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• Mobile device characteristics?

• Differences between mobile device and desktop?

• Golden rules of interface design?

• Application types?

• Design themes?
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Review
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• Xcode IDE

• AppDelegate and ViewController

• App UI

• Outlets and Actions

• UIButton and UIAlert 

• Documentation

• Check out L01 slides to understand the development environment 
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Hello World Demo
If you missed the lab: 
(a) Check out how to setup iOS development 

environment here 
(b) Check out the Jump Right In iOS 

programming tutorial from Apple (we 
covered until “Implement a Custom 
Control)”

(c) First assignment and reading requirement 
on our website

!

https://docs.google.com/document/d/11z8ucwciYITySjUehRlfowMPjkcah6NkTgO8mL0MWnA/edit?pli=1
https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html#//apple_ref/doc/uid/TP40015214-CH2-SW1
http://hci.rwth-aachen.de/iphone
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• Composed of objects that send messages to each other

• UILabel is an object implemented in UIKit and is ready to be used

• UIViewController is an object that you can implement

• You can create your own objects, i.e., classes

• Event driven. The app does nothing until it receives an event from the user (e.g., a touch) 
or the system (e.g., full memory, incoming call, timer), or the data source (e.g., new data 
arrived)

4

iOS Apps 
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• Swift is the new programming language for iOS, OS X, watchOS, and tvOS apps

• Unifies the procedural and object-oriented portions of the language

• Safe programming patterns

• Seamless bridging between Swift and Objective-C types

• Unlike Objective-C, Swift is not compatible with C

• Playground feature

5

Swift
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• Naming conventions

• CamelCase for types (classe, enum, struct)

• camelCase for variables, constants, functions, and properties 

• Case sensitive, i.e., myObject and MyObject are different identifiers 

• Escape keywords `func`

• Comments 

• No semicolon, unless between several statements on the same line 
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Syntax
class Report {} 
func checkResults () {} 
var grade:Float

Naming convention 

//Comments can be single line 

/* or multiple lines 
    /* can be nested */ 
*/

Comments
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• Basic data types: Int, Float, Double, Bool, String, Character, 
optional?, collection types: tuples, arrays, dictionaries, sets

• Types have different values, ranges, and methods

• Type conversion, e.g., Int(doubleValue) or 
Double(StringValue)

• Type alias for renaming types

• Type safe: All variables need to have a type. If you define a 
Bool swift guarantees the value true/false, nothing else. No 
space for confusion. Checked at compile time

• Type inference: No need to declare types if they can be 
inferred from the context
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Basic Data Types

let i = 1 
if i { // compile time error} 
 if i == 1 { // is valid} 

someDouble+anotherDouble // works 
someInt+someDouble // error

Type safe

let someInt = 5 
let someDouble = 5.0 
let someExplicitDouble:Double = 5 
let someExplicitString:String 
someExplicitString = "Hello there!"

Type inference

typealias MyInt = Int 
var someInt:MyInt = 5

Type alias

UInt16.max //65,535 
Types methods
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• Variables

• var variableName = <initial value>

• var variableName:<data type> = <optional initial 
value> 

• Constant values cannot be modified after definition 

• Similar to variables but with let

• One either explicitly specifies the type of var/let or 
provides a default value

• All variables and constants must be initialized before 
use, expect for optionals

• String interpolation
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Variables and Constants (Mutability)
var var1:Int, var2: Double, var3 = 7, 😊 = "Happy" 
var1 = 8 
var2 = 9.1 
var2 = 0.3 
let const1 = 2 
let const2:Float 
print(const1) 
const2 = 1.8 
const2 = 3.14 // error

print("I am " + 😊 + " with the \(var1 + const1) 
friends I have on Facebook.”) 
//“I am Happy with the 10 friends I have on 
Facebook.\n"

Interpolation
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• A new data type that handles the 
absence of a value “nil”. Has 2 possible 
values:

• (a) there is a value and its equal to x, 
or (b) there is no value

• var perhapsInt : Int? (optional Int)

• If you think a variable can have no value 
during execution, declare it optional

• Reading optionals requires unwrapping. 
Writing to optionals doesn't require a 
thing

9

Optional?

let possibleString: String? //default is nil 
possibleString = "An optional string." 
let forcedString: String = possibleString! //unwarp 

let assumedString: String! = "An implicitly unwrapped 
optional string.” 
// no need for an exclamation mark but if assumedString 
is nil, a runtime error occurs 
let aString: String = assumedString 
//alternatively, use optical binding 
if let definiteString = assumedString  
{ 
    print(definiteString) 
}
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• Tuples group multiple values of 
different types into a single 
compound value

• Access values in a tuple with 
deconstruction, indices, or names

• Useful as the return values of 
functions
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Tuples

let http404Error = (404, "Not Found") 

let (statusCode, statusMessage) = http404Error //deconstruction 
print("The status code is \(statusCode)") 

let (justTheStatusCode, _) = http404Error 
print("The status code is \(justTheStatusCode)") 

print("The status message is \(http404Error.1)”)//indices 
// prints "The status message is Not Found" 

let http200Status = (statusCode: 200, description: “OK”)//names 
print("The status message is \(http200Status.description)") 
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• Switch cases must be exhaustive or 
you will get a compile error and 
must add the default case

• No need for break between cases

• fallthrough allows you to execute 
the following case statements 

• Can do pattern matching, e.g.,  case 
(0,_,”hi”) or case 0…5

• Value binding, e.g., case (200..<400, 
let description)
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Control Flow - Decision Making 

if 10 > 7 {} //do 
else {} //do something else 
//can be nested 

switch anyType 
{ 
    case option1: //do this 
    //no need to break, that is the default beahviour 
    case option2, option3: //do that 
        fallthrough //execute the next case too 
    case option4: //do things 
    default: //do default case 
} 
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• Can use control statement continue and break 

• Notice the range operator #1..<#2 (half opened) and #1…#2 (closed)

• Notice the wild card pattern _ matches and ignores any value
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Control Flow - Loops and Ranges

for i in 5..<8 {print(i)} //iterate 5,6,7 (3 loops) 
for _ in 0...4 {print("I forgot my homework")}//iterate 0,1,2,3,4 (5 
loops) 
for var i = 0; i<10; ++i 
{ 
    print(Int(i)) //or print(i), same result  
} 

while condition 
{statement(s)} 

do{statement(s)} while condition
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• String is composed of extended grapheme clusters for Character values 

• String concatenation and modification may not always affect a string’s character count

• Example: cafe is 4 characters, if you append a COMBINING ACUTE ACCENT (U
+0301) to the end it becomes café, but it’s still 4 characters 

• String interpolation constructs a new string value from other types using “\(swift code)”

• String concatenation constructs a new string from String + String but not with Character. 
You cab append a Character to a String

• Use the equal to == operator to check Strings or Characters equality.  They are equal if 
they have the same linguistic meaning and appearance, e.g., cafe !== café //true

13

String
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• Ordered list of values of the same type

• If declared with var it can be modified in content and size, if with let it cannot be changed 
in anyway after definition

• You access array elements using indices

• var someArray : [SomeType]

• var someArray = [SomeType](count: NumbeOfElements, repeatedValue: InitialValue) 

• var someInts : [Int] = [10, 20, 30]

14

Arrays
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• Unordered list of elements (key-value pairs) of the same type

• All values should have the same type, and all key should have the same type

• Unique identifier key is used to access and modify values (unlike arrays using indices)

• var someDict : [KeyType: ValueType]

• let someDict : [Int:String] = [1:"One", 2:"Two", 3:”Three"]

• var means mutable (can add, remove, and modify elements); let means immutable after 
the first definition

• Dictionaries methods that return the value of a key have optional return type

15

Dictionaries 
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• func funcname(parameters) -> returntype { statment(s) } 

• Can have 0…N, parameters of any type, with local and external names, can be passes by 
value or by reference

• Can have 0…1 return type

• Functions can pass and return any data type, including optional, tuple, and function type

• Functions can have the same name if they have different definitions (parameter types and 
the return type) or external parameter names

16

Functions
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Functions - Parameter Names 

func combineValues(value1:Int, _ value2:Int, valueThree value3:Int) 
-> (_:Int,secondValue:Int, _:Int?) 
{ 
    return (value1,value2,value3) 
} 
combineValues(10, 20, valueThree:30).secondValue //20 

if let thirdValue = combineValues(10, 20, valueThree:30).2 //access 
tuple by index 
{ 
    print("That was an Optional type in a tuple type") 
}

• By default, the first parameter omits its 
external name, and subsequent parameters 
use their local name as their external name 

• External name then local name

• All parameters must have unique local 
names but not unique external names

• Use underscore (_) for subsequent 
parameters to avoid using parameter name 
in function call

• External names must always be used when 
calling the function

• Functions of the same type but different 
external names are considered unique
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Functions - Parameter Mutability 

func manipulateValues(value1:Int, var _ value2:Int, inout valueThree 
value3:Int, valueFour _:Int) -> (_:Int,secondValue:Int, _:Int, _:Int?) 
{ 
    value1 += 1 //error, this is a constant (let) by default 
    value2 += 1 
    value3 += 1 
    return (value1,value2,value3,3) 
} 

var someValue = 2 
var anotherValue = 3 
manipulateValues(1, someValue, valueThree:&anotherValue, valueFour:4) 
someValue // 2 
anotherValue //4

• By default all function 
parameters are constants

• var parameters are passed by 
value and mutable within the 
function body

• inout parameters are passed 
by reference and mutable

• inout parameters cannot 
be constants, literals, or 
have default values, be 
variadic, or be defined 
as var or let
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Functions - Variadic Parameters and Default Values
//<N> means one can pass any type to the 
variadic 
func vari<N>(members: N...){ 
    for i in members { 
        print(i) 
    } 
} 
vari(4,3,5) 
vari(“4”,”3”,”5”)

• A variadic parameter can pass 0…N values 
of the same type

• In the function body a variadic is treated as 
an array

• Each function can have at most one variadic 
and it should appear as the last parameter

• Functions can have parameters with default 
values

func addToContactList(name:String,phone:String, 
list:String = "Friends") 
{ 
    print("New contact "+name+" with phone number: 
\(phone), was added to list \(list)") 
} 

addToContactList("Lara", phone: "01234567") 
addToContactList("Moe", phone: "76543210", 
list:"Work")

Default

Variadic
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Functions - Functions as Types 

func sum(a: Int, b: Int) -> Int { 
    return a + b 
} 
var addition: (Int, Int) -> Int = sum 

print("Result: \(addition(40, 89))”) //129 
print("Result: \(sum(40, 89))”) //129 

//function as a parameter type 
func another(add: (Int, Int) -> Int, a: Int, b: Int) 
{ 
    print("Result: \(add(a, b))") 
} 
another(sum, a: 10, b: 20) //30

• Function type is defined by the 
function’s parameter types and return 
type (not name)

• sum function is of type (Int, Int) -
> Int 

• another function is of type ((Int, 
Int) -> Int, Int, Int) 

• Functions (using their names) can be 
passed as function parameters
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Functions - Nesting

func calcDecrement(forDecrement total: Int) -> () -> Int  
{ 
    var overallDecrement = 0 
    func decrementer() -> Int { //nested function 
        overallDecrement -= total 
        return overallDecrement 
    } 
    return decrementer //function as return type 
} 
let decrem30 = calcDecrement(forDecrement: 30) 
print(decrem30()) //-30 
let decrem10 = calcDecrement(forDecrement: 10) 
print(decrem10()) //-10 
print(decrem30()) //-60 decrements its own 
overallDecrement and is not effected by decrem10 

• A nested function (decrementer) is only 
accessible from within its enclosing 
function (calcDecrement)

• The nested captures a reference to 
any of its outer function’s arguments, 
or constants and variables defined 
within the outer function

• Capturing by reference ensures the 
variables do not disappear when the 
call to outer function ends, and that 
the variables are available the next 
time the nested function is called
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• Single inheritance

• Type casting 

• Deinitialization for memory management

• Reference type

• Class instances are always passed by reference

• === is true if two constants or variables point to the same instance

• Properties store values, Subscripts give access to values (check these out!), methods 
define behavior, initializers, (later extensions and protocols)

22

Classes
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• Class definition 

• Object instantiation  

• Read/write to a property

• Call a method

23

Classes
class Recipe:Inheritance 
{ 
    var ingredients = [String]() 
    var levelsOfDifficulty = 1 
    var takeMoreThanThirtyMins = true 
    func cookingTimeInMins() -> Int 
    { 
        if (takeMoreThanThirtyMins) 
        { 
            return (30 + (ingredients.count * levelsOfDifficulty)) 
        } 
        return 30 
}    } 
var myRecipe = Recipe() 
myRecipe.ingredients = ["Rice", "Meat", "Salt"] 
print(myRecipe.levelsOfDifficulty) 
myRecipe.cookingTimeInMins()
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• The slides and playgrounds from this lecture will be uploaded to our website

• This week’s reading assignment is on the website

• Next week we do not have a lecture, but we have a lab

• On 10.11. we will continue with Swift syntax and talk about: properties, methods, 
inheritance, initialization, memory management, extensions, protocols, access control

24

Next Time


