Phone Application Programming
Lecture 3: Swift Part 2

s — ==\ Nur Al-huda Hamdan
Media Computing Group
RWTH Aachen University

Winter Semester 2015/2016

http://hcl.rwth-aachen.de/iphone

oLyrra .

‘

http://hci.rwth-aachen.de/iphone

Properties

* Properties are avallable for classes, enums or structs

Computed Stored

» Classified into stored properties and computed properties For classes. structs For classes and

and enums structs

Calculate a value Store values as
(usually based on instances into
stored properties) memory

No need to
initialize. Cannot Must be initialized
nave a default value

Only var Can be var or let

Have get and
optional set

- (Can be instance properties: each class instance gets its own
copy or type properties; associated with the type itself (static)

- One can observe stored properties or any inherited property

lazy properties do not calculate inrtial values when the
variable is initialized for the first time

» Jo delay object creation until necessary (resource
demanding) or when property depends on unknown parts
of the class

2 iPhone Application Programming

Properties

- o observe properties you Implement didSet or willSet

- When a property Is set in an inrtializer willSet
(newValue) and didSet (oldValue) observers are not

called (or when assigning initial default value) class AutomaticCar: Car 1

override var currentSpeed: Double {
didSet A{

* You cannot observe lazy properties gear = Int(currentSpeed / 10.0) + 1
I

override Inherited properties to observe them. 1
Cannot observe read-only properties }

* Property observer must be var

- Use to validate input

» A constant let struct instance cannot modify even it
properties, were declared as variables

¢\ 2010
ol
d050° H
N o Media
% 0110
0:‘

3 iPhone Application Programming N Group

Self

* Every Instance of a type (class, struct, enum) has
an iImplicit property called self

struct Point {

» Cannot be used until after initialization phase | var x = 0.0, y = 0.0
mutating func moveByX(deltaX: Double, y

deltaY: Double) {

» Necessary to distinguish when a parameter self = Point(x: x + deltaX, y: v +
name Is the same as a property name, e.g, delt?Y)

» Value types (enums and structs) can assigning to
self a new value within a mutating method

4 iPhone Application Programming

Nnherrttance

- Unique to classes in swift

- Classes in Swift can call and access methods, properties, and subscripts belonging to their

superclass: super.someMethod() or supersomeProperty (even of private)

» (Classes can provide their own overriding versions of those methods, properties, and subscripts

* You can make an inherited read-only property a read-write property, but cannot make a

read-write property read-only

- Classes can add property observers (didSet, wi

[1Set) tO In

nerrited (settable) properties (the

stored or computed nature of an inherited pro

berty Is No

- known by a subclass)

» In superclass: final computed properties and functions cannot be overridden. final class

means It cannot be subclassed

5> iPhone Application Programming

Nitialization

» Inrtialization prepares instances of a class, structure, or enumeration for use by setting an
initial value for each stored property and performing any other setup

» Classes and structures must set all of their stored properties to an appropriate initial value
before they can be used

» Default property value set in definition (except for optionals, default is nil)
- Initial value within an inrtializer

« We call Inrtializers to create new instances

4 J010
ol
" e i
N o Media
R %, 0110
»Q0 | '

SN, Computing
LBy Group

6 iPhone Application Programming

Nitialization P

» Inrtializers syntax: can be with or without parameters, can have local and external names,
must use first parameter name when calling the Init, can use wild card for external names

» A class and struct that have all properties set with default values get a default init() If

they do not implement one (var instance = className() I1s possible without writing any
initializer for className)

» Structs also receive a default memberwise Initializer: init(all properties in order of
definition), If they do not define any initializers

+ What If you want the default int/memberwise init in your struct but also want custom
INIts!

7/ iPhone Application Programming

Nnitialization ana Inherrtance

» Iwo kinds of Intializers for type class

- Designated initializers are the primary. I'hey intializes all properties introduced by that class anad
call an appropriate superclass initializer to continue the Intialization process up the superclass
chain

Fvery class must have at least one designated inrtializer (can satisty this by inheriting a
superclass designated inrt)

- Convenience Initializers are optional In a class, and used for special initialization patterns (must
add convenience init)

* Swift subclasses do not inherit their superclass inrtializers by default (see demo cases)

[T subclass iImplements init() {} and the super class has the default init, the subclass must add
override |<eWVOI”C|

IPhone Application Programming

Intializer Delegation for Class lypes

»+ Goal: All of a class’s stored properties,
including Inherited properties, must be
assigned an inrtial value during inrtialization

-+ Convenience Initializer can only call one other
initializer from the same class (the chain
should lead to a designated initializer)

+ Designated inrtializers must call one super
designated Inrtializer

9 iPhone Application Programming

wo-Phase Inrtialization

- Class inttialization in Swift I1s a two-phase process
» Safe and flexible process
* Prevents property values from being accessed before they are Initialized

* Prevents property values from being set to a different value by another inrtializer
unexpectedly

» Allows setting custom Inrtial values
» Phase |: Each stored property Is assighed an initial value by the class that introduced it

» Phase 2: Each class Is given the opportunity to customize its stored properties further before
a new Instance Is ready for use

|0 iPhone Application Programming

wo-Phase Inrtialization

* A designated Initializer must ensure all its properties are initialized before calling super
designated. After calling the super; it can modify inherited properties

» A convenience Inftializer must delegate to another inrtializer before assigning a value to any
property

* An intializer cannot call any instance methods, read the values of any instance properties,
or refer to self as a value until after the first phase of initialization I1s complete

designated

Init own properties
goes up the superclass chain<t_ . call super designated
Phase 2 starts . can access any method/
property, self, and modify

convenience
. call designated

inherit properties

| I iPhone Application Programming

Fallables ana Delnrtializers

required init Indicates every subclass must implement that inrtializer,, every subclass must also

include this keyword
- Fallable Inrtializer

« When the inttialisation of an instance can fall

init?(species: String) {
if species.isEmpty { return nil }
self.species = species

}

- Example, invalid initialization parameter values, the absence of a required external resource

» Deinrtializers to classes in swift (deinit)

- Called automatically before instance deallocation takes place

- Cannot be call by developer

» Perform resource handling, e.g., close open files, remove self as an observer, etc

|2 iPhone Application Programming

4 J010
ol
% % ,1010 -
0010
N o Media
R 2, 0110

______ Computing
LBy Group

Closures

» Blocks of functionality that you can pass around In your code
» Closures do not have a name
- Closures capture references of values In their context
» Retain cycles and memory management Is done by swift
* Functions and nested functions are special cases of closures
* Functions have a name and don't capture values
* Nested functions have a name and capture values

- Many swift methods and functions take closures as arguments

4 J010
ol
% % ,1010 -
¥ 0010
o5 Media
ol10"
ol

3, Computing
LBy Group

|3 iPhone Application Programming

Closures - Syntax

» Closure expressions encourage brief, clutter-free syntax
* Inferring parameter and return value types from context
» Implicit returns from single-expression closures
» Shorthand argument names
» Trailling closure syntax

- (Can use constant parameters, variable parameters, and inout
pDarameters, named variadic parameter and tuples

» Cannot provide default values

|4 iPhone Application Programming

increment({(a: Int) —> Int in
return a + 1

})

increment({a in return a + 1})

increment({a in a + 1})

increment({$0 + 1})

increment() {$0 + 1}

increment {$0 + 1}

RWTH

Closures - Capturing References

- Capturing references to variables and constants that

ex|st In the context

var 1 = 10

var myClosure =
1 = 20
myClosure() //20

{print(i)}

|5 iPhone Application Programming

class MyClass
{

¥

var instance = MyClass()

var someProperty = "v1"

var myClosure = {
(appName : String) —> String in
return appName + " " +
instance.someProperty

}

print(myClosure(“Clock")) //Clock v1

instance.someProperty = "v2"
print(myClosure(“Clock")) //Clock v2

instance = MyClass()

print(myClosure(“Clock")) //Clock v1

|6

Closures - Capturing Values

» (Capture lists can change the default behavior
of closures to capture values

* You capture the values of constants and
variables at the time of closure creation, not
affected with any changes later

« Lis
de

. must come at the beginning of closure

INrtion

IPhone Application Programming

class MyClass
{

}

var instance = MyClass()

var someProperty = "v1"

var myClosure = {
[instance]
(appName : String) —> String in
return appName + " " +
instance.someProperty

}

print(myClosure(“Clock")) //Clock v1

instance.someProperty = "v2"
print(myClosure(“Clock")) //Clock v2

instance = MyClass()
print(myClosure(“Clock")) //Clock v2

|/

Closures Are Reference lypes

» A closure is a function + captured
variables

« [hese two are closures decrem3o,
decreml

total
30

decrem30

[l
S

overallDecrement
-30 ; -60

total
10

decreml@

NN

[l
S

overallDecrement
-10

IPhone Application Programming

func calcDecrement(forDecrement total: Int) -> ()->Int

{

var overallDecrement = 0

func decrementer() — Int {
overallDecrement —= total

return overallDecrement

return decrementer
//overallDecrement normally goes out of scope here,
but a reference to 1t 1s captured by decrementer

}

let decrem30 = calcDecrement(forDecrement: 30)
//now captured decrem30.overallDecrement 1s -30
print(decrem30()) //-30

let decreml® = calcDecrement(forDecrement: 10)
//now captured decreml@.overallDecrement 1s -10
print(decrem10()) //-10

print(decrem30()) //decrem30.overallDecrement = -60

Switt Built-in Types

+ Make better use of Swift's six bullt-in types

Named Types Compound Types

Protocols - Functions

Structs - Tuples

Classes

Enumerations

UNIVERSITY

e | RNNTHAACHEN
o ou

|18 iPhone Application Programming

Protocols

» A protocol defines a blueprint of (instate/type) methods, (instance/type) properties that
suit a particular task or piece of functionalrty

» The protocol can then be adopted by a class/structs/enum and provide actual
implementation of those requirements (conform to that protocol)

+ Some elements of the protocols can be tagged as optional
* Swift reports an error at compile-time If a protocol requirement i1s not fulfilled

» Protocols can be extend to implement some of the requirements or to implement
additional functionality that conforming types can take advantage of

|9 iPhone Application Programming

Protocols

Protocol syntax: protocol, Adopting classes add protocol names after the inherrted
superclass (If exits)

» A protocol property should be a var and have a particular name and type, must be
oettable or gettable and settable. If gettable, the conforming type can make It settable. The

conforming type can implement It as let or var

» Iype properties and method prefix with static (can use class or static In implementation)

20 iPhone Application Programming

Structs

» Collection of named properties

» (Can have initializers and methods
Provide value semantics

» Are (usually) created on the stack

- (Can conform to protocols, can have extensions,
but no Inherrtance

Use mutating func If changing an instance
broperty In a struct methodad

»+ Good for data aggregation without implicit
sharing

21 iPhone Application Programming

struct MapPoint: Stringifyable {
var longitude: Double
var latitude: Double

func rhumbDistance(other: MapPoint) —>
Double {

et dLong = self.longitude -
other. longitude
let dLat = self.latitude - other. latitude

return sqrt(dLong * dLong + dLat x dLat)
I3

func stringify() —> String {
return "(\(longitude); \(latitude))"
I3

I3

22

Classes

Inheritance

 |nrtializers initialize all members before
calling the parent Initializer (2-phase init)

Support for de-initializers
Provide reference semantics
Are (usually) created on the heap

Good for shared data, large data, or as a
resource handle

IPhone Application Programming

class Person {
var firstName: String
var lastName: String
var availlable = true

init(firstName: String, lastName: String) {
self.firstName firstName
self.lastName = lastName

}

func marry(other: Person, takeTheirName: Bool) A
if (takeTheirName) {

self. lastName = other. lastName
s

self.avalilable = false

}

func stringify() —> String {
return firstName + " " + lastName +
(available ? " is still available!"
: " is married.")

RWTH

Structs vs. Classes

» Structs » Classes
- short lived objects » long lived objects
* objects that are created often - controller and view objects
- model objects » class hierarchies
- data capsules * Objects In the true sense (representing
(represent only their values) some identity)

T unsure, try a struct first; you can change 1t later

23 iPhone Application Programming

Value Semantics ana
Reference Semantics

A Detour

Reference Semantics

protocol Stringifyable {
func stringify() —> String
I3

class Person {
var firstName: String
var lastName: String
var avallable = true

init(firstName: String, lastName: String) {
self.firstName = firstName
self. lastName = lastName

}

func marry(other: Person, takeTheirName: Bool) A
if (takeTheirName) {
self. lastName = other. lastName

¥
self.avalilable = false
¥
func stringify() —> String {
return firstName + " " + lastName + (available ? " is still available!"™ : " is married.")
¥
¥
gnggni:uting RWTH

25 iPhone Application Programming JEXC Group

Reference Semantics

bradPitt | Person

var bradPitt = Person(firstName:
"Brad", lastName: “Pitt") firstName: Brad

looksLike
Brad
lastName: Pitt

var angelinalolie = Person(firstName: Not available available: talse Not avallaple

"Angelina", lastName: “Jolie")
var guyWholLooksLikeBradPitt = bradPitt

bradPitt.marry(angelinalolie,
takeTheirName: false)

bradPitt.stringify()

. . Person
clglo[clligt-Nielils} —

firstName: Angelina
guyWhoLooksLikeBradPitt.stringify() lastName: Jolie

avallable: true

¢\ 2010
ol
" e i
A o5 Media
%, 0110
0:‘

3, Computing
LBy Group

26 iPhone Application Programming

Value Semantics

protocol Stringifyable {
I3

func stringify() —> String

Person {

var firstName: String
var lastName: String

var avallable = true

init(firstName: String, lastName: String) {
self.firstName = firstName
self. lastName = lastName

}

nmiiigﬁglfunc marry(other: Person, takeTheirName: Bool) {
1 akeTheirName) {

self. lastName = other. lastName
¥

self.available = false

}

func stringify() —> String A{
return firstName + " " + lastName + (available ? " is still available!"™ : " is married.")
¥

¢\ 2010
ol
d050° H
o2 Media
ol10"
0:‘

2/ iPhone Application Programming N Group

Value Semantics
copy

Person

. . bradPitt | Person
var bradPitt = Person(firstName: e

"Brad", lastName: “Pitt") firstName: Brad

(: T |2stName: Pitt
var angelinalolie = Person(firstName: Not avallable available: talse

"Angelina", lastName: “Jolie")

firstName: Brad
lastName:; Pitt
avallable: true

var guyWholLooksLikeBradPitt = bradPitt marry() I
bradPitt.marry(angelinalolie,
takeTheirName: false) Brad

bradPitt.stringify()

- i “Availlable”

firstName: Angelina
guyWhoLooksLikeBradPitt.stringify() lastName: Jolie

avallable: true

¢\ 2010
ol
" e i
A o5 Media
%, 0110
0:'

3, Computing
LBy Group

28 iPhone Application Programming

FnUuMerations

» Represent a finite number of states
» There are two distinct types of enumerations in Swift
- Raw value enumerations
»+ Similar to Java or C enumerations
» Assoclated value enumerations

* Similar to tagged unions (e.g. In Haskell)

29 iPhone Application Programming

Raw Value Enumerations

enum TrainClass: String, Stringifyable {

case S = "S-Bahn"
case RB = "Regionalbahn"
» Much more powerful than C enumerations | c¢aseé RE = "Regional-Express”
case IC = "Intercity"
o case ICE = "Intercity Express"
» Can have methods and initializers, can static let allCases = [S, RB, RE, IC, ICE]
nave extensions and can conform to) . U
unc onTime —> Boo
Protocols if self == .S || self == .ICE {
| | return true
» More flexible than Java enumerations }
return false
}

- (Can be defined over other underlying

types (String, Character; all numeric types) | func stringify() -> String {
return self.rawValue

}
}

4 2010
ol
e i
N o Media
%, 0110
ol

3, Computing
L8y Group

30 iPhone Application Programming

3

Assoclated Value Enumerations

* bvery case represents a tuple type

- (Can be used as simple static Polymorphism

- |nstantiate cases with values of the
represented type

IPhone Application Programming

enum Transport {
case plane(String, Int)
case train(TrainClass, Int)
case bus(Int)
case car(String, String, Int)

}

var myRide = Transport.train(.ICE, 11)
// GDL strike: change travel plans!
myRide = .car("AC", "X", 1337)

func canWork(onRide: Transport) —> Bool {
switch onRide {

case .train(let trainClass, let number):

return trainClass == .ICE
case .plane(,):

return true
default:

return false

}
}

RWTH

32

-Xtensions

« (Can extend Structs, Classes,
Enumerations

+ Can implement protocol requirements

- (Can add functions, computed properties,
nested types

» (Can declare protocol conformance
» Cannot override existing functionality

» Often useful to clean up code structure

IPhone Application Programming

extension Temperature : CustomStringConvertible {
var description : String A
get {
return (NSString(format:"%.2d", self.value) as
String) + self.unit.rawValue

}
}
}

Nested lypes

 Net enumerations, classes, and structures within the definrtion of a type

- (Can have deep hierarchies

- o use a nested type outside definition scope, prefix its name with the name of the
type(s) It Is nested within.

33 iPhone Application Programming

Optional Chaining

« self.window!.rootViewController!.view.subviews

» It one of the optionals Is nil, this fails graceful (no run

time error) for subview in

(self.window?.rootViewController?.view.subviews)!
as [UIView]

It all optionals are set, the chain return an optional
(even If the object In request, e.g., subviews, Is not
optional)

let views =
(self.window!?.rootViewController!.view.subviews)!

let views =

self.window!.rootViewController!.view.subviews! //
compiler error, subviews 1s not of type optional

With subscripts dict!{[someKey].instanceOnValue

34 iPhone Application Programming

{
//type casting the subview to UILable

1T let labelView = subview as? UlLabel
{
let formatter = NSDateFormatter()
formatter.timeStyle = .MediumStyle
labelView.text =
formatter.stringFromDate(NSDate())

}
}

Iype Casting

- Upcasting: Casts an instance to 1ts superclass type (assumes It I1s always successiul)
* Instance as superclass

* 0.l as mnt //0 and O.| as pouble //0.1

- Downcasting: Casts an instance of a superclass to its actual subclass type
- let object = Instance as! subclass. Results iIn downcasts + force unwarp OR runtime error
» If let object = Instance as! subclass {...}. Results in downcasts or nll

» Object checking: Checks If instance of type subclass

* Instance is subclass //true or false

4 J010
ol
" e i
N o Media
R %, 0110
»Q0 | '

SN, Computing
LBy Group

35 iPhone Application Programming

Access Control

private entities are avallable only from within the source file where they are defined

internal entities are available to the entire module that includes the definrtion (e.g. an
app or framework target) « the default case

public entrities are intended for use as AP, and can be accessed by any file that imports
the module, e.g. as a framework used In several of your projects

* Apply to classes, structures, and enumerations, properties, methods, inrtializers, and
subscripts

» Global constants, variables, functions, and protocols can be restricted to a certain context

36 iPhone Application Programming

37

Custom Operators

» Operators can be declared at global
scope

« (Can
mMod

» Infix operators have associativity and
brecedence values

nave prefix, Infix or postfix

fiers

+ Operators are implemented as
functions at global scope

* Be very conservative when overloading

operators!

IPhone Application Programming

// «...thlis one maybe makes sense...
prefix operator } {}
prefix func Y(a: [Int]) —> Int {
var accum = @
for value in a «
accum += value

}

return accum
I3
var myArray = [-2, 6, 0, 1]
let sum = YmyArray

// ...this one surely not!

postfix operator ™" {}

postfix func ~-"(s: String) —> String A
return s + " @"

}
let chatMessage = "Operator Overloading 4TW!"

print(chatMessage™-"

4 J010
ol
" e i
N o Media
R %, 0110
»Q0 | '

SN, Computing
LBy Group

Next [I me

» The slides and playgrounds from this lecture will be uploaded to our website
- [his week’s reading assisnment will be on the website today

+ What is left in Swift! ARC and Error handling (next lecture); Generics and Subscripts (self
reading)

- Next week we'll talk about design patterns and Foundation classes

38 iPhone Application Programming

