
Description

In this assignment, you will apply MVC design pattern and use delegation to develop a
temperature converter.

Task
Part 1: Refactoring A01

1. NSTimer: Use NSTimer if you want something to happen at a specific moment in time or
to repeat at certain time intervals. NSTimer adds tasks to a run loop, and the run loop
will execute the task appropriately while keeping the interface responsive.

a. Remove the notification code from the Clock.app and replace it with an NSTimer
implementation (Hint: scheduledTimerWithTimeInterval). Do not forget to
invalidating the scheduled timer in a deinitializer.

b. Move the time updating code to a model class. Declare a property that is
continuously updated with the current time. Use key-value observing KOV to
update the time label.

c. Challenge yourself: Analyze the accuracy of the displayed time and improve it.

2. Device orientation: Enable device orientation in all directions. When the device in the
landscape, display the time in bigger font (Hint: supportedInterfaceOrientations and
UIInterfaceOrientationMask).

3. Status bar: Remove the status bar in your app (Hint: look at the app’s info.plist and
consider Status bar is initially hidden, View controller-based status bar
appearance). Briefly describe the difference between these two info.plist items.
Describe another way (other than manipulating info.plist) to hide the status bar. From a
design perspective, provide a 2 line argument why it is best practice not to hide the
status bar, and 2 lines to argue why this is justified in the Clock.app.  

 

❏ Submit the refactor Clock Xcode project.

❏ Use A01Part1-answers.txt to 1.c and 3. Submit this file.

Due: Nov. 9th, 2015. 9:00 AM Group size: 2

iPhone WS 2015/16: A02 • � /�1 3

Assignment 1

MVC and Delegation

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/AdoptingCocoaDesignPatterns.html

Part 2: MVC and delegation

1. Create an Xcode project “TemperatureConverter1”: Use Single View Application
template. The app should allow the user to input a temperature in Celsius and see the
converted value in Fahrenheit. Use the Unicode Character 'DEGREE SIGN' (U+00B0)
with temperature values.

2. Build the UI: Add a UILabel and UIVPickerView as in the example figure. Disable Use
Size Classes. But make sure that your app can be simulated on iPhones 4S - 6S Plus
and in landscape and portrait orientations. In 2 lines discuss why the picker view is a
better choice than a text field + a button. In 2 lines discuss how your ui layout follows
iOS Human Interface Guidelines (see S01).

3. Conforming to protocol: Make the view controller adopt UIPickerViewDataSource and
UIPickerViewDelegate. Add the picker view as an outlet to the view controller and set
the view controller as its data source and delegate. Add a breakpoint to
pickerView:didSelectRow:inComponent: that generates Log message containing
selected: @row@.

4. Ranges: Use range syntax to initialize a celsiusTemperatureValues array -80 to 80
degrees (Hint: use the map function on the array). This array will fill in the picker view.

5. Model objects: Your app should have a TempConverter.swift class that has a stored
property degreesCelsius and a computed property degreesFahrenheit.

❏ Submit TemperatureConverter1 Xcode project

6. Duplicate the first project and name it “TemperatureConverter2”. Add a ui control to the
interface to switch the conversion Fahrenheit <> Celsius. In 2 lines explain your design
decision for picking the ui control and its layout in the interface. Choose a suitable
range for fahrenheitTemperatureValues.

7. Extend the picker to include one decimal point, user should be able to select 33.3 for
example.

8. Custom operator: Create 2 unary operators cf and fc that work as follows: cf0 = 32 and
fc51 = 11. In the view controller declare a function that takes 2 arguments: user input
value from the picker view, and the operator.

9. Change the color of the converted temperature depending on how hot or cold.

10.Challenge yourself: Add an "info" button to the view, and use a UIAlertView to allow
the user to select the default temperature (value and unit), save the result using
NSUserDefaults. Save the last temperature the user picked in user defaults and restore
it when the app is launched.

❏ Submit TemperatureConverter2 Xcode project
❏ Use A01Part2-answers.txt to 2 and 6. Submit this file.

Submission
iPhone WS 2015/16: A02 • � /�2 3

https://developer.apple.com/library/prerelease/ios/documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/index.html#//apple_ref/occ/intfm/UIPickerViewDataSource/pickerView:numberOfRowsInComponent:
https://developer.apple.com/library/prerelease/ios/documentation/UIKit/Reference/UIPickerViewDelegate_Protocol/index.html
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AdvancedOperators.html
https://developer.apple.com/library/prerelease/ios/documentation/UIKit/Reference/UIAlertView_Class/index.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/

Create a zip archive including the following items

❏ Clock project

❏ A01Part1-answers.txt

❏ TemperatureConverter1 project

❏ TemperatureConverter2 project

❏ A01Part2-answers.txt

❏ Members.txt — (Only for new teams)

❏ (optional) addendum.pdf 1-page of anything further than the required submission

Email your submission to hamdan@cs.rwth-aachen.de with subject [iPhone 2015] A02
submission

Grading
We will grade this assignments using the following questions.

• A01 working as expected in all simulations?

• Answers to A01Part1-answers.txt are convincing?

• TemperatureConverter2 and TemperatureConverter2 are working with warning or errors?

• All projects apply the MVC model correctly?

• All projects provide modular implementation (use function for concrete tasks instead of a
code jam)?

• Answers to A01Part2-answers.txt are convincing?

Incomplete submission will receive at maximum 2.3.  
Late submissions will not be graded.

Looking forward
For advanced students, the following pointers will shape your mindset for the topic we
will discuss in the next lab and beyond this class.

• How can we update the interface to display the actual weather temp?

• How to extend this single view temp converter to a tab based unit converter?

• How to use NSUserDefaults to restore the user’s state?

iPhone WS 2015/16: A02 • � /�3 3

mailto:hamdan@cs.rwth-aachen.de
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/

