vectors, matrices, quaternions

simd
Vectors

• Generic functions:

• min, max, abs, clamp, sign, min element, …

• Geometric functions:

• Normalize, Distance, reflect, refract

• Dot and cross products

• Very specific intersection tests

simd
Matrices

• Float, Double matrices from 2x2 to 4x4

• Swift operators for addition, multiplication

• Inverse (full)

• No methods to generate standard matrices (rotation, projection…), need to
write these yourself

simd
Quaternions

• Generalisation of complex numbers to four dimensions used to represent
rotations in 3D space that I don’t really understand

• Supports all standard operations

• Multiplication with each other

• Transforming vectors

• Turning from and into matrices

vForce
Finally Accelerate.framework

cos, sqrt, floor, …
for large arrays

vImage

• Image Processing

• Slower than Core Image

• Can do things CI can’t

• Processing before/after CoreImage, OpenGL, Metal…

• Scaling, Shearing, Flipping

• Format Conversion

• Histograms

vDSP

• DSP operations

• Fourier Transforms, Cosine Transforms

1,34078
vBigNum

• Basic operations on 256-1024 bit numbers

• + - * /

• Signed and unsigned

• Interface not very Swift-like

Quadrature

• Numeric integration of functions

• Special Swift API

BLAS, LAPACK

• Industry standard for large linear maths operations

• Apple’s version specifically optimised

Sparse Solvers

• Equivalent to LAPACK for sparse
matrices

• Special data structures to
describe which items are non-
zero

BNSS

• Fast operations for neural networks

• Probably useful if you don’t like CoreML

Spatial

• 3D geometry library

• Types for transformations, primitives

• Uses own type system - not designed to easily generate matrices for use
anywhere

Compression, Apple Archive

• Compress raw data

• Write and read Zip files

Questions?

