
iPhone Application Programming WS 15/16–Lecture 13  
Lecturers:
Christian Corsten, M.Sc.
Krishna Subramanian, M.Sc. Media

Computing
Group

Media
Computing
GrouptvOS

• What is Apple TV?

• Human Interface Guidelines

• Design principles, focus & parallax, UI elements, loading

• App development

• Focus engine, Siri remote, game controllers, on-
demand resources, iCloud storage, AVPlayerKit

• TVMLKit

• Top Shelf

• Demos (in between)

2

Outline & Learning Objectives
• UI design for tvOS apps

• Basic native app development

• Overview of important SDKs

• Remote/game controller communication

• On-Demand Resources

• Basic app development using TVML & JS

• We can’t provide details– 
Further information at:
developer.apple.com/tvos/documentation

http://developer.apple.com/tvos/documentation

Media
Computing
GrouptvOS

• Set-top box to be connected to a big screen
(TV) and broadband internet

• 4th generation: tvOS (9.2), Siri remote with
voice search

• Play games, use apps, watch movies, shared
experiences: “The future of television is apps.”

• tvOS is a distinct OS for Apple TV, derived
from iOS, but has exclusive frameworks

• 64 bit A8 processor, 32/64 GB storage, 
2GB RAM, 1080p, WiFi 802.11ac, 
10/100 Mbps ethernet, 
USB-C for development

3

What is Apple TV?

Capacitive touch pad 
(single touch gestures)

Microphone

Siri

Accelerometer & gyroscope

MFI game controllers

Custom game controller

11

Media
Computing
GrouptvOS

How does the user interface of a tvOS app differ
from how users interact with an iOS app?

12

In-Class Exercise

• In- and output are split (no direct manipulation)

• UI is at distance (what item is currently selected?)

• Single touch only, physical buttons

• Multi-user interaction

• Permanent connectivity

Media
Computing
GrouptvOS

• Uniqueness

• Support the living room experience

• Intuitive use of Siri remote

• Consider first time users

• Maintain performance

• Design specifically for Apple TV (not just ported from iOS)

• Think carefully about user interaction (intuitive, simple, fluid UI)

• Make focus obvious (user should not get lost)

• Create a shared experience (at next launch of an app, the user could be different)

13

What Makes a Good tvOS App?

Media
Computing
GrouptvOS14

Apple TV Human Interface Guidelines

Media
Computing
GrouptvOS

1. Connected
• Interaction across the room

• Siri remote connects user with content through gestures    

2. Clear
• Use consistent layouts

• Let users know where they are in your app at any time
• Element in focus at clearly visible from at distance   

3. Immersive
• Exploit the massive canvas

• Use fluid animations

15

Three Key Design Principles

Media
Computing
GrouptvOS

• Home Screen shows installed apps

• Grid-based navigation

• Select, click, launch

• Top five items link to the Top Shelf

• Showcase area that displays app-specific content

• Can be a shortcut into your app

• App icon should build an emotional
connection

• Unique, affecting, memorable

16

Home Screen and Top Shelf

Media
Computing
GrouptvOS17

Media
Computing
GrouptvOS

Remote: Primary Input Method
• 6 Physical buttons: use them consistently!

• E.g., Play/Pause: controls media playback in apps, performs secondary
button behavior/skip intro in games

• Give users a way back to the previous screen in the app

• Games: Menu button should display an in-game pause menu

• Touch surface: single-finger gestures

• Swipe: to move focus, scrolls with inertia

• Click: intentional action to activate a control or select an item

• Tap: navigates through items one-by-one (d-pad), displays hidden controls

Home

Volume

Menu/Back

Siri/Search

Play/Pause

Touch
Surface

18

Media
Computing
GrouptvOS

Game Controllers
• Game controllers are optional, can also be used to navigate Apple TV

• If a game controller is supported, the remote must must be usable as a 
game controller, too!

• iOS device can act as a controller as well

• Check for presence of a controller at launch of the app

• Take most recently used device as default

• Use device whichever presses “start”

• Inform users about the game controller’s capabilities beyond those
provided by the remote

19

Media
Computing
GrouptvOS

Navigation
• Apps: user navigates through stacked screens of content

• Organize UI such that it requires the user to navigate a minimum number of screens

• Implement backward navigation by using the Menu button, but do not display a back button 
(exception: cancel for purchase/deletion)

• Show content on a single screen (scrolling) instead of splitting content up

• Favor horizontal navigation of content

• Swiping with the thumb to the left and right is more ergonomic and natural

• Use standard navigation controls

• Page controls, tab bars, segmented controls, table views, collection views, split views

20

Media
Computing
GrouptvOS

Focus & Selection
• Interaction is based on a focus model

• Subtle animations

• Parallax effect

• Use UIKit and focus API to get motion and visual effects for free

• Move focus in the expected direction

• Focus moves in the direction of the gesture (content may move left when focus moves to the right!)

• However, for full-screen elements: objects should move in the direction of the gesture  
(swiping to the right moves a photo from left to right)

• Make the focused item obvious

• Test: a “fresh” user entering the room should be able to immediately tell which item is at focus

21

Media
Computing
GrouptvOS

Focus & Selection
• Parallax makes focused items more responsive to user

interaction

• Effect of depth through layering, transparency, scaling, motion

• LSR (Layer Source Representation) image has 2 to 5 layers

• Supply assets for the larger, focused size

• Make sure images look sharp at any state

• Include appropriate padding between focusable images

• Do not display a cursor!

• Use the focus model for navigation

• Exception: games (e.g., move a crosshair)

22
Media
Computing
GrouptvOS

Media
Computing
GrouptvOS

LSR App Icons
• Layered image is required for app icons

• 2–5 layers

• Single focus point, simple background, no screenshots, reduce text

• Gradients: Top-to-bottom, light-to-dark

• Varying opacity increases depth and liveness

• Images come at different sizes and aspect ratios

• Small vs. large app icon, Top Shelf images, Game Center images

• LSR is now supported by UIImageView

• To enable parallax for a UIImageView when it is a sub view, set
adjustsImageWhenAncestorFocused to true

Small in-class exercise: 
How would you layer this app icon?

23

Media
Computing
GrouptvOS

Creating LSR Images
• Leave a safe zone around your content

• Foreground layers are more cropped than background layers

• Small app icon:

• 400 x 240px, 370 x 222px (focused), 300 x 180px (unfocused)

• Tools for exporting .lsr images

• Parallax Previewer for OS X (.png, .psd, .lsr)

• Parallax Exporter plug-in for Adobe Photoshop

• Xcode (drag .png’s into app’s asset catalog)

• developer.apple.com/tvos/human-interface-guidelines/resources

24

http://developer.apple.com/tvos/human-interface-guidelines/resources

tvOS
Media
Computing
Group

Demo
Creating an LSR App Icon with Photoshop and Parallax Previewer

25

Media
Computing
GrouptvOS

Visual Design
• TVs vary widely in size, but the UI does not adapt to the screen size

• 1920 x 1080px, 16:9, @1x resolution

• Keep primary content away from the edges of the screen

• 90px left/right, 60px top/bottom – mitigates copping issues due to overscanning

• Hint at additional content by showing parts of the offscreen items

• Use grids for collections of content

• 3-/5-/6-9-column grids provide optimal viewing experience

• See UICollectionViewFlowLayout class reference

• Use layout templates for media-centric apps (TVML)

26

Media
Computing
GrouptvOS

Typography & Accessibility
• San Francisco system font

• San Francisco Text for texts with font size <39pt

• San Francisco Display for texts with larger font size

• Body text style for primary content, footnote and caption style for labels and secondary content

• Yet, reduce the amount of text: “Show, don’t tell.”

• System fonts automatically react to accessibility features

• E.g., enable bold text

• Provide alternative text labels for images and interface elements

• Invisible, only used for VoiceOver

• Include closed captions and audio descriptions in videos

27

Media
Computing
GrouptvOS

Video
• Use the system video player

• AVKit framework (you’ll see a demo later 😃)

• Provides consistent user experience with the remote for video playback

• Show interactive elements on top of videos

• Implement a delay of 0.5 seconds to pause media before displaying an
interactive overlay

• For streaming, refer to HTTP Live Streaming (HLS)
specification

28

Media
Computing
GrouptvOS

Interface Elements: Tab Bars & Tables
• Tab Bars (UITabBarController)

• At the top of the screen

• Tells users where they are in the app

• Slides away when not in focus

• Flattens information hierarchy and provides quick access

• Tables (UITableViewController) and 
Cells (UITableViewCellStyle)

• Scrollable

• Show text before loading images (increased responsiveness)

• Deleting and reordering table rows takes longer on Apple TV than on iOS!

29

Media
Computing
GrouptvOS

Collections & Split Views
• Collections (UICollectionViewController)

• Typically used to display and browse images of varying size

• Use table views for a collection of text! 
 
 

• Split Views (UISplitViewController)

• Two side-by-side panes of content (1/3 vs. 2/3 by default)

• Put persistent, focusable content in the primary pane, related
information in the secondary pane (e.g., filterable content)

30

Media
Computing
GrouptvOS

Navigation Bars & Page Controls
• Navigation Bars (UINavigationBar)

• On top of a view to display a title, navigation buttons, and 
other interface elements

• The navigation bat is transparent by default–fade content as 
it scrolls under the bar  

• Page Controls (UIPageControl)

• Communicates the number of pages and which one is  
currently active

• Use them on collations of full-screen pages, but 
do not display too many pages

31

Media
Computing
GrouptvOS

Segmented Controls, Alerts & Buttons
• Segmented Controls (UISegmentedControl)

• Linear set of mutually exclusive segments to display a different view (e.g., playlist vs. album)

• Do not put focusable items next to segments as they become already selected when focus
moves to them

• At max. seven segments–should be of equal width

• Segment icons vs. text (nouns!)  

• Alerts (UIAlertController)

• Required (multiword!) title, optional message, one or more buttons

• Use them only for important situations, e.g., to confirm destructive actions
(UIAlertActionStyleDestructive)

• Pressing the Menu button should have the same effect as clicking the cancellation button

32

Media
Computing
GrouptvOS

Text & SearchText entry on Apple TV is tedious–  
minimize text entry in your app!

• Keyboards

• Keyboard appears on screen when the user clicks on a text field

• Different layouts dependent on type of text field (UIKeyboardType)

• Siri remote: linear keyboard, other controllers: grid keyboard 

• Search

• Allow for recent searches

• Show text before loading images (increased responsiveness)

• Deleting and reordering table rows takes longer on Apple TV than on iOS!

33

Media
Computing
GrouptvOS

Progress Indicators
• Loading content will be an issue (on-demand resources)

• Inform your users that the app is not stalled and tell them how long they have to wait

• Activity Indicators (UIActivityIndicatorView)

• Activity indicators spin–keep it spinning so users know that something is happening

• If helpful, provide additional information while the user is waiting (text label)

• Progress Bars (UIProgressView)

• Fills from left to right

• Use them for tasks with well-defined duration and report progress accurately

• Prefer Progress Bars over Activity Indicators

• Educate or entertain if appropriate

• E.g., a video continues on the game’s plot while the next level is being loaded

34

Media
Computing
GrouptvOS35

Native App Development

Media
Computing
GrouptvOS

• You can use your iOS app as starting point

• add a new target to your Xcode project and add new storyboards for tvOS)

• #define TARGET_OS_TV 1 macro for tvOS specific code

• iOS and tvOS apps are distinct entities, but can be bundled as a universal purchase

• Native apps (support iOS frameworks) vs. TVML apps (can also be mixed)

• Supported languages: Objective-C, Swift, (JavaScript for TVML apps)

• New, tvOS-specific frameworks:

• TVMLJS: JavaScript API to load TVML pages

• TVMLKit: Incorporate JavaScript and TVML elements into your (native) app

• TVServices: For Top Shelf extension

36

App Development

Media
Computing
GrouptvOS

• Interaction is indirect and based on the focus model

• You can ask for focus updates programmatically, but you cannot set or move focus!–Why?

• UIButton, UITextField, UITableView, UICollectionView, UITextView,
UISegmentedControl, UISearchBar support focus by default

• Focus engine

• Listens for incoming focus-movement events from input devices

• Then automatically determines where focus should update and notifies the app

• Communicates with your app via the UIFocusEnvironment protocol

• Override UIFocusEnvironment methods in your view to control focus behavior

37

Controlling the UI with the Remote

Media
Computing
GrouptvOS

• Focus Engine (FE) takes internal picture of UI
and will only consider all visible, focusable views

• FE starts from the currently focused view and
finds any focusable regions in the path of motion

• The size of the search area is related to the size
of the currently focused view

• Before focus moves,
shouldUpdateFocusInContext: 
is called

• If false is returned, the move is cancelled

38

Focus Engine: Deciding Where to Move Focus

Media
Computing
GrouptvOS

• By default the closest focusable view to the top-left corner is
focused

• UIFocusEnvironment protocol

• FE asks Window for preferred focus view ➝ returns root view
controller’s preferredFocusedView object (which is a
view and thus, again, conforms to UIFocusEnvironment
protocol)

• FE then asks the UIView object for its preferred focus view
and so on

• Focus chain ends when it reaches a view that returns nil or self

• Hence, UIViewController controls focus-related
behavior for its root view and descendants, and UIView
controls focus behavior for itself and descendants

39

Focus Engine: Deciding Where to Move Focus

Media
Computing
GrouptvOS

• System-generated focus updates

• E.g., when a new view controller is presented
over the currently focused view

• Updating focus programmatically

• By calling setNeedsFocusUpdate, focus
is reset to preferredFocusView

• Then FE determines anew which item will be
at focus–you can’t set focus manually!

• E.g., split view with menu items on the left,
grid on the right: update focus to first item in
the grid when new menu item is selected

40

Focus Updates

Media
Computing
GrouptvOS

• View Controllers

• Override preferredFocusView to specify where focus should start by default

• Override shouldUpdateFocusInContext: to define where focus is allowed to move

• Override didUpdateFocusInContext:… to respond to focus updates when they occur

• Views

• Override canBecomeFocused if your custom view needs to be focusable

• E.g., a disabled button should not be focusable

• Override preferredFocusedView to redirect focus, e.g., to a subview

• Override didUpdateFocusInContext:… to respond to focus updates when they occur

• Collection Views and Table Views (delegates)

• collectionView:canFocusItemAtIndexPath:

• tableView:canFocusRowAtIndexPath:

• remembersLastFocusedIndexPath
41

Supporting Focus

tvOS
Media
Computing
Group

Demos
Debugging: Where Will Focus Move?

Focus Guides: UIKitCatalog
42

Media
Computing
GrouptvOS

• UIGestureRecognizer and UIResponder classes include new methods to respond
when buttons on the remote are pressed or released

• Supported gestures by the touch pad: pan, swipe

• Detecting the Play/Pause button (add code to your ViewController): 

let tapRecognizer = UITapGestureRecognizer(target: self, action: "tapped:")
 tapRecognizer.allowedPressTypes = [NSNumber(integer: UIPressType.PlayPause.rawValue)];
 self.view.addGestureRecognizer(tapRecognizer)

 

• Detecting a swipe gesture (add code to your ViewController): 

 let swipeRecognizer = UISwipeGestureRecognizer(target: self, action: "swiped:")
 swipeRecognizer.direction = .Right
 self.view.addGestureRecognizer(swipeRecognizer)

43

Remote: Gestures & Button Presses

Media
Computing
GrouptvOS

 override func pressesBegan(presses: Set<UIPress>, withEvent event: UIPressesEvent?) {
 for item in presses {
 if item.type == .Select {
 self.view.backgroundColor = UIColor.greenColor()
 }
 }
 }

 override func pressesEnded(presses: Set<UIPress>, withEvent event: UIPressesEvent?) {
 for item in presses {
 if item.type == .Select {
 self.view.backgroundColor = UIColor.whiteColor()
 }
 }
 }

 override func pressesChanged(presses: Set<UIPress>, withEvent event: UIPressesEvent?) {
 // ignored
 }

 override func pressesCancelled(presses: Set<UIPress>, withEvent event: UIPressesEvent?) {
 for item in presses {
 if item.type == .Select {
 self.view.backgroundColor = UIColor.redColor()
 }
 }
 }

44

Remote: Low-Level Event Handling

Media
Computing
GrouptvOS

• Game controllers can be used as input device for any
focus-based UI by default

• For low-level input, use a
CGEventViewController–here, events are not
processed by UIKit

• Use controllerUserInteractionEnabled
property to toggle responder chains

• For low-level input, use the Game Controller framework;
specifically for Apple TV:

• GCMicroGamepad controller profile targets the
capabilities of the Apple TV remote

• GCEventViewController class can be used to
control how controller and remote inputs are routed
through the app

• Design requirements when using game controllers:

• Your game must support the Siri remote

• Your game must support the extended control layout
when using a game controller

• Games must be playable with standalone controllers

• You must support the pause button, that will pause
the game

• In a menu, the pause button moves to the
previous screen

• A maximum of two game controllers (plus the remote)
can be connected to the Apple TV

45

Game Controllers

–or–

Media
Computing
GrouptvOS

• Remote acts as a CGController object, supports CGMotion and CGMicroGamepad
profiles

• Touchpad can be used as d-pad (provides analog input data)

• Touchpad is available as digital button “A”

• Play/Pause = button “X”

• Menu button is used to pause gameplay

• Remote can be used in portrait or landscape mode

• Remote cannot determine its altitude or rotation

46

Remote as Game Controller

Media
Computing
GrouptvOS

• When possible, try to avoid text input in your UI

• e.g., write an iOS companion app, connect e.g., with Bonjour

• Two types of keyboards: normal and inline

• UIAlertController

• Allows to add any number of text fields and buttons

• However, the user has to click the remote a number of times to enter information

• UITextField

• Places a full-screen keyboard on the screen

• User navigates between text fields with Next and Previous buttons from the
keyboard

• More work for the developer: need to create and lay out all views

• Support for Bluetooth keyboards and Apple Remote App
47

Keyboard Input

tvOS
Media
Computing
Group

Demos
Keyboard Input with UIAlertController and UITextField: UIKitCatalog

48

Media
Computing
GrouptvOS

• ODR are app contents hosted on the App Store

• Enable smaller app bundles, faster download

• App requests ODR and tvOS/iOS manages download and storage

• App contents may be purged by OS when the app is not in use!

• Maximum app size: 200 MB

• You must use ODR to extend this limit

• Use Xcode to add tags to your assets

• Assets will be downloaded on your request

• To enable ODR in Xcode: Target ➝ Build Phases ➝ Assets ➝ Enable On-Demand Resources: Yes

• Assigning tags in Xcode: Target ➝ Resource Tags or in the Attributes Inspector (for asset catalogs)

49

On-Demand Resources (ODR)

Media
Computing
GrouptvOS

• Resources can be of any type supported by bundles except code

• ODR benefits

• Smaller app size

• Lazy loading of resources (e.g., level-based game)

• Remote storage of rarely uses resources (e.g., app tutorial)

• Remote storage of in-app purchase resources (e.g., “Avatar Design Studio Extension”)

• ODR are identified and requested by String tags (e.g., level-5)

• ODR are retained are retained in storage until app finished using them

50

On-Demand Resources (ODR)

Media
Computing
GrouptvOS51
Media
Computing
GrouptvOS

Media
Computing
GroupName: Topic52

ODR Life CycleODR Life Cycle

Media
Computing
GrouptvOS

Media
Computing
GrouptvOS

• Prefetching tags

• For resources that are needed important the first time the app launches or soon after launch

• Specify in Xcode

• Three prefetch categories

• Initial Install Tags: Downloaded at the same time as the app (included in total size of app in
App Store)

• Prefetched Tag Order: Downloaded after the app is installed

• Download Only On Demand (default): Downloaded when requested by the app

53

ODR Tags

Media
Computing
GrouptvOS54

Sizes for ODR
Item Size Slicing?

iOS App bundle 2 GB ✔

tvOS App bundle 200 MB ✔

Tag 512 MB ✔

Asset packs 1000 ✔

Initial install tags 2 GB ✔

Initial install and prefetched tags 4 GB ✔

In use on-demand resources 2 GB ✔

Hosted on-demand resources 20 GB –

Media
Computing
GrouptvOS55

Accessing & Downloading ODR
• NSBundleResourceRequest

• Request access to ODR

• Inform OS when access is no longer needed

• Update the priority of an ODR download

• Set property loadingPriority (ranges from 0.0 to 1.0)

• Track the progress of an ODR download

• Use KVO for property fractionCompleted

• Check for a notification of low disk space

• Observe NSBundleResourceRequestLowDiskSpaceNotification

Media
Computing
GrouptvOS56

Accessing & Downloading ODR
let tags : Set = ["birds", "bridge", "city"]

let resourceRequest = NSBundleResourceRequest(tags: tags)

resourceRequest.conditionallyBeginAccessingResourcesWithCompletionHandler {resourcesAvailable in

if resourcesAvailable {

 // The resources are loaded, start using them
 }

 else {
 // The resources are not on the device and need to be loaded
 // Queue up a call to a custom method for loading the tags using
 // beginAccessingResourcesWithCompletionHandler:

 NSOperationQueue.mainQueue().addOperationWithBlock({

 // do something
 })

 }
}

resourceRequest.endAccessingResources() // end access to a request

Media
Computing
GrouptvOS

• Download what you need
(64 MB chunks)

• Download early (While the
user is playing Level 1,
download Level 2)

• Release resources when you
are done

• Optimize with testing (e.g.,
simulate different network
bandwidths)

57

ODR Design Principles & Patterns
Pattern Example Design Approach

Random access Browsing app Many and small tags,
progressive loading

Limited prediction Open world game
Many and small tags,
progressive loading, 

quickly ending access to
unused tags

Linear progression Leveled game
Download in advance,
ending access to tags

when done

Media
Computing
GrouptvOS58

Debugging ODR StatesDebugging ODR States

Disk Gauge in Xcode (only in Debug Mode)

Media
Computing
GrouptvOS58

Media
Computing
GrouptvOS

• There is no guarantee that information stored on the device will be available the next time a user opens an app!

• Two shared storage options

• iCloud Key-Value Storage (KVS) vs. CloudKit

• When to use KVS:

• Storage needs < 1MB

• Only the owner of the app needs access to the information

• KVS automatically synchronizes information across all of a user’s devices

• When to use CloudKit:

• Storage needs > 1 MB

• Information is also accessible by another user (useful e.g., in games)

59

iCloud Storage

Media
Computing
GrouptvOS60

AVPlayer & Top Shelf

Demo App

Media
Computing
GrouptvOS

TVML Apps

61

Media
Computing
GrouptvOS

• Use template to specify the layout of your app’s screen(s)

• Use JavaScript to manage different screens, handle media content, handle events, manage
memory, etc.

• Use case: Standard apps where the focus is on content and not the interaction

62

TVML Apps

Media
Computing
GrouptvOS63

Examples: TVML App

www.apple.com

http://www.apple.com

Media
Computing
GrouptvOS64

Example: Custom Apps

www.staticworld.net

http://www.staticworld.net

Media
Computing
GrouptvOS65

Overview

www.raywenderlich.com

By TVMLKit

http://www.raywenderlich.com

Media
Computing
GrouptvOS

TVML

66

Media
Computing
GrouptvOS

• TeleVision Markup Language

• A form of XML

• To specify the layout of your tvOS app’s
screen

• Each TVML specification is called a
document

67

TVML

<student>
<firstName>John</firstName>
<lastName>Doe</lastName>
<age>25</age>
<nationality>United Kingdom</nationality>
<gender>M</male>
</student>

Media
Computing
GrouptvOS

• Can be specified as a separate XML file or in a JavaScript file

• Use one of the 18 templates that Apple offers

• alertTemplate

• catalogTemplate

• searchTemplate

• menuBarTemplate

• …

68

TVML

Media
Computing
GrouptvOS

<alertTemplate>
 <title>…</title>
 <description>…</description>
 <button>
 <text>…</text>
 </button>
 <text>…</text>
</alertTemplate>

69

Example: alertTemplate

Media
Computing
GrouptvOS

TVJS

70

Media
Computing
GrouptvOS

• TeleVision JavaScript

• A set of JavaScript APIs to display/remove TVML documents, stream media, handle events,…

• Classes

• App

• NavigationDocument

• XMLHttpRequest

• Keyboard

• Storage

• …

71

TVJS

Media
Computing
GrouptvOS

• To respond to an app’s life cycle events: onLaunch, onExit, onSuspend, onResume, onError

• onLaunch

• Entry point

• Load the first TVML document to be displayed on launch

72

App

Media
Computing
GrouptvOS

TVMLKit

73

Media
Computing
GrouptvOS

• Connects your tvOS app to TVML and TVJS

• Steps

1. Import TVMLKit

2. Implement TVApplicationControllerDelegate to observe and manage the
different states of tvOS app

3. Setup launch options (server path, script path) and create an instance of
TVApplicationController

74

TVMLKit

Media
Computing
GrouptvOS

In-Class Demo: TED Talks Viewer

75

Media
Computing
GrouptvOS

• What sort of apps can you expect in the future?

• Already: Games, Shopping, … and not just TV-based services

• Expect improvements to tvOS APIs (refinements to templates, bug fixes, etc.)

• Better debugging tools (especially for TVJS)

• A new media streaming service like Netflix, Hulu, etc.? :)

76

Conclusion

Media
Computing
GrouptvOS

“‘I’d like to create an integrated television set that is completely easy to
use,’ he told me. ‘It would be seamlessly synced with all of your devices
and with iCloud.’ No longer would users have to fiddle with complex
remotes for DVD players and cable channels. ‘It will have the simplest
user interface you could imagine. I finally cracked it.’”

- “Steve Jobs” by Walter Isaacson

77

Media
Computing
GrouptvOS

• Apple TV Human Interface Guidelines

• https://developer.apple.com/tvos/human-interface-guidelines

• App Programming Guide for tvOS

• https://developer.apple.com/library/prerelease/tvos/documentation/General/Conceptual/AppleTV_PG/

• tvOS game development:

• Sample code from Apple: DemoBots

• 2D iOS & tvOS Games by Tutorials: Beginning 2D iOS and tvOS  
Game Development with Swift 2 by Ray Wenderlich et al.

78

Further Reading

https://developer.apple.com/tvos/human-interface-guidelines
https://developer.apple.com/library/prerelease/tvos/documentation/General/Conceptual/AppleTV_PG/

