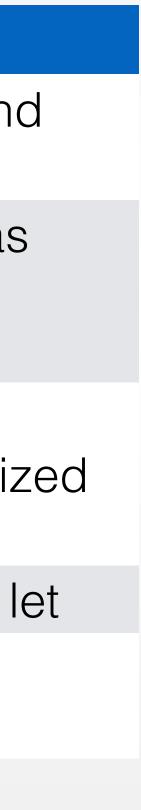


iPhone Application Programming Lecture 3: Swift Part 2

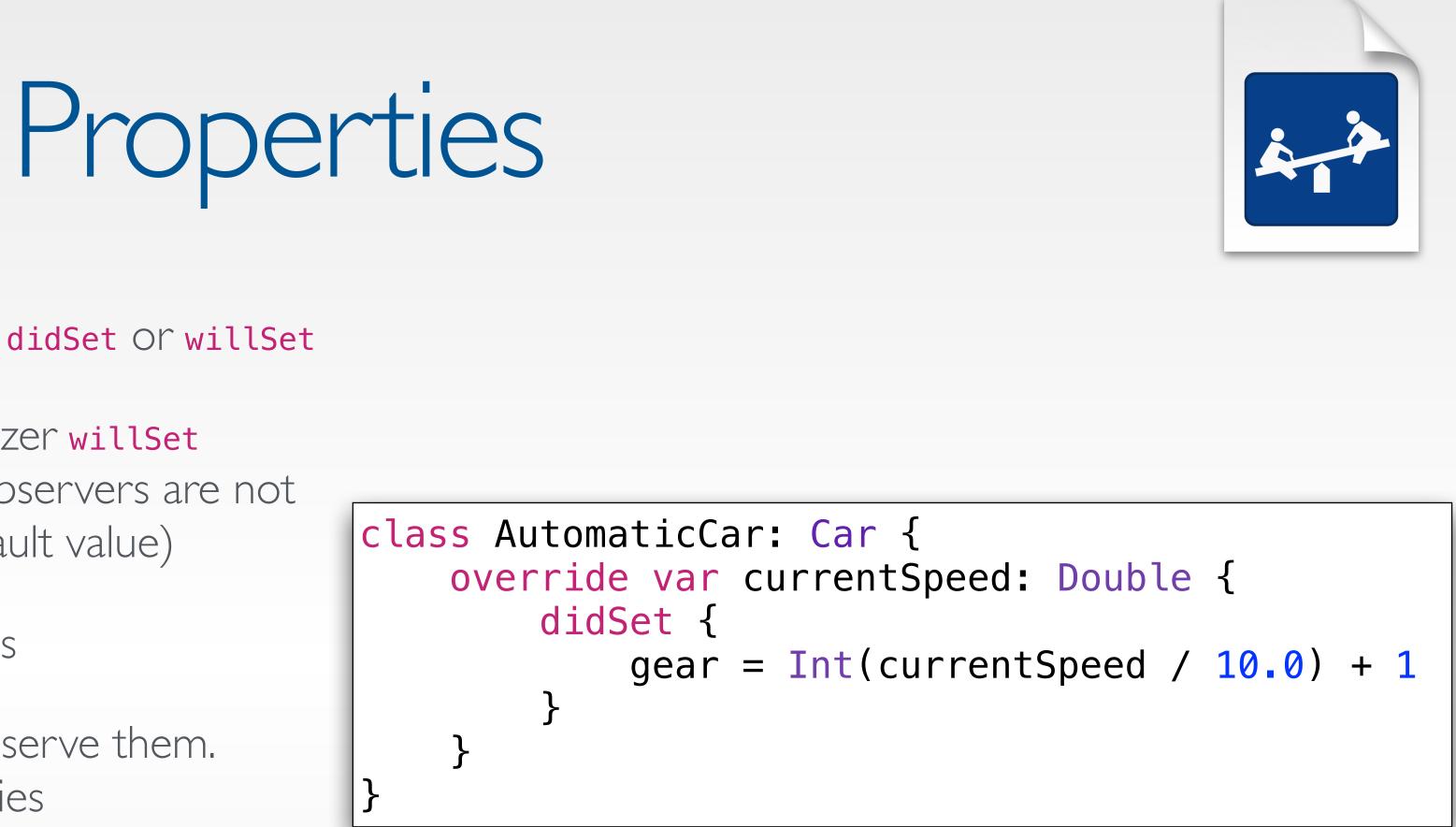
Nur Al-huda Hamdan Media Computing Group RWTH Aachen University

Winter Semester 2015/2016

http://hci.rwth-aachen.de/iphone



Properties


- Properties are available for classes, enums or structs
- Classified into stored properties and computed properties
- Can be instance properties: each class instance gets its ov copy or type properties: associated with the type itself (s
- One can observe stored properties or any inherited prop
- lazy properties do not calculate initial values when the variable is initialized for the first time
 - To delay object creation until necessary (resource demanding) or when property depends on unknown of the class

	Computed	Stored
ies	For classes, structs	For classes and
	and enums	structs
WN static)	Calculate a value (usually based on stored properties)	Store values as instances into memory
perty	No need to initialize. Cannot have a default value	Must be initialize
	Only var	Can be var or le
narte	Have get and optional set	
parts		

- To observe properties you implement didSet or willSet
 - When a property is set in an initializer willSet (newValue) and didSet (oldValue) observers are not called (or when assigning initial default value)
 - You cannot observe lazy properties
 - override inherited properties to observe them. Cannot observe read-only properties
 - Property observer must be var
 - Use to validate input
- A constant let struct instance cannot modify even if properties, were declared as variables



- Every instance of a type (class, struct, enum) has an implicit property called self
- Cannot be used until after initialization phase I
- Necessary to distinguish when a parameter name is the same as a property name, e.g., self.value = value
- Value types (enums and structs) can assigning to self a new value within a mutating method

Self

```
struct Point {
    var x = 0.0, y = 0.0
    mutating func moveByX(deltaX: Double, y
deltaY: Double) {
        self = Point(x: x + deltaX, y: y +
deltaY)
```


Inheritance

- Unique to classes in swift
- Classes in Swift can call and access methods, properties, and subscripts belonging to their superclass: super.someMethod() or super.someProperty (even of private)
- Classes can provide their own overriding versions of those methods, properties, and subscripts
 - You can make an inherited read-only property a read-write property, but cannot make a read-write property read-only
- Classes can add property observers (didSet, willSet) to inherited (settable) properties (the stored or computed nature of an inherited property is not known by a subclass)
- In superclass: final computed properties and functions cannot be overridden. final class means it cannot be subclassed

Initialization

- Initialization prepares instances of a class, structure, or enumeration for use by setting an initial value for each stored property and performing any other setup
- Classes and structures must set all of their stored properties to an appropriate initial value before they can be used
 - Default property value set in definition (except for optionals, default is nil)
 - Initial value within an initializer
- We call Initializers to create new instances

Initialization

- initializer for className)
- Structs also receive a default memberwise initializer: init(all properties in order of definition), if they do not define any initializers
- inits?

• Initializers syntax: can be with or without parameters, can have local and external names, must use first parameter name when calling the init, can use wild card for external names

• A class and struct that have all properties set with default values get a default init() if they do not implement one (var instance = className() is possible without writing any

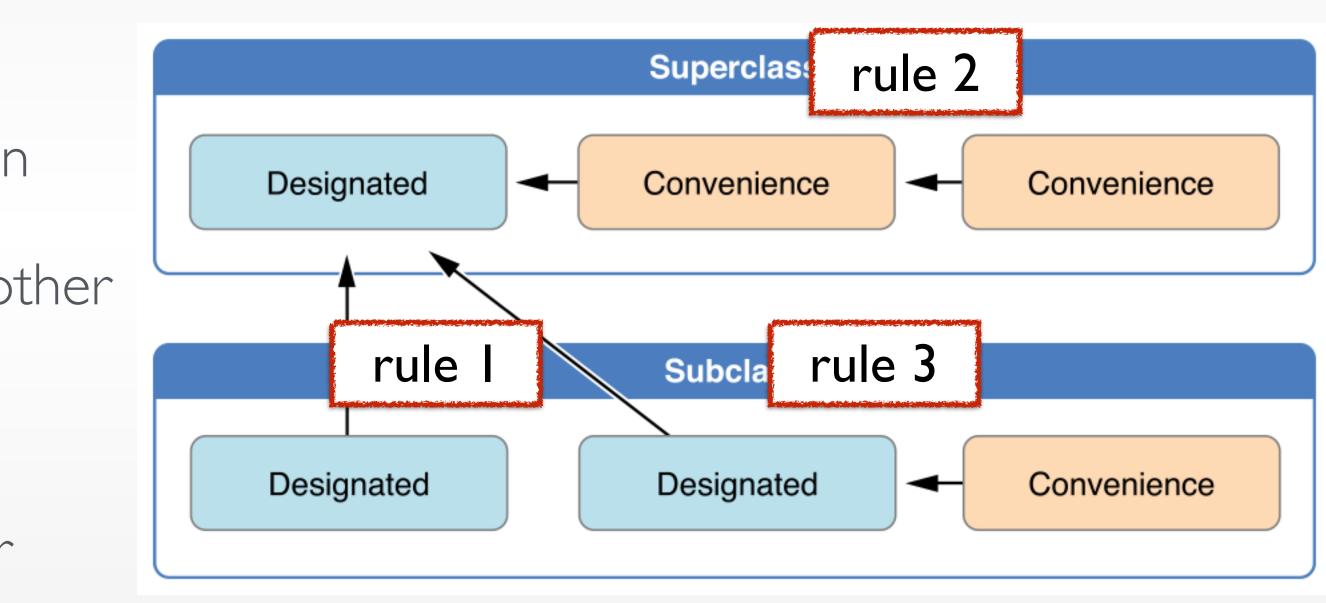
• What if you want the default init/memberwise init in your struct but also want custom

Initialization and Inheritance

- Two kinds of initializers for type class
 - chain
 - superclass designated init)
 - add convenience init)
- Swift subclasses do not inherit their superclass initializers by default (see demo cases)
 - override keyword

Designated initializers are the primary. They initializes *all* properties introduced by that class and call an appropriate superclass initializer to continue the initialization process up the superclass

• Every class must have at least one designated initializer (can satisfy this by inheriting a


• Convenience initializers are optional in a class, and used for special initialization patterns (must

If subclass implements init() {} and the super class has the default init, the subclass must add

Initializer Delegation for Class Types

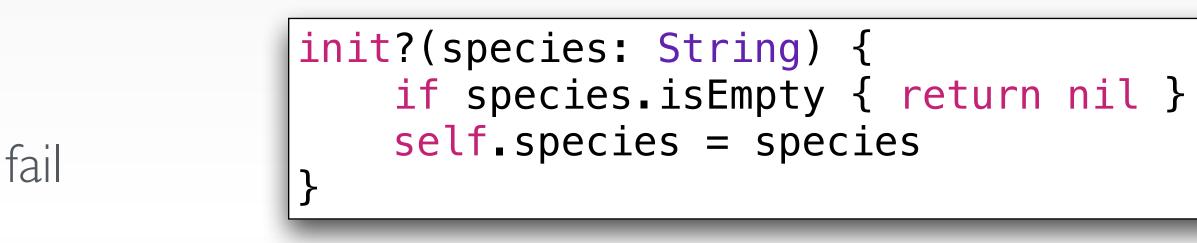
- Goal: All of a class's <u>stored properties</u>, including <u>inherited properties</u>, must be assigned an initial value during initialization
- Convenience initializer can only call *one* other initializer from the *same* class (the chain should lead to a designated initializer)
- Designated initializers must call one super designated initializer

Two-Phase Initialization

- Class initialization in Swift is a two-phase process
- Safe and flexible process
 - Prevents property values from being accessed before they are initialized
 - Prevents property values from being set to a different value by another initializer unexpectedly
 - Allows setting custom initial values
- Phase I: Each stored property is assigned an initial value by the class that introduced it
- Phase 2: Each class is given the opportunity to customize its stored properties further before • a new instance is ready for use

Two-Phase Initialization

- A designated initializer must ensure all its properties are initialized before calling super designated. After calling the super, it can modify inherited properties
- A convenience initializer must delegate to another initializer before assigning a value to *any* property
- An initializer cannot call any instance methods, read the values of any instance properties, or refer to self as a value until after the first phase of initialization is complete


designated init own properties call super designated can access any method/ property, self, and modify inherit properties

Failables and Deinitializers

- include this keyword
- Failable Initializer •
 - When the initialisation of an instance can fail
- Deinitializers to classes in swift (deinit)
 - Called automatically before instance deallocation takes place
 - Cannot be call by developer
 - Perform resource handling, e.g., close open files, remove self as an observer, etc

• required init indicates every subclass must implement that initializer, every subclass must also

• Example, invalid initialization parameter values, the absence of a required external resource

- Blocks of functionality that you can pass around in your code
- Closures do not have a name
- Closures capture references of values in their context
 - Retain cycles and memory management is done by swift
- Functions and nested functions are special cases of closures
 - Functions have a name and don't capture values
 - Nested functions have a name and capture values
- Many swift methods and functions take closures as arguments

Closures

Closures - Syntax

- Closure expressions encourage brief, clutter-free syntax
 - Inferring parameter and return value types from context
 - Implicit returns from single-expression closures
 - Shorthand argument names
 - Trailing closure syntax
- Can use constant parameters, variable parameters, and inout parameters, named variadic parameter and tuples
- Cannot provide default values

increment({(a: Int) -> Int in return a + 1 |}) increment({a in return a + 1}) increment({a in a + 1}) $increment(\{\$0 + 1\})$ increment() $\{\$0 + 1\}$ increment $\{\$0 + 1\}$

• Capturing references to variables and constants that exist in the context

```
var i = 10
var myClosure = {print(i)}
i = 20
myClosure() //20
```

Closures - Capturing References

```
class MyClass
{
 var someProperty = "v1"
var instance = MyClass()
var myClosure = {
    (appName : String) -> String in
    return appName + " " +
instance.someProperty
```

print(myClosure("Clock")) //Clock v1

instance.someProperty = "v2" print(myClosure("Clock")) //Clock v2

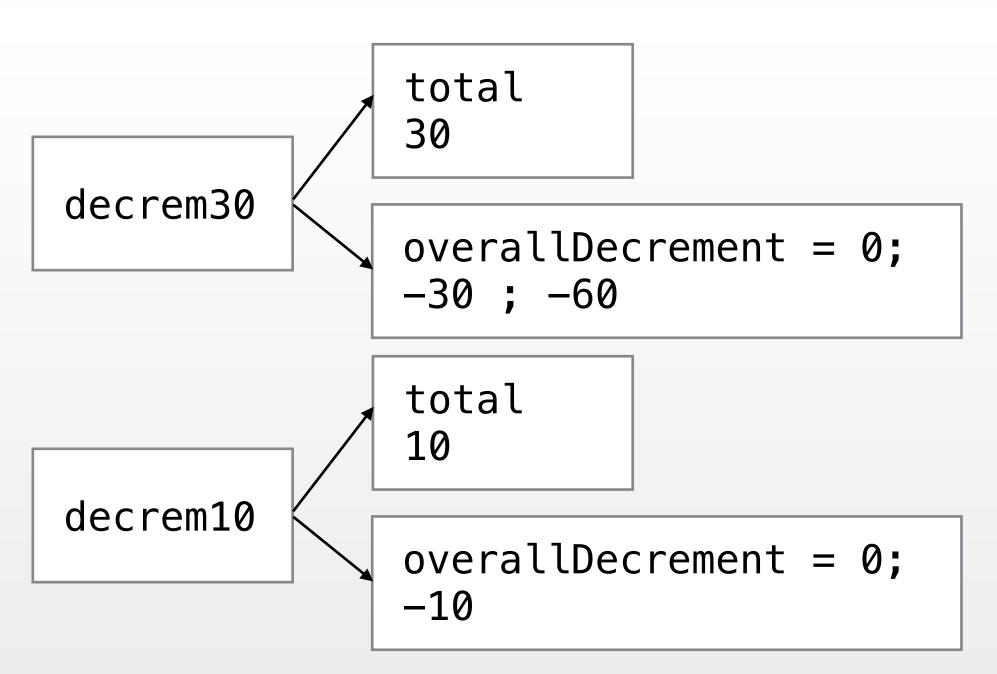
```
instance = MyClass()
print(myClosure("Clock")) //Clock v1
```


Closures - Capturing Values

- Capture lists can change the default behavior of closures to capture values
 - You capture the values of constants and variables at the time of closure creation, not affected with any changes later
 - List must come at the beginning of closure definition

```
class MyClass
 var someProperty = "v1"
var instance = MyClass()
var myClosure = {
    [instance]
    (appName : String) -> String in
    return appName + " " +
instance.someProperty
```

print(myClosure("Clock")) //Clock v1 instance.someProperty = "v2" print(myClosure("Clock")) //Clock v2 instance = MyClass()print(myClosure("Clock")) //Clock v2


Computing

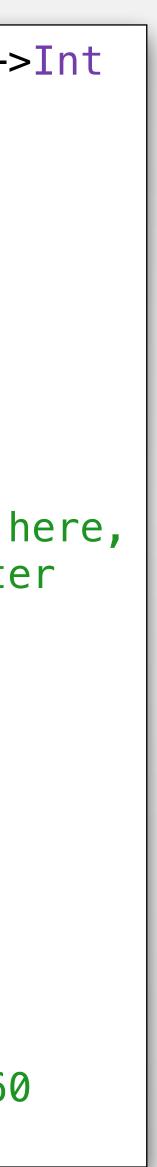
Group

Closures Are Reference Types func calcDecrement(forDecrement total: Int) -> ()->Int

- A closure is a function + captured variables
 - These two are closures decrem30, decrem10

I7 iPhone Application Programming

```
var overallDecrement = 0
```


func decrementer() -> Int {
 overallDecrement -= total
 return overallDecrement

```
return decrementer
//overallDecrement normally goes out of scope here,
but a reference to it is captured by decrementer
```

let decrem30 = calcDecrement(forDecrement: 30)
//now captured decrem30.overallDecrement is -30
print(decrem30()) //-30

let decrem10 = calcDecrement(forDecrement: 10)
//now captured decrem10.overallDecrement is -10
print(decrem10()) //-10

print(decrem30()) //decrem30.overallDecrement = -60

Swift Built-in Types

• Make better use of Swift's six built-in types

Named Types

- Protocols
- Structs •
- Classes
- Enumerations

Compound Types

- Functions
- Tuples

Protocols

- A protocol defines a blueprint of (instate/type) methods, (instance/type) properties that suit a particular task or piece of functionality
- The protocol can then be adopted by a class/structs/enum and provide actual implementation of those requirements (conform to that protocol)
 - Some elements of the protocols can be tagged as optional
- Swift reports an error at compile-time if a protocol requirement is not fulfilled
- Protocols can be extend to implement some of the requirements or to implement additional functionality that conforming types can take advantage of

Protocols

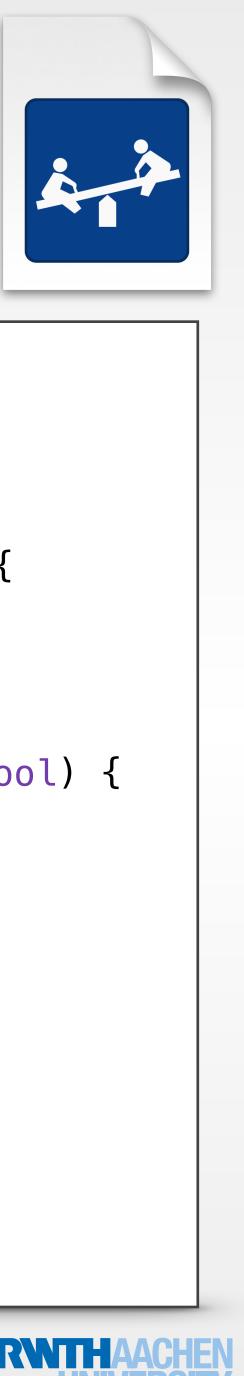
- Protocol syntax: protocol, Adopting classes add protocol names after the inherited superclass (if exits)
- A protocol property should be a var and have a particular name and type, must be conforming type can implement it as let or var

gettable or gettable and settable. If gettable, the conforming type can make it settable. The

• Type properties and method prefix with static (can use class or static in implementation)

- Collection of named properties
- Can have initializers and methods
- Provide value semantics
- Are (usually) created on the stack
- Can conform to protocols, can have extensions, but no inheritance
- Use mutating func if changing an instance property in a struct method
- Good for data aggregation without implicit sharing

Structs


```
struct MapPoint: Stringifyable {
 var longitude: Double
 var latitude: Double
 func rhumbDistance(other: MapPoint) ->
Double {
  let dLong = self.longitude -
other.longitude
  let dLat = self.latitude - other.latitude
 return sqrt(dLong * dLong + dLat * dLat)
 }
 func stringify() -> String {
 return "(\(longitude); \(latitude))"
```


- Inheritance
 - Initializers initialize all members before calling the parent initializer (2-phase init)
- Support for de-initializers
- Provide reference semantics
- Are (usually) created on the heap
- Good for shared data, large data, or as a resource handle

Classes


```
class Person {
 var firstName: String
 var lastName: String
 var available = true
  init(firstName: String, lastName: String) {
  self_firstName = firstName
  self_lastName = lastName
  func marry(other: Person, takeTheirName: Bool) {
  if (takeTheirName) {
    self.lastName = other.lastName
  self.available = false
  func stringify() -> String {
  return firstName + " " + lastName +
         (available ? " is still available!"
                    : " is married.")
```


• Structs

- short lived objects
- objects that are created often
- model objects
- data capsules (represent only their values)

Structs vs. Classes

- Classes
 - long lived objects
 - controller and view objects
 - class hierarchies
 - objects in the true sense (representing some identity)

If unsure, try a struct first; you can change it later

Value Semantics and Reference Semantics

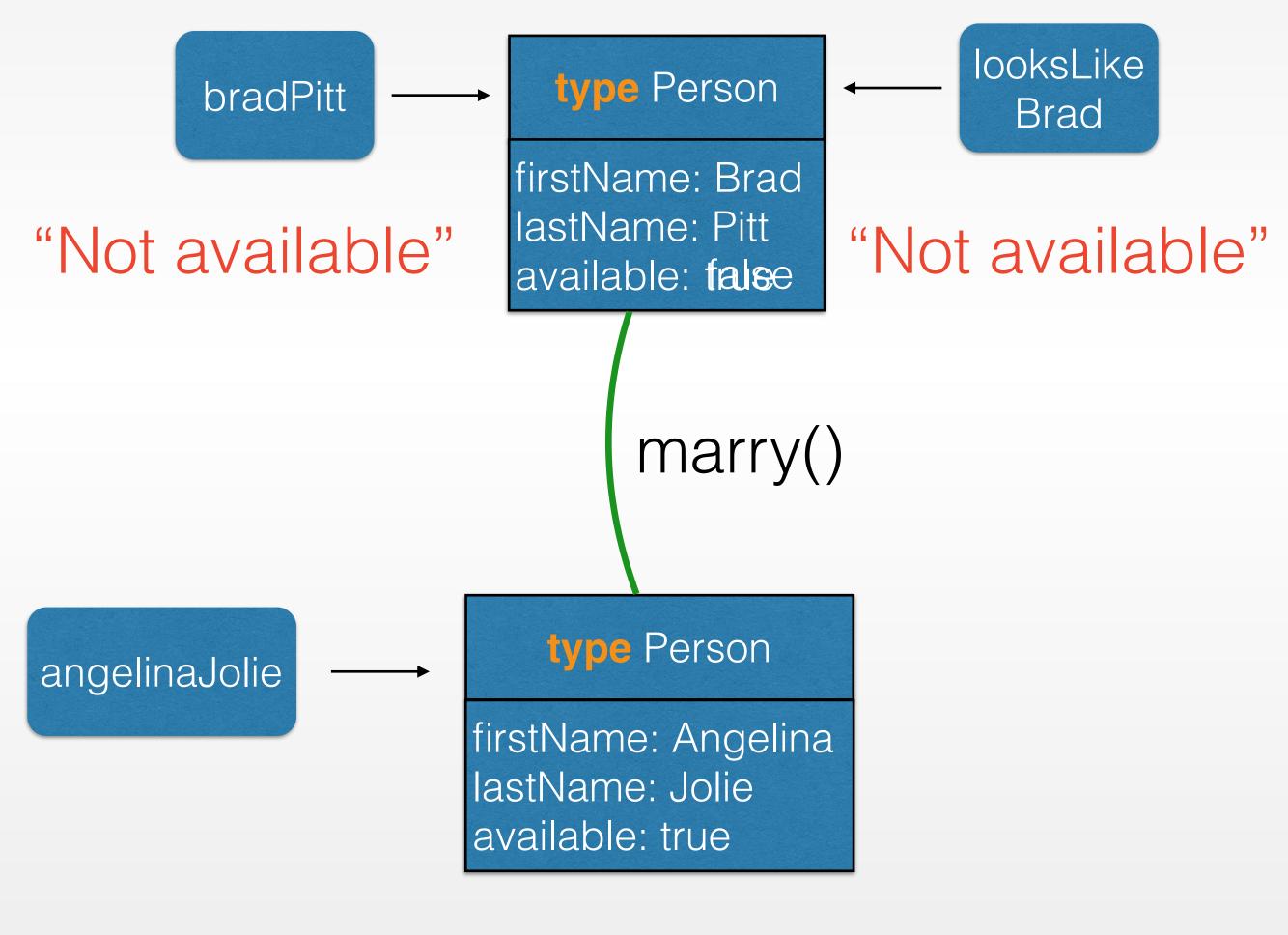
A Detour

Reference Semantics

```
protocol Stringifyable {
  func stringify() -> String
}
class Person {
  var firstName: String
  var lastName: String
  var available = true
  init(firstName: String, lastName: String) {
     self.firstName = firstName
     self.lastName = lastName
  }
  func marry(other: Person, takeTheirName: Bool) {
     if (takeTheirName) {
       self.lastName = other.lastName
     }
     self.available = false
  }
  func stringify() -> String {
     return firstName + " " + lastName + (available ? " is still available!" : " is married.")
  Ĵ
}
```


Reference Semantics

var bradPitt = Person(firstName: "Brad", lastName: "Pitt")


```
var angelinaJolie = Person(firstName:
"Angelina", lastName: "Jolie")
```

```
var guyWhoLooksLikeBradPitt = bradPitt
```

bradPitt.marry(angelinaJolie, takeTheirName: false)

bradPitt.stringify()

guyWhoLooksLikeBradPitt.stringify()

Value Semantics

```
protocol Stringifyable {
    func stringify() -> String
}
struct Person {
    var firstName: String
    var lastName: String
    var available = true
    init(firstName: String, lastName: String) {
        self.firstName = firstName
        self.lastName = lastName
   mutating func marry(other: Person, takeTheirName: Bool) {
        it (takeTheirName) {
            self.lastName = other.lastName
        self.available = false
    }
    func stringify() -> String {
        return firstName + " " + lastName + (available ? " is still available!" : " is married.")
    }
}
```


var bradPitt = Person(firstName: "Brad", lastName: "Pitt")

```
var angelinaJolie = Person(firstName:
"Angelina", lastName: "Jolie")
```

var guyWhoLooksLikeBradPitt = bradPitt

bradPitt_marry(angelinaJolie, takeTheirName: false)

bradPitt_stringify()

guyWhoLooksLikeBradPitt_stringify()

