• Class syllabus
• About our group
• Device technology
Administrivia

• New format: V3/Ü2
• Lecture: Wednesday, 9:00–12:00
• Lab: Monday, 15:30–17:00
• 6 credit points (8 with additional work if needed)
• Final grade:
 • 20% weekly assignments 25% midterm exam
 • 20% final project 35% final exam
• Requires MPO 2010
• Lecture recordings on iTunes U
• What makes a UI tick?
• Technical concepts, software paradigms and technologies behind HCI and user interface development
Class Syllabus

• Part I: Key concepts of UI systems
 • Device technologies
 • Window System Architecture Model
• Part II: Comparing seminal window systems
 • Mac, X/KDE, Java/Swing, Windows, NeXT/OS X,…
 • Paradigms & problems, designing future UI systems
 • Overview of UI prototyping tools
Part III: UIs Beyond The Desktop
• Think beyond today's GUI desktop metaphor
• UIs for Mobile, Physical Computing, Ubicomp, Multimedia
The Lab

• Lab session on Mondays (15:30–17:00)
 • Part I: Implementing your own simple reference window system
 • Part II: Development using several existing GUI toolkits (such as Java/Swing, Interface Builder)
 • Part III: Working with iPhone, Quartz Composer, Arduino, etc.

• The Fab Lab:
 • Easy prototyping of
 - Embedded circuits
 - Physical components
DIS 2 Team

- Prof. Dr. Jan Borchers
- Dipl.-Inform. Moritz Wittenhagen
- Dipl.-Inform. Florian Heller
How DIS I and DIS II Cover HCI

Use and Context

U1 Social Organization and Work

U2 Application Areas

U3 Human-Machine Fit and Adaptation

Human

DIS I

H1 Human Information Processing

H2 Language, Communication and Interaction

H3 Ergonomics

Computer

DIS II

C1 Input and Output Devices

C2 Dialogue Techniques

C3 Dialogue Genre

C4 Computer Graphics

C5 Dialogue Architecture

Development Process

D1 Design Approaches

D2 Implementation Techniques and Tools

D3 Evaluation Techniques

D4 Example Systems and Case Studies

ACM SIGCHI 1992
Iterative Design—the DIA Cycle

- Design
- Analyze/
 Test/
 Evaluate
- Prototype/
 Implement
A Brief History of User Interfaces

(Done in DIS I to understand the new interaction metaphors, reviewed here to understand the new programming paradigms)

• Batch-processing
 • No interactive capabilities
 • All user input specified in advance (punch cards, ...)
 • All system output collected at end of program run (printouts, ...)
 • Applications have no user interface component distinguishable from File I/O
 • Job Control Languages (example: IBM3090–JCL, anyone?): specify job and parameters
A Brief History of User Interfaces

• **Time-sharing Systems**
 • Command-line based interaction with simple terminal
 • Shorter turnaround (per-line), but similar program structure
 • ➞ Applications read arguments from the command line, return results
 • Example: still visible in Unix commands

• **Full-screen textual interfaces**
 • Shorter turnaround (per-character)
 • Interaction starts to feel “real-time” (e.g. vi)
 • ➞ Applications receive UI input and react immediately in main “loop” (threading becomes important)
A Brief History of User Interfaces

• Menu-based systems
 • Discover “Read & Select” over “Memorize & Type” advantage
 • Still text-based!
 • Example: VisiCalc
 • ➞ Applications have explicit UI component
 • But: choices are limited to a particular menu item at a time (hierarchical selection)
 • ➞ Application still “in control”
A Brief History of User Interfaces

• **Graphical User Interface Systems**
 - From character generator to bitmap display (Alto/Star/Lisa..)
 - Pointing devices in addition to keyboard
 - ➔ Event-based program structure
 - Most dramatic paradigm shift for application development
 - User is “in control”
 - Application only reacts to user (or system) events
 - Callback paradigm
 - **Event handling**
 - Initially application-explicit
 - Later system-implicit
Design Space of Input Devices

- Card, Mackinlay, Robertson 1991
- Goal: Understand input device design space
 - Insight in space, grouping, performance reasoning, new design ideas
- Idea: Characterize input devices according to physical/mechanical/spatial properties
- Morphological approach
 - device designs = points in parameterized design space
 - combine primitive moves and composition operators
Primitive Movements

- Input device maps physical world to application logic
- Input device := \(<M, \text{In}, S, R, \text{Out}, W>\)
 - Manipulation operator
 - Input domain
 - Device State
 - Resolution function \(\text{In} \rightarrow \text{Out}\)
 - Output domain
 - Additional work properties

<table>
<thead>
<tr>
<th>P, dP</th>
<th>R, dR</th>
</tr>
</thead>
<tbody>
<tr>
<td>F, dF</td>
<td>T, dT</td>
</tr>
</tbody>
</table>
Radio Example

Manipulation
Input
State
Resolution fn.
Output
Works

\(R_z \)
[0, 270]
\(r \)
\(l(r) \)
[0, 270]
NIL

\(R_z \)
[0, 90]
\(r \)
\(s(r) \)
[0, 45, 90]
NIL

\(dR_z \)
Real
\(r \)
\(l(r) \)
Real
NIL

\(P_x \)
[0, 5]
\(x \)
\(f(x) \)
[0, f(5)]
NIL

Application
[0, C*270] decibels
<OFF, AM, FM>
\(f(x) \) Hz
Composition

- Merge
 - Result = Cartesian product
 - E.g., mouse coordinates: $X \oplus Y = \{(x, y)\}$

- Layout
 - Spatial collocation
 - E.g., mouse (x, y) & buttons
 - How different from merge?

- Connect
 - Chaining
 - E.g., mouse output & cursor
 - Virtual devices
Complete space := \{all possible combinations of primitives and composition operators\}

Mouse = one point!
In-Class Group Exercise: SpaceBall

- Place the SpaceBall into the design space
 - Ball mounted on a plate with 12 buttons
 - Detects precise amount of pushing and twisting in all directions without moving
 - Auto-zeroes physically
Is This Space Complete?

• No – it focuses on mechanical movement
 • Voice
 • Other senses (touch, smell, ...)

• But: Already proposes new devices
 • Put circles into the diagram and connect them
Testing Points

• Evaluate mappings according to
 • Expressiveness (conveys meaning exactly)
 • Effectiveness (felicity)
• Visual displays easily express unintended meanings
• For input devices, expressiveness suffers if $|\text{In}| \neq |\text{Out}|$
 • $|\text{In}| < |\text{Out}|$: Cannot specify all legal values
 • $|\text{In}| > |\text{Out}|$: Can specify illegal values
Effectiveness

- How well can the intention be communicated?
- Various figures of merit possible
 - Performance-related
 - Device bandwidth (influences time to select target, ergonomics and cognitive load)
 - Precision
 - Error (% missed, final distance, statistical derivatives)
 - Learning time
 - Mounting / grasping time
 - Pragmatic
 - Device footprint, subjective preferences, cost,...
Example: Device Footprint

- Circle size \equiv device footprint
 - Black: with 12" monitor
 - White: with 19" monitor
- What do we see?
 - Tablet, mouse expensive
 - Worse with larger displays
- But:
 - Mouse Acceleration alleviates this (model of C:D ratio?)
 - Higher resolution mice
What to do next

- Register in CAMPUS by Monday 12:00
- For next class, read:
- See the L2P course room for all materials