Designing Interactive System:s |l

Computer Science Graduate Programme SS 2010

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

http://hci.rwth-aachen.de/dis2

Jan Borchers 1 media computing group

Review

* Base Window System

* Map n applications with
virtual resources to |
hardware

Apps

e Offer shared resources,
synchronize access

*  Windows & canvas, graphics
contexts, color tables,
events
*  Event multiplexing and
demultiplexin
nonpene HW
*  Window hierarchies

Jan Borchers 3 media computing group

Applications

more abstract, application-/user-

Hardware

* 4-Layer Model
* Graphics and Event Library

*  Hides hardware and OS aspects

*  Drawing operations

Jan Borchers 2

Review

media computing group

Today

*  Window Manager

PopUp 3

¢ User Interface Toolkit )

(D)

Jan Borchers 4

Combo Box Cell - Used to

+ implement the user interface of

“combo boxes.”

Check Box Cell - Used to implement
the user interfaces of check boxes.

Pop Up Button Cell - Defines the
visual appearance of pop-up buttons
that display pop-up or pull-down..

Segmented Cell - Implements the
appearance and behavior of a
horizontal button divided into...

Slider Cell - Controls the
appearance and behavior of an
NSslider object, or of a single...

Stepper Cell - Controls the

appearance and behavior of an
NSStepper object.

media computing group




Window Manager: Motivation

Apps

¢ Position and decorate windows

* Provide Look&Feel for interaction with
WS
* So far: applications can output to windows
*  User control defined by application
. May result in inhomogeneous user experience
*  Now: let user control windows
. Independent of applications
*  User-centered system view

*  BWS provides mechanism vs. WM HW
implements policy

Window Manager:
Structure

Application-independent
user interface

Jan Borchers 5 media computing group

Screen Management

*  What is rendered where on screen? (layout question)
*  Where empty space? What apps iconified? (practical g's)
*  Example: Negotiating window position

- Application requests window at (x,y) on screen;
ignores position afterwards by using window coordinate system

- BWS needs to know window position at any time to handle coordinate
transformation, event routing, etc. (manages w)

- User wishes to move window to different position
- Or:Requested position is taken by another window
*  Three competing instances (same for color tables,...)
*  Solution: Priorities, for example:
- Prior (app) < Prior (WM) < Prior (user)
- WM as advising instance, user has last word

Jan Borchers 7 media computing group

| t
Apps
Appearance (“Look”)| Behavior (“Feel”) Look & Feel
Tiling, Overlapping,... | Pop-up menu at click|  Techniques
HW Request position Communicate with
change,.. Fetch events BWS
Jan Borchers 6 media computing group

Session Management

* Certain tasks are needed for all apps in
consistent way

* Move window, start app, iconify window

» Techniques WM uses for these tasks

* Menu techniques
- Fixed bar+pull-down (Mac), pop-up+cascades (Motif),...
*  Window borders

- Created by WM, visible/hidden menus, buttons to iconify/maximize, title bar

Jan Borchers 8 media computing group




Session Management

* WM techniques continued
* Direct manipulation

- Manipulate onscreen object with real time feedback
-  Drag & drop,...
- Early systems included file (desktop) manager in window manager; today
separate “‘standard” application (Finder,...)
* Icon technique: (de)iconifying app windows
* Layout policy: tiling, overlapping

- Studies showed tiling WM policy leads to more time users spend
rearranging windows

Jan Borchers 9 media computing group

Session Management

* WM techniques continued

*  Look & Feel evolves hand-in-hand with technology
- Audio, video 1/O
- Gesture recognition
- 2.5-D windows (implemented by WM, BWS doesn't know)
- Transparency

*  To consider:
- Performance hit?

- Just beautified, or functionally improved?

Jan Borchers 1 media computing group

Jan Borchers

Jan Borchers

Session Management

WM techniques continued

Input focus:Various modes possible

- Implicit (focus follows pointer): mouse/kbd/... input goes to window under
specific cursor (usually mouse)

- Explicit (click to type): clicking into window activates it (predominant mode
today)

Virtual screens
- Space for windows larger than visible screen

- Mapping of screen into space discrete or continuous

10 media computing group

Late Refinement

WM accompanies session, allows user to change window
positions, etc. (changing app appearance)

For this, application must support late refinement
App developer provides defaults that can be changed by user

Attributes must be publicized as configurable, with possible
values

App can configure itself using startup files (may be inconsistent),
or WM can provide those values when starting app

With several competing instances: priorities (static/dynamic!...)

12 media computing group




Levels of Late Refinement

¢ Per session, for all users
* System-wide information (table, config file,...) read by WM
*  Per application, for all users
*  Description for each application, in system-wide area
*  Per application, per user
* Description file for each application, stored in home directory
*  Per application, per launch

*  Using startup parameters (options) or by specifying specific other
description file

Jan Borchers 13 media computing group

Example: plist for login window
application (Mac OS X)

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertylList-1.0.dtd">

<plist version="1.0">

<dict>
<key>PicturePathLW</key>
<string>/Library/User Pictures/Flowers/Sunflower.tif</string>
<key>RetriesUntilHint</key>
<integer>3</integer>
<key>lastUserName</key>
<string>borchers</string>
<key>lightWeightLogin</key>
<false/></dict>

</plist>

Jan Borchers 15 media computing group

Implementing Late Refinement

* Table files
*  Key-value pairs, with priority rule for competing entries
*  Usually clear text (good idea), user versions usually editable
*  Modern versions: XML-based
*  WM-internal database
*  Access only via special editor programs

*  Allows for syntax check before accepting changes, but less
transparent; needs updating when users are deleted,.....

*  Random Rant: Why Non-Clear-Text Config Files Are Evil
*  Delta technique

+  Starting state + incremental changes; undo possible

Jan Borchers 14 media computing group

Window Manager: Location

*  WM=client of BWS, using its access functions
*  WMs=server of apps, can change their appearance

+ Several possible architectures
* WM as upper part of BWS

- Saves comms overhead

- But overview suffers

* WM as separate server
- More comms
- But exchangeable WM

Jan Borchers 16 media computing group




Window Manager: Location

Apps

NM
» Separate user process
¢ Uses mechanism of shared resources D\A
* E.g, requests window position from BWS, | GEL |

checks its conformance with its layout policy, _
HW

and requests position change if necessary

* More comms, but same protocol as between
apps & BWS; no direct connection app—
WM

Jan Borchers 17

Window Manager: Conclusions

WM leads from system- to user-centered view
of WS

* Accompanies user during session

Potentially exchangeable

*  Allows for implementation of new variants of desktop metaphor
without having to change entire system

+ E.g,still much room for user modeling (see, e.g., IUI 2002)
WM requires Ul Toolkit to implement same
Look&Feel across applications

Jan Borchers 19 media computing group

media computing group ;ﬁ

Jan Borchers

Window Manager: Conventions

Visual consistency
*  For coding graphical information across apps
*  Reduce learning effort

Behavioral consistency

*  Central actions tied to the same mouse/kbd actions (right-click
for context menu, Cmd-Q to quit) - predictability

Description consistency

*  Syntax & semantics of configuration files / databases consistent
across all levels of late refinement

*  Usually requires defining special language

8 media computing group

User Interface Toolkit

Apps UIDS/UIDL

Jan Borchers

Interface Guidelines (Look&Feel)

Complex widgets

Elementary widgets

HW

Motivation: Deliver API

problem/user-oriented instead of hardware/BWS-specific
50-70% of SW development go into Ul

UITK should increase productivity

20 media computing group




Jan Borchers

UITK: Concept

Two parts

*  Widget set (closely connected to WYS)

*  UIDS (User Interface Design System to support Ul design task)
Assumptions

*  Uls decomposable into sequence of dialogs (time) using widgets arranged on
screen (space)

*  All widgets are suitable for on-screen display (no post-desktop user interfaces)

*  Note: decomposition not unique

21 media computing group

UITK: Structure

e OO Toolkits

Jan Borchers

Widget handles certain Ul actions in its methods, without involving app

Only user input not defined for widget is passed on to app asynchronously (as seen
from the app developer)

Matches parallel view of external control, objects have their own “life”
Advantage: Subclass new widgets from existing ones
Disadvantage:

Requires OO language (or difficult bridging, see Motif)

Debugging apps difficult

23 media computing group

UITK: Structure

* Constraints
*  User works on several tasks in parallel = parallel apps
*  Widgets need to be composable, and communicate with other widgets
*  Apps using widget set (or defining new widgets) should be reusable
» Structure of procedural/functional UITKs
*  Matched procedural languages and FSM-based, linear description of app behavior

*  But:Apps not very reusable

Jan Borchers 2 media computing group

UITK: Control Flow

¢  Procedural model:

e App needs to call UITK routines with parameters

¢ Control then remains in UITK until it returns it to app

* OO model:

*  App instantiates widgets
e UITK then takes over, passing events to widgets in its own event loop

e App-specific functionality executed asynchronously in callbacks (registered with widgets
upon instantiation)

*  Control flow also needed between widgets

Jan Borchers 24 media computing group




Defining Widgets

*  Widget :
W=(wr...wr),G=(g1...q1),A=(a1...am), i = (i1...1p))

* Output side: windows W, graphical attributes G
* Input side: actions A that react to user inputs |

* Mapping inputs to actions is part of the specification, can
change even at runtime

* Actions can be defined by widget or in callback
* Each widget type satisfied a certain Ul need

* Input number, select item from list,...

Jan Borchers 25 media computing group

In-Class Exercise: Button

*  What are the typical components (W, G,A, |) of a button?

» Sample solution:
*  W=(text window, shadow window)
*  G=(size, color, font, shadow,...)
e A=(enter callback, leave callback, clicked callback)

e |=(triggered with mouse, triggered with key, enter, leave)

Jan Borchers 27 media computing group

Jan Borchers

Jan Borchers

Simple Widgets

Elementary widgets
Universal, app-independent, for basic Ul needs

E.g., button (trigger action by clicking), label (display text), menu (select / of n
commands), scrollbar (continuous display and change of value), radio button
(select I of n attributes)

26 media computing group

Simple Widgets

Container widgets
Layout and coordinate other widgets
Specification includes list C of child widgets they manage

Several types depending on layout strategy

Elementary & Container widgets are enough to create
applications and ensure look&feel on a fundamental level

28 media computing group




Complex Widgets

» Applications will only use subset of simple widgets

* But also have recurring need for certain widget

combinations depending on app class (text editing,
CAD,...)

* Examples: file browser, text editing window
» Two ways to create complex widgets
» Composition (combining simple widgets)
* Refinement (subclassing and extending simple widgets)

* Analogy in IC design: component groups vs. specialized ICs

Jan Borchers 29 media computing group "

Widgets and Windows

* The dynamic widget tree usually matches geographical contains
relation of associated BWS windows

* But: Each widget usually consists of several BWS windows

— Each widget corresponds to a subtree of the BWS window
tree!

— Actions A of a widget apply to is entire geometric range except
where covered by child widgets

— Graphical characteristics G of a widget are handled using
priorities between it, its children, siblings, and parent

Jan Borchers 31 media computing group "

Jan Borchers

Widget Composition

Creating dynamic widget hierarchy by hierarchically
organizing widgets into the Ul of an application

Some will not be visible in the Ul

Starting at root of dynamic widget tree, add container
and other widgets to build entire tree

Active widgets usually leaves

Dynamic because it is created at runtime

Can even change at runtime through user action (menus,...)

30 media computing group "

Refinement of Widgets

Create new widget type by refining existing type

Refined widget has mostly the same API as base widget,
but additional or changed features, and fulfills Style Guide

Not offered by all toolkits, but most OO ones

Refinement creates the Static Hierarchy of widget
subclasses

Example: Refining text widget to support styled text
(changes mostly G), or hypertext (also affects | & A)

32 media computing group




Jan Borchers

Jan Borchers

Late Refinement of Widgets

App developer can compose widgets

Widget developer can refine widgets

— User needs way to change widgets

— Should be implemented inside toolkit

Solution: Late Refinement (see WM for discussion)

Late refinement cannot add or change type of widget
characteristics or the dynamic hierarchy

But can change values of widget characteristics

33 media computing group

Types of UIDS

Language-oriented
Special language (UIL) specifies composition of widgets

Compiler/interpreter implements style guidelines by checking
constructs

Interactive
Complex drawing programs to define look of Ul
Specifying Ul feel much more difficult graphically

- Usually via lines/graphs connecting user input (l) to actions (A), as
far as allowed by style guide

Automatic
Create Ul automatically from spec of app logic (research)
Examples in upcoming lectures

35 media computing group

Jan Borchers

Style Guidelines

How support consistent Look&Feel?

Document guidelines, rely on developer discipline

- E.g.,Macintosh Human Interface Guidelines (but included commercial pressure
from Apple & later user community)

Limiting refinement and composition possible
- Containers control all aspects of Look&Feel
- Sacrifices flexibility

UIDS

- Tools to specify the dialog explicitly with computer support

34 media computing group ;!




