
media computing groupJan Borchers 1

Designing Interactive Systems II

Computer Science Graduate Programme SS 2010

Prof. Dr. Jan Borchers
Media Computing Group

RWTH Aachen University

http://hci.rwth-aachen.de/dis2

media computing groupJan Borchers 2

Review: Classic Mac OS

• Designed for the user, not the developer
• First commercially successful GUI system

• Technically few advances

• One address space, one process, “no” OS

• But revolutionary approach to UI consistency (HI Guidelines)

• Macintosh Toolbox
• Pascal procedures grouped into Managers, ROM+RAM

• Extended as technology advanced (color, multiprocessing,...), but
architecture was showing its age by late 90s

• Inspiration for other GUIs, esp. MS Windows

media computing groupJan Borchers 3

The X Window System (“X”)

• Asente, Reid (Stanford): W window system for V OS, (1982)
• W moved BWS&GEL to remote machine, replaced local library calls with

synch. communication

• Simplified porting to new architectures, but slow under Unix

• MIT: X as improvement over W (1984)
• Asynchronous calls: much-improved performance

• Application = client, calls X Library (Xlib) which packages and sends GEL
calls to the X Server and receiving events using the X Protocol.

• Similar to Andrew, but window manager separate

• X10 first public release, X11 cross-platform redesigned

media computing groupJan Borchers 4

X: Architecture

• X is close to
our 4-layer
architecture
modelXlib

HW

Widget Set
Xt Intrinsics

Application

X Server

UITK

BWS+GEL

Network

WM

Xlib

media computing groupJan Borchers 5

X Server

• X11 ISO standard, but limited since static protocol
• X server process combines GEL and BWS

• Responsible for one keyboard (one EL), but n physical screens
(GLs)

• One machine can run several servers

• Applications (with UITK) and WM are clients
• GEL: Direct drawing, raster model, rectangular clipp.

• X-Server layers: Device-dependent X (DDX), device-independent
X (DIX)

• BWS can optionally buffer output regions

media computing groupJan Borchers 6

X Protocol

• Between X server process and X clients (incl. WM)
• asynchronous, bidirectional byte stream, order

guaranteed by transport layer
• Implemented in TCP, but also others (DECnet,...)

• Creates about 20% time overhead with apps over network

• Four packet types
• Request, (Client→Server)

• Reply, Event, Error (Server→Client)

• Packets contain opcode, length, and sequence of
resource IDs or numbers

media computing groupJan Borchers

Typical Xlib application
(pseudocode)

#include Xlib.h, Xutil.h
Display *d; int screen; GC gc; Window w; XEvent e;
main () {

d = XOpenDisplay(171.64.77.1:0);
screen = DefaultScreen(d);
w = XCreateSimpleWindow(d, DefaultRootWindow(d), x,y,w,h,
border, BlackPixel(d), WhitePixel(d)); // foreground &
background

XMapWindow(d, w);
gc = XCreateGC(d, w, mask, attributes); // Graphics Context
setup left out here

XSelectInput(d, w, ExposureMask|ButtonPressMask);
while (TRUE) {
! XNextEvent(d, &e);
! ! switch (e.type) {
! ! ! case Expose: XDrawLine (d, w, gc, x,y,w,h); break;
! ! ! case ButtonPress: exit(0);

} } }
7 media computing groupJan Borchers 8

X: Resources

• Logical: pixmap, window, graphic context, color map,
visual (graphics capabilities), font, cursor

• Real: setup (connection), screen (several), client
• All resources identified via RIDs
• Events: as in ref. model, from user, BWS, and apps,

piped into appropriate connection
• X Server is simple single-entrance server (round-

robin), user-level process

media computing groupJan Borchers 9

Window Manager

• Ordinary client to the BWS
• Communicates with apps via hints in X Server
• Look&Feel Mechanisms are separated from

Look&Feel Policy
• Late refinement (session, user, application, call)

media computing groupJan Borchers 10

Window Manager

• Dynamically exchangeable, even during session
• twm, ctwm, gwm, mwm (Motif), olwm (OpenLook), rtl (Tiling), ...

• Implement different policies for window & icon placement,
appearance, all without static menu bar, mostly pop-ups, flexible
listener modes

• No desktop functionality (separate app)
• Only manages windows directly on background (root)

window, rest managed by applications (since they
don't own root window space)

media computing groupJan Borchers 11

X: UITK

• X programming support consists of 3 layers
• Xlib:

• Lowest level, implements X protocol client, procedural (C)

• Programming on the level of the BWS

• Hides networking, but not X server differences (see “Visual”)

• Packages requests, usually not waiting for reply (async.)

• At each Xlib call, checks for events from server and creates queue
on client (access with XGetNextEvent())

• Extensions require changing Xlib & Xserver source & protocol

media computing groupJan Borchers 12

X: UITK

• Xlib offers functions to create, delete, and modify server resources
(pixmaps, windows, graphic contexts, color maps, visuals, fonts), but
app has to do resource composition

• Display (server connection) is parameter in most calls

• X Toolkit Intrinsics (Xt)
• Functions to implement an OO widget set class (static) hierarchy

• Programming library and runtime system handling widgets

• Exchangeable (InterViews/C++), but standard is in C

• Each widget defined as set of “resources” (attributes)
(XtNborderColor,...)

media computing groupJan Borchers 13

X: UITK

• X Toolkit Intrinsics
• Just abstract meta widget classes (Simple, Container, Shell)

• At runtime, widgets have 4 states
- Created (data structure exists, linked into widget tree, no window)

- Managed (Size and position have been determined—policy)

- Realized (window has been allocated in server; happens automatically for
all children of a container)

- Mapped (rendered on screen)—may still be covered by other window!

media computing groupJan Borchers 14

UITK

• X Toolkit Intrinsics
• Xt Functions (XtRealizeWidget(),...) are generic to work with all

widget classes

• Event dispatch:

- Defined for most events in translation tables (I→A) in Xt

- →Widgets handle events alone (no event loop in app)!

- App logic in callback functions registered with widgets

media computing groupJan Borchers 15

Widget Sets

• Collection of user interface components
• Together with WM, define look&feel of system
• Several different ones available for X

• Athena (original, simple widget set, ca. 20 widgets, 2-D, no strong
associated style guide) — Xaw... prefix

• Motif (Open Software Foundation, commercial, 2.5-D widget set,
>40 widgets, industry standard for X, comes with style guide and
UIL)—Xm... prefix

• Programming model already given in Intrinsics
• Motif just offers convenience functions

media computing groupJan Borchers 16

Athena Widget Set

• Original, free, extensible
• Ugly, simple
• Class hierarchy:

• Simple — Base class
for all other Athena
widgets. Does
nothing, but adds new
resources such as
cursor and border
pixmap.

media computing groupJan Borchers

• Standard widgets:

- Label! ! ! Draws text and/or a bitmap.

- Command!! Momentary push-button

- Toggle! ! Push-button with two states.

- MenuButton! Push-button that brings up a menu.

- Grip!! ! Small widget used to adjust borders in a Paned widget.

- List! ! ! Widget to allow user to select one string from a list.

- Scrollbar! ! Widget to allow user to set a value; typically to scroll another widget.

- Box! ! ! Composite widget which simply lays children out left-to-right.

- Form!! ! Constraint widget which positions children relative to each other.

- Dialog! ! Form widget for dialog boxes.

- Paned! ! Constraint widget letting user adjust borders between child widgets.

- Text! ! ! Base class for all other text classes.

- TextSink! ! Base class for other text sinks.

- TextSrc! ! Base class for other text sources (subclasses for ASCII and multi-byte text)

- SimpleMenu! Shell which manages a simple menu.

- Sme!! ! RectObj which contains a simple menu entry (blank).

- SmeBSB! ! Menu entry with a string and optional left & right bitmaps.

- SmeLine! ! Menu entry that draws a seperator line.

Athena

17 media computing groupJan Borchers 18

Athena
• Special widgets:

• Repeater!! Command that repeatedly calls its
! ! ! ! associated callback function for as long
! ! ! ! as it's held.

• Panner! ! Widget to allow user to scroll in two dimensions.

• StripChart! Widget to display a scrolling graph.

• Porthole! ! Composite widget which allows a larger widget
! ! ! ! to be windowed within a smaller window. Often
! ! ! ! controlled by Panners.

• Viewport!! Constraint widget, like a Porthole with scrollbars.

• Tree! ! Constraint widget, lays its children out in a tree.

