
Description

In this assignment, you will familiarize yourself with Xcode, learn how to use the
debugger, and explore concepts such as app life cycle and notifications.

Task
Part 1: Xcode and debugger

1. Hello World: Follow the tutorial "Start Developing iOS Apps (Swift)" in the
documentation. As you progress, create a list of doubts or questions that you have.
This is your personal mission list for October–November. Review this list after each
lecture or lab to check off the questions that you can answer. Raise any remaining
questions that you still have in this list in the lab on November 30th.

2. Breakpoints: Open the Enbugged project. Notice that the code is written in Objective-C.
Look at the syntax and try to understand the meaning of different commands. We will
not use Objective-C in this course, but you will find it handy later on to be familiar with
it. Search for all “TODO:” (Hint: ⌘⇧F, that is command + shift + F). Follow the instruction
in each item to create a breakpoint or answer a question. (Hint: Try “Automatically
continue after evaluating” option in the breakpoint to speed up your debugging)  
 
You must create a breakpoint exactly at the same line with TODO: similar to the
following figure.

�

❏ Share the breakpoints. Submit only the project file: Enbugged.xcodeproj.

❏ Use Enbugged-answers.txt as a template to fill in your answer. Submit this file.

Part 2: App life cycle

1. Create an Xcode project “Clock”: Use Single View Application template.

2. Add and link UI elements with Interface Builder: Add a label (UILabel) to the centre of
your view. Establish an outlet connection between the label and the viewController. In
the viewDidLoad method, make the label display current time (Hint: use NSDate and
NSDateFormatter form Cocoa Foundation framework). For debugging, add print(“View
Did Load”) call to the viewDidLoad method.

3. Using the Simulator: Send the app to the background (⇧⌘H), then to foreground, then
kill the app using the Multitasking Bar (⇧⌘H, twice quickly), force quit the app and
start it again. Notice when the time label displays the correct current time and when it
doesn’t. How does that relate to when the debugging message appears in the
console?

4. UIViewController inheritance and overrideing: Add another UIViewController method
to your viewController: override func viewWillAppear(animated: Bool) {}. Add the

Due: Nov. 2nd, 2015. 9:00 AM Group size: 2 (as assigned in the class)

iPhone WS 2015/16: A01 • � /�1 3

Assignment 1

Debugger and App Life Cycle

https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
https://developer.apple.com/library/ios/recipes/xcode_help-breakpoint_navigator/articles/sharing_a_breakpoint.html

time label updating code to this method and remove it from viewDidLoad. For
debugging, add print(“View Will Appear”). Repeat step 3.

5. Xcode Documentation and API Reference: Use (⇧⌘0), and read about
UIViewController transition states and UIApplicationDelegate app states (the protocol
implement by AppDelegate.swift).

6. AppDelegate.swift transition methods: Add break points to the methods using
“Automatically continue after evaluating” option. Repeat set 3.

7. NSNotificationCenter, notifications, and observers: Read about these concepts in
Xcode Documentation and API Reference or online explore: NSNotificationCenter and
defaultCenter class method, and addObserver:selector:name:object: method.

8. Add the following code to viewDidLoad. Add the time label updating code to this
method and remove it from viewWillAppear.

 NSNotificationCenter.defaultCenter().addObserver(self, selector:
“updateTimeLabel", name: UIApplicationWillEnterForegroundNotification,
object: nil)

9. Implement updateTimeLabel method with the time label updating code and remove it
from viewWillAppear. Call that method from viewWillAppear. Run the code. Repeat
step 3. The time should update now. But one problem remains: the time doesn't update
continuously! (This will be tackled in the next lab.)

❏ Submit Clock.xcodeproj

Submission
Create a zip archive including the following items

❏ Enbugged.xcodeproj
❏ Enbugged-answers.txt
❏ Clock.xcodeproj

❏ Members.txt — Modify the template to match your information

❏ (optional) addendum.pdf 1-page of anything further than the required submission

Email your submission to hamdan@cs.rwth-aachen.de with subject [iPhone 2015] A01
submission

Grading
We will grade this assignments using the following questions.

• Were the breakpoints/codes added necessary and sufficient?

• Were the answered questions demonstrate the correct and clear understanding?

• Were the implemented Clock project working?

iPhone WS 2015/16: A01 • � /�2 3

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSNotificationCenter_Class/
mailto:hamdan@cs.rwth-aachen.de

Incomplete submission will receive at maximum 2.3.  
Late submissions will not be graded.

Looking forward
For advanced students, the following pointers will shape your mindset for the topic we
will discuss in the next lab and beyond this class.

• How to apply the MVC model to this code?

• How to make the time update continuously?

• Why do we need Deinitialization and how to use it in this project?

iPhone WS 2015/16: A01 • � /�3 3

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSTimer_Class/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Deinitialization.html#//apple_ref/doc/uid/TP40014097-CH19-ID142

