
Media
Computing
Group

iPhone Application Programming
Lecture 2: Swift Part 1

Nur Al-huda Hamdan
Media Computing Group

RWTH Aachen University

Winter Semester 2015/2016

http://hci.rwth-aachen.de/iphone

http://hci.rwth-aachen.de/iphone

Media
Computing
GroupiPhone Application Programming

• Mobile device characteristics?

• Differences between mobile device and desktop?

• Golden rules of interface design?

• Application types?

• Design themes?

2

Review

Media
Computing
GroupiPhone Application Programming

• Xcode IDE

• AppDelegate and ViewController

• App UI

• Outlets and Actions

• UIButton and UIAlert

• Documentation

• Check out L01 slides to understand the development environment

3

Hello World Demo
If you missed the lab:
(a) Check out how to setup iOS development

environment here
(b) Check out the Jump Right In iOS

programming tutorial from Apple (we
covered until “Implement a Custom
Control)”

(c) First assignment and reading requirement
on our website

!

https://docs.google.com/document/d/11z8ucwciYITySjUehRlfowMPjkcah6NkTgO8mL0MWnA/edit?pli=1
https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html#//apple_ref/doc/uid/TP40015214-CH2-SW1
http://hci.rwth-aachen.de/iphone

Media
Computing
GroupiPhone Application Programming

• Composed of objects that send messages to each other

• UILabel is an object implemented in UIKit and is ready to be used

• UIViewController is an object that you can implement

• You can create your own objects, i.e., classes

• Event driven. The app does nothing until it receives an event from the user (e.g., a touch)
or the system (e.g., full memory, incoming call, timer), or the data source (e.g., new data
arrived)

4

iOS Apps

Media
Computing
GroupiPhone Application Programming

• Swift is the new programming language for iOS, OS X, watchOS, and tvOS apps

• Unifies the procedural and object-oriented portions of the language

• Safe programming patterns

• Seamless bridging between Swift and Objective-C types

• Unlike Objective-C, Swift is not compatible with C

• Playground feature

5

Swift

Media
Computing
GroupiPhone Application Programming

• Naming conventions

• CamelCase for types (classe, enum, struct)

• camelCase for variables, constants, functions, and properties

• Case sensitive, i.e., myObject and MyObject are different identifiers

• Escape keywords `func`

• Comments

• No semicolon, unless between several statements on the same line

6

Syntax
class Report {}
func checkResults () {}
var grade:Float

Naming convention

//Comments can be single line

/* or multiple lines
 /* can be nested */
*/

Comments

Media
Computing
GroupiPhone Application Programming

• Basic data types: Int, Float, Double, Bool, String, Character,
optional?, collection types: tuples, arrays, dictionaries, sets

• Types have different values, ranges, and methods

• Type conversion, e.g., Int(doubleValue) or
Double(StringValue)

• Type alias for renaming types

• Type safe: All variables need to have a type. If you define a
Bool swift guarantees the value true/false, nothing else. No
space for confusion. Checked at compile time

• Type inference: No need to declare types if they can be
inferred from the context

7

Basic Data Types

let i = 1
if i { // compile time error}
 if i == 1 { // is valid}

someDouble+anotherDouble // works
someInt+someDouble // error

Type safe

let someInt = 5
let someDouble = 5.0
let someExplicitDouble:Double = 5
let someExplicitString:String
someExplicitString = "Hello there!"

Type inference

typealias MyInt = Int
var someInt:MyInt = 5

Type alias

UInt16.max //65,535
Types methods

Media
Computing
GroupiPhone Application Programming

• Variables

• var variableName = <initial value>

• var variableName:<data type> = <optional initial
value>

• Constant values cannot be modified after definition

• Similar to variables but with let

• One either explicitly specifies the type of var/let or
provides a default value

• All variables and constants must be initialized before
use, expect for optionals

• String interpolation

8

Variables and Constants (Mutability)
var var1:Int, var2: Double, var3 = 7, 😊 = "Happy"
var1 = 8
var2 = 9.1
var2 = 0.3
let const1 = 2
let const2:Float
print(const1)
const2 = 1.8
const2 = 3.14 // error

print("I am " + 😊 + " with the \(var1 + const1)
friends I have on Facebook.”)
//“I am Happy with the 10 friends I have on
Facebook.\n"

Interpolation

Media
Computing
GroupiPhone Application Programming

• A new data type that handles the
absence of a value “nil”. Has 2 possible
values:

• (a) there is a value and its equal to x,
or (b) there is no value

• var perhapsInt : Int? (optional Int)

• If you think a variable can have no value
during execution, declare it optional

• Reading optionals requires unwrapping.
Writing to optionals doesn't require a
thing

9

Optional?

let possibleString: String? //default is nil
possibleString = "An optional string."
let forcedString: String = possibleString! //unwarp

let assumedString: String! = "An implicitly unwrapped
optional string.”
// no need for an exclamation mark but if assumedString
is nil, a runtime error occurs
let aString: String = assumedString
//alternatively, use optical binding
if let definiteString = assumedString
{
 print(definiteString)
}

Media
Computing
GroupiPhone Application Programming

• Tuples group multiple values of
different types into a single
compound value

• Access values in a tuple with
deconstruction, indices, or names

• Useful as the return values of
functions

10

Tuples

let http404Error = (404, "Not Found")

let (statusCode, statusMessage) = http404Error //deconstruction
print("The status code is \(statusCode)")

let (justTheStatusCode, _) = http404Error
print("The status code is \(justTheStatusCode)")

print("The status message is \(http404Error.1)”)//indices
// prints "The status message is Not Found"

let http200Status = (statusCode: 200, description: “OK”)//names
print("The status message is \(http200Status.description)")

Media
Computing
GroupiPhone Application Programming

• Switch cases must be exhaustive or
you will get a compile error and
must add the default case

• No need for break between cases

• fallthrough allows you to execute
the following case statements

• Can do pattern matching, e.g., case
(0,_,”hi”) or case 0…5

• Value binding, e.g., case (200..<400,
let description)

11

Control Flow - Decision Making

if 10 > 7 {} //do
else {} //do something else
//can be nested

switch anyType
{
 case option1: //do this
 //no need to break, that is the default beahviour
 case option2, option3: //do that
 fallthrough //execute the next case too
 case option4: //do things
 default: //do default case
}

Media
Computing
GroupiPhone Application Programming

• Can use control statement continue and break

• Notice the range operator #1..<#2 (half opened) and #1…#2 (closed)

• Notice the wild card pattern _ matches and ignores any value

12

Control Flow - Loops and Ranges

for i in 5..<8 {print(i)} //iterate 5,6,7 (3 loops)
for _ in 0...4 {print("I forgot my homework")}//iterate 0,1,2,3,4 (5
loops)
for var i = 0; i<10; ++i
{
 print(Int(i)) //or print(i), same result
}

while condition
{statement(s)}

do{statement(s)} while condition

Media
Computing
GroupiPhone Application Programming

• String is composed of extended grapheme clusters for Character values

• String concatenation and modification may not always affect a string’s character count

• Example: cafe is 4 characters, if you append a COMBINING ACUTE ACCENT (U
+0301) to the end it becomes café, but it’s still 4 characters

• String interpolation constructs a new string value from other types using “\(swift code)”

• String concatenation constructs a new string from String + String but not with Character.
You cab append a Character to a String

• Use the equal to == operator to check Strings or Characters equality. They are equal if
they have the same linguistic meaning and appearance, e.g., cafe !== café //true

13

String

Media
Computing
GroupiPhone Application Programming

• Ordered list of values of the same type

• If declared with var it can be modified in content and size, if with let it cannot be changed
in anyway after definition

• You access array elements using indices

• var someArray : [SomeType]

• var someArray = [SomeType](count: NumbeOfElements, repeatedValue: InitialValue)

• var someInts : [Int] = [10, 20, 30]

14

Arrays

Media
Computing
GroupiPhone Application Programming

• Unordered list of elements (key-value pairs) of the same type

• All values should have the same type, and all key should have the same type

• Unique identifier key is used to access and modify values (unlike arrays using indices)

• var someDict : [KeyType: ValueType]

• let someDict : [Int:String] = [1:"One", 2:"Two", 3:”Three"]

• var means mutable (can add, remove, and modify elements); let means immutable after
the first definition

• Dictionaries methods that return the value of a key have optional return type

15

Dictionaries

Media
Computing
GroupiPhone Application Programming

• func funcname(parameters) -> returntype { statment(s) }

• Can have 0…N, parameters of any type, with local and external names, can be passes by
value or by reference

• Can have 0…1 return type

• Functions can pass and return any data type, including optional, tuple, and function type

• Functions can have the same name if they have different definitions (parameter types and
the return type) or external parameter names

16

Functions

Media
Computing
GroupiPhone Application Programming17

Functions - Parameter Names

func combineValues(value1:Int, _ value2:Int, valueThree value3:Int)
-> (_:Int,secondValue:Int, _:Int?)
{
 return (value1,value2,value3)
}
combineValues(10, 20, valueThree:30).secondValue //20

if let thirdValue = combineValues(10, 20, valueThree:30).2 //access
tuple by index
{
 print("That was an Optional type in a tuple type")
}

• By default, the first parameter omits its
external name, and subsequent parameters
use their local name as their external name

• External name then local name

• All parameters must have unique local
names but not unique external names

• Use underscore (_) for subsequent
parameters to avoid using parameter name
in function call

• External names must always be used when
calling the function

• Functions of the same type but different
external names are considered unique

Media
Computing
GroupiPhone Application Programming18

Functions - Parameter Mutability

func manipulateValues(value1:Int, var _ value2:Int, inout valueThree
value3:Int, valueFour _:Int) -> (_:Int,secondValue:Int, _:Int, _:Int?)
{
 value1 += 1 //error, this is a constant (let) by default
 value2 += 1
 value3 += 1
 return (value1,value2,value3,3)
}

var someValue = 2
var anotherValue = 3
manipulateValues(1, someValue, valueThree:&anotherValue, valueFour:4)
someValue // 2
anotherValue //4

• By default all function
parameters are constants

• var parameters are passed by
value and mutable within the
function body

• inout parameters are passed
by reference and mutable

• inout parameters cannot
be constants, literals, or
have default values, be
variadic, or be defined
as var or let

Media
Computing
GroupiPhone Application Programming19

Functions - Variadic Parameters and Default Values
//<N> means one can pass any type to the
variadic
func vari<N>(members: N...){
 for i in members {
 print(i)
 }
}
vari(4,3,5)
vari(“4”,”3”,”5”)

• A variadic parameter can pass 0…N values
of the same type

• In the function body a variadic is treated as
an array

• Each function can have at most one variadic
and it should appear as the last parameter

• Functions can have parameters with default
values

func addToContactList(name:String,phone:String,
list:String = "Friends")
{
 print("New contact "+name+" with phone number:
\(phone), was added to list \(list)")
}

addToContactList("Lara", phone: "01234567")
addToContactList("Moe", phone: "76543210",
list:"Work")

Default

Variadic

Media
Computing
GroupiPhone Application Programming20

Functions - Functions as Types

func sum(a: Int, b: Int) -> Int {
 return a + b
}
var addition: (Int, Int) -> Int = sum

print("Result: \(addition(40, 89))”) //129
print("Result: \(sum(40, 89))”) //129

//function as a parameter type
func another(add: (Int, Int) -> Int, a: Int, b: Int)
{
 print("Result: \(add(a, b))")
}
another(sum, a: 10, b: 20) //30

• Function type is defined by the
function’s parameter types and return
type (not name)

• sum function is of type (Int, Int) -
> Int

• another function is of type ((Int,
Int) -> Int, Int, Int)

• Functions (using their names) can be
passed as function parameters

Media
Computing
GroupiPhone Application Programming21

Functions - Nesting

func calcDecrement(forDecrement total: Int) -> () -> Int
{
 var overallDecrement = 0
 func decrementer() -> Int { //nested function
 overallDecrement -= total
 return overallDecrement
 }
 return decrementer //function as return type
}
let decrem30 = calcDecrement(forDecrement: 30)
print(decrem30()) //-30
let decrem10 = calcDecrement(forDecrement: 10)
print(decrem10()) //-10
print(decrem30()) //-60 decrements its own
overallDecrement and is not effected by decrem10

• A nested function (decrementer) is only
accessible from within its enclosing
function (calcDecrement)

• The nested captures a reference to
any of its outer function’s arguments,
or constants and variables defined
within the outer function

• Capturing by reference ensures the
variables do not disappear when the
call to outer function ends, and that
the variables are available the next
time the nested function is called

Media
Computing
GroupiPhone Application Programming

• Single inheritance

• Type casting

• Deinitialization for memory management

• Reference type

• Class instances are always passed by reference

• === is true if two constants or variables point to the same instance

• Properties store values, Subscripts give access to values (check these out!), methods
define behavior, initializers, (later extensions and protocols)

22

Classes

Media
Computing
GroupiPhone Application Programming

• Class definition

• Object instantiation

• Read/write to a property

• Call a method

23

Classes
class Recipe:Inheritance
{
 var ingredients = [String]()
 var levelsOfDifficulty = 1
 var takeMoreThanThirtyMins = true
 func cookingTimeInMins() -> Int
 {
 if (takeMoreThanThirtyMins)
 {
 return (30 + (ingredients.count * levelsOfDifficulty))
 }
 return 30
} }
var myRecipe = Recipe()
myRecipe.ingredients = ["Rice", "Meat", "Salt"]
print(myRecipe.levelsOfDifficulty)
myRecipe.cookingTimeInMins()

Media
Computing
GroupiPhone Application Programming

• The slides and playgrounds from this lecture will be uploaded to our website

• This week’s reading assignment is on the website

• Next week we do not have a lecture, but we have a lab

• On 10.11. we will continue with Swift syntax and talk about: properties, methods,
inheritance, initialization, memory management, extensions, protocols, access control

24

Next Time

