
1 

CodeGestalt 
IDE Visualization Features for Program Understanding 

Christopher Kurtz 

Media Computing Group 

RWTH Aachen University 

christopher.kurtz@rwth-aachen.de 
 

INTRODUCTION 

Software maintenance and reverse engineering require a lot 

of effort, usually more than the original design and 

programming. One of the primary problems is the time 

developers spend understanding the existing code base, 

even if it is their own with which they did not work 

recently. 

To help programmers to easily familiarize themselves with 

unknown or legacy code bases, the CodeGestalt project 

aims at developing an intuitive interface to effectively 

search, explore and understand even large projects. 

RESEARCH QUESTION 

Several studies (e.g. [1], [2]) have shown that the key to fast 

and effective understanding of source code is an IDE’s 

ability to let the programmer explore the code. Today’s 

most prominent IDEs have certain drawbacks in that regard. 

Especially the navigation involved in browsing a project 

consumes a lot of time. 

Further, several visualization techniques have been 

proposed in recent years, but their actual usability is not 

well understood. Studies like [9] suggest that well 

integrated IDE plug-ins providing thoughtful visualizations 

are most capable in supporting source code understanding. 

CodeGestalt is targeted at closing these gaps and enhance 

an IDE via its plug-in infrastructure. It is not finally decided 

for which of the following IDEs to develop the prototype. 

• Xcode is the default IDE at the Media Computing 

Group. This fact would simplify finding 

participants experienced in the basic IDE 

functionality for user tests. 

• Eclipse is the IDE on which the majority of recent 

visualization tools from the research community 

and studies are based. Therefore this platform 

would make comparative performance evaluation 

easier. 

The overall goal is to determine how to improve the IDE in 

terms of code understanding. This covers primarily how to 

visualize large code bases and secondarily how to improve 

IDE navigation. 

Initial literature research has suggested that the following 

properties would be desirable: 

• Structural information about the code base 

• Detection of semantically related code artifacts 

• Ability to search and refine the visualization 

• Visualizations with different levels of detail and 

abstraction 

• User controlled visualization process with 

software support to minimize effort 

• Good IDE integration to improve user acceptance 

and minimize learning effort 

RELATED WORK 

On the one hand, the problem of program understanding is 

quite well studied. On the other hand many interesting 

visualization techniques have been developed, however not 

all of them are well understood in terms of usability and 

whether they are suitable to close any gaps or just add 

another layer of confusion to the program understanding 

task. 

The Shortcomings of Today’s IDEs 

In [1] Ko et al. demonstrated that developers essentially 

need to spend a third of their activities on IDE mechanics 

such as navigation between source files with a lot of time 

wasted due to overhead. 

Similarly Jonathan Sillito showed in [2] that it is hard for 

programmers to answer high-level questions about a project 

and that there is essentially not sufficient tool support for 

those kinds of tasks. Among other findings one of his 

testers complained about not being able to correlate two or 

more search results. 

In [7] Park and Jensen compared several toolsets and how 

they enable users to explore a previously unknown code 

base. The results suggest that good software visualization 

tools improve the quality but not necessarily the 

performance of programming. 

Relo 

To limit the overwhelming size of automatically generated 

diagrams, Sinha et al. [6] developed the Eclipse plug-in 

Relo that allows users to build a class diagram step by step. 

The software automatically parses the codebase and 

therefore can offer the user options how to expand the 

diagram he is working on. 



2 

The interface and interaction is heavily software supported, 

but in contrast the resulting visualization is user driven. 

Therefore the user has much more control on what 

implementation aspects are so important to be covered in 

the diagram and what details to omit compared with fully 

automated visualization techniques. 

Thematic Software Maps 

Kuhn et al. developed a “topological” way to visualize large 

code bases in Thematic Software Maps [3]. Using simple 

heuristics the similarity of classes based on the words used 

in the corresponding source files is determined. This data 

was then projected onto a 2D plane and a height map was 

constructed assuming hills with a normal distribution shape 

and a size depending on the LOC of the corresponding 

source file. 

The MDS algorithm used to flatten the data to 2D has the 

interesting property of providing relatively consistent 

positions for single classes when observed over the 

evolution of a project. 

3D Visualizations 

Fronk et al. presented a visualization technique that is 

aimed at making clear the structure of code bases. Their 

visualization uses the additional degree of freedom granted 

by the third dimension to cover class hierarchy, class 

dependency and package containment relations in a single 

visualization. In [4] they demonstrate that these 3D 

Relation Diagrams can outperform classical UML class 

diagrams for increasingly large projects. 

Another semi-3D visualization is the CodeCity introduced 

by Wettel and Lanza in [5]. Here classes are drawn as 

buildings organized in blocks representing packages. The 

size of buildings is determined by their memory 

requirements and the number of methods they provide. The 

system also allows highlighting parts of the city to visualize 

search results. 

Young and Munro [8] suggested a visualization called 

CallStax that decomposes a call graph in all distinct paths 

starting at the root (e.g. main) and visualizes them as 3D 

stacks of colored boxes, where each color is associated with 

one specific function. This visualization can than be 

interactively filtered e.g. by showing only those stacks, that 

contain a selected function. 

PROJECT SCHEDULE 

Development starts with literature research and an initial 

exploratory examination. In order to learn about how 

programmers use visualizations (e.g. pen and paper 

sketches) in their everyday work, an online survey will be 

conducted over the period of ten days involving 

programming communities of different platforms. The 

survey is supplemented by qualitative interviews with 

developers (mainly Xcode users) from the university’s staff. 

This initial phase is supposed to take four weeks. 

From the analysis of these questionnaires a more concise 

concept for CodeGestalt will be derived. Where necessary, 

follow up inquiries and interviews are conducted to validate 

the analysis. This conceptual phase is supplemented by 

consulting related research and will probably require 

another month. 

The CodeGestalt concept will be refined using paper and 

software prototypes in an iterative DIA cycle. Ultimately 

this process is aimed at creating the most sophisticated 

software prototype possible within ten weeks. The 

prototypes’ usability and competitive performance will be 

evaluated by several user tests. 

The remaining time will be used writing out the diploma 

thesis. 

REFERENCES 

1. Andrew J. Ko, Brad A Myers, Michael J. Coblenz and 

Htet Htet Aung. An Exploratory Study of How 

Developers Seek, Relate, and Collect Relevant 

Information during Software Maintenance Tasks. IEEE 

Transactions on Software Engineering 32 (2006), 971-

987. 

2. Jonathan Sillito. Asking and Answering Questions 

During A Programming Change Task. 2006. 

3. Adrian Kuhn, Peter Loretan and Oscar Nierstrasz. 

Consistent Layout for Thematic Software Maps. 2008. 

4. Alexander Fronk and Dietmar Gude and Gerhard 

Rinkenauer. Evaluating 3D-visualisation of code 

structures in the context of reverse engineering. In 

Proceedings of the Workshop on Empirical Studies in 

Reverse Engineering (WESRE) (2006), IEEE Computer, 

Society Press. 

5. Richard Wettel and Michele Lanza. Visualizing 

software systems as cities. In Proc. of the 4th IEEE 

International Workshop on Visualizing Software for 

Understanding and Analysis, Society Press (2007), 92-

99. 

6. Vineet Sinha, David Karger, Rob Miller. Relo: Helping 

Users Manage Context during Interactive Exploratory 

Visualization of Large Codebases. Visual Languages 

and Human-Centric Computing (VL/HCC 2006). 

7. Yunrim Park, Carlos Jensen. Beyond Pretty Pictures: 

Examining the Benefits of Code Visualization for Open 

Source Newcomers. 2009. 

8. Peter Young and Malcolm Munro. A New View of Call 

Graphs for Visualising Code Structures. Computer 

Science Technical Report 03/97. 

9. Mariam Sensalire, Patrick Ogao: Classifying Desirable 

Features of Software Visualization Tools for Corrective 

Maintenance. In Proceedings of the 4th ACM 

symposium on Software visualization (2008), 87-90. 

 


