
Media
Computing
Group

iPhone Application Programming
Lecture 3: Swift Part 2

Nur Al-huda Hamdan
Media Computing Group

RWTH Aachen University

Winter Semester 2015/2016

http://hci.rwth-aachen.de/iphone

http://hci.rwth-aachen.de/iphone

Media
Computing
GroupiPhone Application Programming

• Properties are available for classes, enums or structs

• Classified into stored properties and computed properties

• Can be instance properties: each class instance gets its own
copy or type properties: associated with the type itself (static)

• One can observe stored properties or any inherited property

• lazy properties do not calculate initial values when the
variable is initialized for the first time

• To delay object creation until necessary (resource
demanding) or when property depends on unknown parts
of the class

2

Properties

Computed Stored
For classes, structs
and enums

For classes and
structs

Calculate a value
(usually based on
stored properties)

Store values as
instances into
memory

No need to
initialize. Cannot
have a default value

Must be initialized

Only var Can be var or let
Have get and
optional set

Media
Computing
GroupiPhone Application Programming

• To observe properties you implement didSet or willSet

• When a property is set in an initializer willSet
(newValue) and didSet (oldValue) observers are not
called (or when assigning initial default value)

• You cannot observe lazy properties

• override inherited properties to observe them.
Cannot observe read-only properties

• Property observer must be var

• Use to validate input

• A constant let struct instance cannot modify even if
properties, were declared as variables

3

Properties

class AutomaticCar: Car {
 override var currentSpeed: Double {
 didSet {
 gear = Int(currentSpeed / 10.0) + 1
 }
 }
}

Media
Computing
GroupiPhone Application Programming

• Every instance of a type (class, struct, enum) has
an implicit property called self

• Cannot be used until after initialization phase 1

• Necessary to distinguish when a parameter
name is the same as a property name, e.g.,
self.value = value

• Value types (enums and structs) can assigning to
self a new value within a mutating method

4

Self

struct Point {
 var x = 0.0, y = 0.0
 mutating func moveByX(deltaX: Double, y
deltaY: Double) {
 self = Point(x: x + deltaX, y: y +
deltaY)
 }

Media
Computing
GroupiPhone Application Programming

• Unique to classes in swift

• Classes in Swift can call and access methods, properties, and subscripts belonging to their
superclass: super.someMethod() or super.someProperty (even of private)

• Classes can provide their own overriding versions of those methods, properties, and subscripts

• You can make an inherited read-only property a read-write property, but cannot make a
read-write property read-only

• Classes can add property observers (didSet, willSet) to inherited (settable) properties (the
stored or computed nature of an inherited property is not known by a subclass)

• In superclass: final computed properties and functions cannot be overridden. final class
means it cannot be subclassed

5

Inheritance

Media
Computing
GroupiPhone Application Programming

• Initialization prepares instances of a class, structure, or enumeration for use by setting an
initial value for each stored property and performing any other setup

• Classes and structures must set all of their stored properties to an appropriate initial value
before they can be used

• Default property value set in definition (except for optionals, default is nil)

• Initial value within an initializer

• We call Initializers to create new instances

6

Initialization

Media
Computing
GroupiPhone Application Programming

• Initializers syntax: can be with or without parameters, can have local and external names,
must use first parameter name when calling the init, can use wild card for external names

• A class and struct that have all properties set with default values get a default init() if
they do not implement one (var instance = className() is possible without writing any
initializer for className)

• Structs also receive a default memberwise initializer : init(all properties in order of
definition), if they do not define any initializers

• What if you want the default init/memberwise init in your struct but also want custom
inits?

7

Initialization

Media
Computing
GroupiPhone Application Programming

• Two kinds of initializers for type class

• Designated initializers are the primary. They initializes all properties introduced by that class and
call an appropriate superclass initializer to continue the initialization process up the superclass
chain

• Every class must have at least one designated initializer (can satisfy this by inheriting a
superclass designated init)

• Convenience initializers are optional in a class, and used for special initialization patterns (must
add convenience init)

• Swift subclasses do not inherit their superclass initializers by default (see demo cases)

• If subclass implements init() {} and the super class has the default init, the subclass must add
override keyword

8

Initialization and Inheritance

Media
Computing
GroupiPhone Application Programming

• Goal: All of a class’s stored properties,
including inherited properties, must be
assigned an initial value during initialization

• Convenience initializer can only call one other
initializer from the same class (the chain
should lead to a designated initializer)

• Designated initializers must call one super
designated initializer

9

Initializer Delegation for Class Types

rule 1

rule 2

rule 3

Media
Computing
GroupiPhone Application Programming

• Class initialization in Swift is a two-phase process

• Safe and flexible process

• Prevents property values from being accessed before they are initialized

• Prevents property values from being set to a different value by another initializer
unexpectedly

• Allows setting custom initial values

• Phase 1: Each stored property is assigned an initial value by the class that introduced it

• Phase 2: Each class is given the opportunity to customize its stored properties further before
a new instance is ready for use

10

Two-Phase Initialization

Media
Computing
GroupiPhone Application Programming

• A designated initializer must ensure all its properties are initialized before calling super
designated. After calling the super, it can modify inherited properties

• A convenience initializer must delegate to another initializer before assigning a value to any
property

• An initializer cannot call any instance methods, read the values of any instance properties,
or refer to self as a value until after the first phase of initialization is complete

11

Two-Phase Initialization

convenience
1. call designated
2. modify any properties

designated
1. init own properties
2. call super designated
3. can access any method/

property, self, and modify
inherit properties

goes up the superclass chain
Phase 2 starts

Media
Computing
GroupiPhone Application Programming

• required init indicates every subclass must implement that initializer., every subclass must also
include this keyword

• Failable Initializer

• When the initialisation of an instance can fail

• Example, invalid initialization parameter values, the absence of a required external resource

• Deinitializers to classes in swift (deinit)

• Called automatically before instance deallocation takes place

• Cannot be call by developer

• Perform resource handling, e.g., close open files, remove self as an observer, etc

12

Failables and Deinitializers

init?(species: String) {
 if species.isEmpty { return nil }
 self.species = species
}

Media
Computing
GroupiPhone Application Programming

• Blocks of functionality that you can pass around in your code

• Closures do not have a name

• Closures capture references of values in their context

• Retain cycles and memory management is done by swift

• Functions and nested functions are special cases of closures

• Functions have a name and don't capture values

• Nested functions have a name and capture values

• Many swift methods and functions take closures as arguments

13

Closures

Media
Computing
GroupiPhone Application Programming

• Closure expressions encourage brief, clutter-free syntax

• Inferring parameter and return value types from context

• Implicit returns from single-expression closures

• Shorthand argument names

• Trailing closure syntax

• Can use constant parameters, variable parameters, and inout
parameters, named variadic parameter and tuples

• Cannot provide default values

14

Closures - Syntax

increment({(a: Int) -> Int in
 return a + 1
})

increment({a in return a + 1})

increment({a in a + 1})

increment({$0 + 1})

increment() {$0 + 1}

increment {$0 + 1}

Media
Computing
GroupiPhone Application Programming

• Capturing references to variables and constants that
exist in the context

15

Closures - Capturing References

var i = 10
var myClosure = {print(i)}
i = 20
myClosure() //20

class MyClass
{
 var someProperty = "v1"
}
var instance = MyClass()

var myClosure = {
 (appName : String) -> String in
 return appName + " " +
instance.someProperty
}

print(myClosure(“Clock")) //Clock v1

instance.someProperty = "v2"
print(myClosure(“Clock")) //Clock v2

instance = MyClass()
print(myClosure(“Clock")) //Clock v1

Media
Computing
GroupiPhone Application Programming

• Capture lists can change the default behavior
of closures to capture values

• You capture the values of constants and
variables at the time of closure creation, not
affected with any changes later

• List must come at the beginning of closure
definition

16

Closures - Capturing Values
class MyClass
{
 var someProperty = "v1"
}
var instance = MyClass()

var myClosure = {
[instance]
(appName : String) -> String in

 return appName + " " +
instance.someProperty
}

print(myClosure(“Clock")) //Clock v1

instance.someProperty = "v2"
print(myClosure(“Clock")) //Clock v2

instance = MyClass()
print(myClosure(“Clock")) //Clock v2

Media
Computing
GroupiPhone Application Programming

• A closure is a function + captured
variables

• These two are closures decrem30,
decrem10

17

Closures Are Reference Types
func calcDecrement(forDecrement total: Int) -> ()->Int
{
 var overallDecrement = 0

 func decrementer() -> Int {
 overallDecrement -= total
 return overallDecrement
 }

 return decrementer
//overallDecrement normally goes out of scope here,
but a reference to it is captured by decrementer

}

let decrem30 = calcDecrement(forDecrement: 30)
//now captured decrem30.overallDecrement is -30
print(decrem30()) //-30

let decrem10 = calcDecrement(forDecrement: 10)
//now captured decrem10.overallDecrement is -10
print(decrem10()) //-10

print(decrem30()) //decrem30.overallDecrement = -60

decrem30

total
30

overallDecrement = 0;
-30 ; -60

decrem10

total
10

overallDecrement = 0;
-10

Media
Computing
GroupiPhone Application Programming

• Make better use of Swift’s six built-in types

18

Swift Built-in Types

• Protocols

• Structs

• Classes

• Enumerations

• Functions

• Tuples

Named Types Compound Types

Media
Computing
GroupiPhone Application Programming

• A protocol defines a blueprint of (instate/type) methods, (instance/type) properties that
suit a particular task or piece of functionality

• The protocol can then be adopted by a class/structs/enum and provide actual
implementation of those requirements (conform to that protocol)

• Some elements of the protocols can be tagged as optional

• Swift reports an error at compile-time if a protocol requirement is not fulfilled

• Protocols can be extend to implement some of the requirements or to implement
additional functionality that conforming types can take advantage of

19

Protocols

Media
Computing
GroupiPhone Application Programming

• Protocol syntax: protocol, Adopting classes add protocol names after the inherited
superclass (if exits)

• A protocol property should be a var and have a particular name and type, must be
gettable or gettable and settable. If gettable, the conforming type can make it settable. The
conforming type can implement it as let or var

• Type properties and method prefix with static (can use class or static in implementation)

20

Protocols

Media
Computing
GroupiPhone Application Programming

• Collection of named properties

• Can have initializers and methods

• Provide value semantics

• Are (usually) created on the stack

• Can conform to protocols, can have extensions,
but no inheritance

• Use mutating func if changing an instance
property in a struct method

• Good for data aggregation without implicit
sharing

21

Structs
struct MapPoint: Stringifyable {
 var longitude: Double
 var latitude: Double

 func rhumbDistance(other: MapPoint) ->
Double {
 let dLong = self.longitude -
other.longitude
 let dLat = self.latitude - other.latitude
 return sqrt(dLong * dLong + dLat * dLat)
 }

 func stringify() -> String {
 return "(\(longitude); \(latitude))"
 }
}

Media
Computing
GroupiPhone Application Programming

• Inheritance

• Initializers initialize all members before
calling the parent initializer (2-phase init)

• Support for de-initializers

• Provide reference semantics

• Are (usually) created on the heap

• Good for shared data, large data, or as a
resource handle

22

Classes
class Person {
 var firstName: String
 var lastName: String
 var available = true

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 func marry(other: Person, takeTheirName: Bool) {
 if (takeTheirName) {
 self.lastName = other.lastName
 }
 self.available = false
 }

 func stringify() -> String {
 return firstName + " " + lastName +  
 (available ? " is still available!"  
 : " is married.")
 }
}

Media
Computing
GroupiPhone Application Programming23

Structs vs. Classes

• Structs

• short lived objects

• objects that are created often

• model objects

• data capsules 
(represent only their values)

If unsure, try a struct first; you can change it later

• Classes

• long lived objects

• controller and view objects

• class hierarchies

• objects in the true sense (representing
some identity)

Value Semantics and 
Reference Semantics

A Detour

Media
Computing
GroupiPhone Application Programming

Reference Semantics

25

protocol Stringifyable {
 func stringify() -> String
}

class Person {
 var firstName: String
 var lastName: String
 var available = true

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 func marry(other: Person, takeTheirName: Bool) {
 if (takeTheirName) {
 self.lastName = other.lastName
 }
 self.available = false
 }

 func stringify() -> String {
 return firstName + " " + lastName + (available ? " is still available!" : " is married.")
 }
}

Media
Computing
GroupiPhone Application Programming26

Reference Semantics

var bradPitt = Person(firstName:
"Brad", lastName: “Pitt")

var angelinaJolie = Person(firstName:
"Angelina", lastName: “Jolie")

var guyWhoLooksLikeBradPitt = bradPitt

bradPitt.marry(angelinaJolie,
takeTheirName: false)

bradPitt.stringify()

guyWhoLooksLikeBradPitt.stringify()

type Person

firstName: Brad
lastName: Pitt
available:

type Person

firstName: Angelina
lastName: Jolie
available: true

bradPitt

angelinaJolie

looksLike
Brad

marry()

truefalse“Not available” “Not available”

Media
Computing
GroupiPhone Application Programming27

Value Semantics
protocol Stringifyable {
 func stringify() -> String
}

struct Person {
 var firstName: String
 var lastName: String
 var available = true

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 mutating func marry(other: Person, takeTheirName: Bool) {
 if (takeTheirName) {
 self.lastName = other.lastName
 }
 self.available = false
 }

 func stringify() -> String {
 return firstName + " " + lastName + (available ? " is still available!" : " is married.")
 }
}

Media
Computing
GroupiPhone Application Programming28

Value Semantics

var bradPitt = Person(firstName:
"Brad", lastName: “Pitt")

var angelinaJolie = Person(firstName:
"Angelina", lastName: “Jolie")

var guyWhoLooksLikeBradPitt = bradPitt

bradPitt.marry(angelinaJolie,
takeTheirName: false)

bradPitt.stringify()

guyWhoLooksLikeBradPitt.stringify()

type Person

firstName: Brad
lastName: Pitt
available:

type Person

firstName: Angelina
lastName: Jolie
available: true

bradPitt

angelinaJolie

looksLike
Brad

marry()

truefalse“Not available”

“Available”

type Person

firstName: Brad
lastName: Pitt
available: true

copy

Media
Computing
GroupiPhone Application Programming29

Enumerations

• Represent a finite number of states

• There are two distinct types of enumerations in Swift

• Raw value enumerations

• Similar to Java or C enumerations

• Associated value enumerations

• Similar to tagged unions (e.g. in Haskell)

Media
Computing
GroupiPhone Application Programming30

Raw Value Enumerations

• Much more powerful than C enumerations

• Can have methods and initializers, can
have extensions and can conform to
protocols

• More flexible than Java enumerations

• Can be defined over other underlying
types (String, Character, all numeric types)

enum TrainClass: String, Stringifyable {
 case S = "S-Bahn"
 case RB = "Regionalbahn"
 case RE = "Regional-Express"
 case IC = "Intercity"
 case ICE = "Intercity Express"
 static let allCases = [S, RB, RE, IC, ICE]

 func onTime() -> Bool {
 if self == .S || self == .ICE {
 return true
 }
 return false
 }

 func stringify() -> String {
 return self.rawValue
 }
}

Media
Computing
GroupiPhone Application Programming

• Every case represents a tuple type

• Can be used as simple static Polymorphism

• Instantiate cases with values of the
represented type

31

Associated Value Enumerations
enum Transport {
 case plane(String, Int)
 case train(TrainClass, Int)
 case bus(Int)
 case car(String, String, Int)
}

var myRide = Transport.train(.ICE, 11)
// GDL strike: change travel plans!
myRide = .car("AC", "X", 1337)

func canWork(onRide: Transport) -> Bool {
 switch onRide {
 case .train(let trainClass, let number):
 return trainClass == .ICE
 case .plane(_, _):
 return true
 default:
 return false
 }
}

Media
Computing
GroupiPhone Application Programming

• Can extend Structs, Classes,
Enumerations

• Can implement protocol requirements

• Can add functions, computed properties,
nested types

• Can declare protocol conformance

• Cannot override existing functionality

• Often useful to clean up code structure

32

Extensions

extension Temperature : CustomStringConvertible {
 var description : String {
 get {
 return (NSString(format:"%.2d", self.value) as
String) + self.unit.rawValue
 }
 }
}

Media
Computing
GroupiPhone Application Programming

• Net enumerations, classes, and structures within the definition of a type

• Can have deep hierarchies

• To use a nested type outside definition scope, prefix its name with the name of the
type(s) it is nested within.

33

Nested Types

Media
Computing
GroupiPhone Application Programming

• self.window?.rootViewController?.view.subviews

• If one of the optionals is nil, this fails graceful (no run
time error)

• If all optionals are set, the chain return an optional
(even if the object in request, e.g., subviews, is not
optional)

• let views =
(self.window?.rootViewController?.view.subviews)!

• let views =
self.window?.rootViewController?.view.subviews! //
compiler error, subviews is not of type optional

• With subscripts dict?[someKey].instanceOnValue

34

Optional Chaining

for subview in
(self.window?.rootViewController?.view.subviews)!
as [UIView]
{

 //type casting the subview to UILable
 if let labelView = subview as? UILabel

 {
 let formatter = NSDateFormatter()
 formatter.timeStyle = .MediumStyle
 labelView.text =
formatter.stringFromDate(NSDate())
 }
}

Media
Computing
GroupiPhone Application Programming

• Upcasting: Casts an instance to its superclass type (assumes it is always successful)

• instance as superclass

• 0.1 as Int //0 and 0.1 as Double //0.1

• Downcasting: Casts an instance of a superclass to its actual subclass type

• let object = instance as! subclass. Results in downcasts + force unwarp OR runtime error

• if let object = instance as? subclass {…}. Results in downcasts or nil

• Object checking: Checks if instance of type subclass

• instance is subclass //true or false

35

Type Casting

Media
Computing
GroupiPhone Application Programming

• private entities are available only from within the source file where they are defined

• internal entities are available to the entire module that includes the definition (e.g. an
app or framework target) ← the default case

• public entities are intended for use as API, and can be accessed by any file that imports
the module, e.g. as a framework used in several of your projects

• Apply to classes, structures, and enumerations, properties, methods, initializers, and
subscripts

• Global constants, variables, functions, and protocols can be restricted to a certain context

36

Access Control

Media
Computing
GroupiPhone Application Programming

• Operators can be declared at global
scope

• Can have prefix, infix or postfix
modifiers

• Infix operators have associativity and
precedence values

• Operators are implemented as
functions at global scope

• Be very conservative when overloading
operators!

37

Custom Operators
// ...this one maybe makes sense...
prefix operator ∑ {}
prefix func ∑(a: [Int]) -> Int {
 var accum = 0
 for value in a {
 accum += value
 }
 return accum
}
var myArray = [-2, 6, 0, 1]
let sum = ∑myArray

// ...this one surely not!
postfix operator ^-^ {}
postfix func ^-^(s: String) -> String {
 return s + " 😄"
}
let chatMessage = "Operator Overloading 4TW!"
print(chatMessage^-^)

Media
Computing
GroupiPhone Application Programming

• The slides and playgrounds from this lecture will be uploaded to our website

• This week’s reading assignment will be on the website today

• What is left in Swift? ARC and Error handling (next lecture); Generics and Subscripts (self
reading)

• Next week we’ll talk about design patterns and Foundation classes

38

Next Time

