
media computing groupJan Borchers 1

Designing Interactive Systems II

Computer Science Graduate Programme SS 2010

Prof. Dr. Jan Borchers
Media Computing Group

RWTH Aachen University

http://hci.rwth-aachen.de/dis2

media computing groupJan Borchers

Review

• 4-Layer Model

• Graphics and Event Library
• Hides hardware and OS aspects

• Drawing operations

2

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

Applications

m
or

e
ab

st
ra

ct
, a

pp
lic

at
io

n-
/u

se
r-

BWS

GEL

media computing groupJan Borchers 3

Review

• Base Window System
• Map n applications with

virtual resources to 1
hardware

• Offer shared resources,
synchronize access

• Windows & canvas, graphics
contexts, color tables,
events

• Event multiplexing and
demultiplexing

• Window hierarchies

UITK

WM

GEL

HW

Apps

BWS

media computing groupJan Borchers 4

Today

• Window Manager

• User Interface Toolkit

media computing groupJan Borchers 5

Window Manager: Motivation

• Position and decorate windows
• Provide Look&Feel for interaction with

WS
• So far: applications can output to windows

• User control defined by application

• May result in inhomogeneous user experience

• Now: let user control windows
• Independent of applications

• User-centered system view

• BWS provides mechanism vs. WM
implements policy

BWS

UITK

WM

GEL

HW

Apps

media computing groupJan Borchers 6

Window Manager:
Structure

BWS
GEL
HW

UITK Appearance (“Look”) Behavior (“Feel”)

Tiling, Overlapping,... Pop-up menu at click

Request position
change,... Fetch events

Application-independent
user interface

Apps

WM
Look & Feel

Techniques

Communicate with
BWS

media computing groupJan Borchers 7

Screen Management

• What is rendered where on screen? (layout question)
• Where empty space? What apps iconified? (practical q's)
• Example: Negotiating window position

- Application requests window at (x,y) on screen;
ignores position afterwards by using window coordinate system

- BWS needs to know window position at any time to handle coordinate
transformation, event routing, etc. (manages w)

- User wishes to move window to different position

- Or: Requested position is taken by another window

• Three competing instances (same for color tables,...)

• Solution: Priorities, for example:

- Prior (app) < Prior (WM) < Prior (user)

- WM as advising instance, user has last word

media computing groupJan Borchers 8

Session Management

• Certain tasks are needed for all apps in
consistent way

• Move window, start app, iconify window

• Techniques WM uses for these tasks
• Menu techniques

- Fixed bar+pull-down (Mac), pop-up+cascades (Motif),...

• Window borders
- Created by WM, visible/hidden menus, buttons to iconify/maximize, title bar

media computing groupJan Borchers 9

Session Management

• WM techniques continued
• Direct manipulation

- Manipulate onscreen object with real time feedback

- Drag & drop,...

- Early systems included file (desktop) manager in window manager; today
separate “standard” application (Finder,...)

• Icon technique: (de)iconifying app windows
• Layout policy: tiling, overlapping

- Studies showed tiling WM policy leads to more time users spend
rearranging windows

media computing groupJan Borchers 10

Session Management

• WM techniques continued
• Input focus: Various modes possible

- Implicit (focus follows pointer): mouse/kbd/... input goes to window under
specific cursor (usually mouse)

- Explicit (click to type): clicking into window activates it (predominant mode
today)

• Virtual screens
- Space for windows larger than visible screen

- Mapping of screen into space discrete or continuous

media computing groupJan Borchers 11

Session Management

• WM techniques continued
• Look & Feel evolves hand-in-hand with technology

- Audio, video I/O

- Gesture recognition

- 2.5-D windows (implemented by WM, BWS doesn't know)

- Transparency

• To consider:
- Performance hit?

- Just beautified, or functionally improved?

media computing groupJan Borchers 12

Late Refinement

• WM accompanies session, allows user to change window
positions, etc. (changing app appearance)

• For this, application must support late refinement
• App developer provides defaults that can be changed by user
• Attributes must be publicized as configurable, with possible

values
• App can configure itself using startup files (may be inconsistent),

or WM can provide those values when starting app
• With several competing instances: priorities (static/dynamic!...)

media computing groupJan Borchers 13

Levels of Late Refinement

• Per session, for all users

• System-wide information (table, config file,...) read by WM

• Per application, for all users

• Description for each application, in system-wide area

• Per application, per user

• Description file for each application, stored in home directory

• Per application, per launch

• Using startup parameters (options) or by specifying specific other
description file

media computing groupJan Borchers 14

Implementing Late Refinement

• Table files

• Key-value pairs, with priority rule for competing entries

• Usually clear text (good idea), user versions usually editable

• Modern versions: XML-based

• WM-internal database

• Access only via special editor programs

• Allows for syntax check before accepting changes, but less
transparent; needs updating when users are deleted,.....

• Random Rant: Why Non-Clear-Text Config Files Are Evil

• Delta technique

• Starting state + incremental changes; undo possible

media computing groupJan Borchers 15

Example: plist for login window
application (Mac OS X)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
	 <key>PicturePathLW</key>
	 <string>/Library/User Pictures/Flowers/Sunflower.tif</string>
	 <key>RetriesUntilHint</key>
	 <integer>3</integer>
	 <key>lastUserName</key>
	 <string>borchers</string>
	 <key>lightWeightLogin</key>
	 <false/></dict>
</plist>

media computing groupJan Borchers

Window Manager: Location

• WM=client of BWS, using its access functions
• WM=server of apps, can change their appearance
• Several possible architectures

• WM as upper part of BWS
- Saves comms overhead

- But overview suffers

• WM as separate server
- More comms

- But exchangeable WM

16

WM

WM

BWS
GEL
HW

Apps BWS
GEL
HW

Apps

media computing groupJan Borchers

WM

17

Window Manager: Location

• Separate user process
• Uses mechanism of shared resources

• E.g., requests window position from BWS,
checks its conformance with its layout policy,
and requests position change if necessary

• More comms, but same protocol as between
apps & BWS; no direct connection app—
WM!

BWS
GEL
HW

Apps

media computing groupJan Borchers 18

Window Manager: Conventions

• Visual consistency
• For coding graphical information across apps
• Reduce learning effort

• Behavioral consistency
• Central actions tied to the same mouse/kbd actions (right-click

for context menu, Cmd-Q to quit) - predictability

• Description consistency
• Syntax & semantics of configuration files / databases consistent

across all levels of late refinement
• Usually requires defining special language

media computing groupJan Borchers 19

Window Manager: Conclusions

• WM leads from system- to user-centered view
of WS

• Accompanies user during session
• Potentially exchangeable

• Allows for implementation of new variants of desktop metaphor
without having to change entire system

• E.g., still much room for user modeling (see, e.g., IUI 2002)

• WM requires UI Toolkit to implement same
Look&Feel across applications

media computing groupJan Borchers 20

User Interface Toolkit

• Motivation: Deliver API
• problem/user-oriented instead of hardware/BWS-specific

• 50–70% of SW development go into UI

- UITK should increase productivity

BWS

GEL

HW

UIDS/UIDL

Interface Guidelines (Look&Feel)

Complex widgets

Elementary widgets

Apps

WM UITK

media computing groupJan Borchers 21

UITK: Concept

• Two parts
• Widget set (closely connected to WS)

• UIDS (User Interface Design System to support UI design task)

• Assumptions
• UIs decomposable into sequence of dialogs (time) using widgets arranged on

screen (space)

• All widgets are suitable for on-screen display (no post-desktop user interfaces)

• Note: decomposition not unique

media computing groupJan Borchers 22

UITK: Structure

• Constraints
• User works on several tasks in parallel → parallel apps

• Widgets need to be composable, and communicate with other widgets

• Apps using widget set (or defining new widgets) should be reusable

• Structure of procedural/functional UITKs
• Matched procedural languages and FSM-based, linear description of app behavior

• But: Apps not very reusable

media computing groupJan Borchers 23

UITK: Structure

• OO Toolkits
• Widget handles certain UI actions in its methods, without involving app

• Only user input not defined for widget is passed on to app asynchronously (as seen
from the app developer)

- Matches parallel view of external control, objects have their own “life”

• Advantage: Subclass new widgets from existing ones

• Disadvantage:

- Requires OO language (or difficult bridging, see Motif)

- Debugging apps difficult

media computing groupJan Borchers 24

UITK: Control Flow

• Procedural model:
• App needs to call UITK routines with parameters

• Control then remains in UITK until it returns it to app

• OO model:
• App instantiates widgets

• UITK then takes over, passing events to widgets in its own event loop

• App-specific functionality executed asynchronously in callbacks (registered with widgets
upon instantiation)

• Control flow also needed between widgets

media computing groupJan Borchers

• Widget :

• Output side: windows W, graphical attributes G

• Input side: actions A that react to user inputs I

• Mapping inputs to actions is part of the specification, can
change even at runtime

• Actions can be defined by widget or in callback

• Each widget type satisfied a certain UI need
• Input number, select item from list,...

(W = (w1 . . . wk), G = (g1 . . . gl), A = (a1 . . . am), i = (i1 . . . in))

25

Defining Widgets

media computing groupJan Borchers 26

Simple Widgets

• Elementary widgets
• Universal, app-independent, for basic UI needs

• E.g., button (trigger action by clicking), label (display text), menu (select 1 of n
commands), scrollbar (continuous display and change of value), radio button
(select 1 of n attributes)

media computing groupJan Borchers 27

In-Class Exercise: Button

• What are the typical components (W, G, A, I) of a button?

• Sample solution:
• W=(text window, shadow window)

• G=(size, color, font, shadow,...)

• A=(enter callback, leave callback, clicked callback)

• I=(triggered with mouse, triggered with key, enter, leave)

media computing groupJan Borchers 28

Simple Widgets

• Container widgets
• Layout and coordinate other widgets

• Specification includes list C of child widgets they manage

• Several types depending on layout strategy

• Elementary & Container widgets are enough to create
applications and ensure look&feel on a fundamental level

media computing groupJan Borchers 29

Complex Widgets

• Applications will only use subset of simple widgets

• But also have recurring need for certain widget
combinations depending on app class (text editing,
CAD,...)

• Examples: file browser, text editing window

• Two ways to create complex widgets
• Composition (combining simple widgets)

• Refinement (subclassing and extending simple widgets)

• Analogy in IC design: component groups vs. specialized ICs

media computing groupJan Borchers 30

Widget Composition

• Creating dynamic widget hierarchy by hierarchically
organizing widgets into the UI of an application

• Some will not be visible in the UI

• Starting at root of dynamic widget tree, add container
and other widgets to build entire tree

• Active widgets usually leaves

• Dynamic because it is created at runtime

• Can even change at runtime through user action (menus,...)

media computing groupJan Borchers 31

Widgets and Windows

• The dynamic widget tree usually matches geographical contains
relation of associated BWS windows

• But: Each widget usually consists of several BWS windows

! Each widget corresponds to a subtree of the BWS window
tree!

! Actions A of a widget apply to is entire geometric range except
where covered by child widgets

! Graphical characteristics G of a widget are handled using
priorities between it, its children, siblings, and parent

media computing groupJan Borchers 32

Refinement of Widgets

• Create new widget type by refining existing type

• Refined widget has mostly the same API as base widget,
but additional or changed features, and fulfills Style Guide

• Not offered by all toolkits, but most OO ones

• Refinement creates the Static Hierarchy of widget
subclasses

• Example: Refining text widget to support styled text
(changes mostly G), or hypertext (also affects I & A)

media computing groupJan Borchers 33

Late Refinement of Widgets

• App developer can compose widgets

• Widget developer can refine widgets

• ! User needs way to change widgets

• ! Should be implemented inside toolkit

• Solution: Late Refinement (see WM for discussion)

• Late refinement cannot add or change type of widget
characteristics or the dynamic hierarchy

• But can change values of widget characteristics

media computing groupJan Borchers 34

Style Guidelines

• How support consistent Look&Feel?
• Document guidelines, rely on developer discipline

- E.g., Macintosh Human Interface Guidelines (but included commercial pressure
from Apple & later user community)

• Limiting refinement and composition possible

- Containers control all aspects of Look&Feel

- Sacrifices flexibility

• UIDS

- Tools to specify the dialog explicitly with computer support

media computing groupJan Borchers 35

Types of UIDS

• Language-oriented
• Special language (UIL) specifies composition of widgets
• Compiler/interpreter implements style guidelines by checking

constructs
• Interactive

• Complex drawing programs to define look of UI
• Specifying UI feel much more difficult graphically

- Usually via lines/graphs connecting user input (I) to actions (A), as
far as allowed by style guide

• Automatic
• Create UI automatically from spec of app logic (research)

• Examples in upcoming lectures

