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Enlarge (Shrink)4: splay fingers

Accept: draw check

Enlarge (Shrink)3: pinchEnlarge (Shrink)2: pull apart with fingersEnlarge (Shrink)1: pull apart with hands

Move1: drag

Help: draw ‘?’

Next (Previous): draw line across object

Paste1: tap

Rotate: drag corner

Undo: scratch out

Select Single2: lasso

Duplicate: tap source and destination

Select Group1: hold and tap

Select Group2 and Select Group3: Use Select Single1 or Select Single2 
on all items in the group.

Paste2: drag from offscreen

Paste3: Use Move2, with off-screen
source and on-screen destination.

Delete1: drag offscreen

Delete2: Use Move2 with on-screen
source and off-screen destination.

Reject: draw ‘X’

Reject2, Reject3: If rejecting an object/dialog

with an on-screen representation, use Delete1

or Delete2.

Zoom in (Zoom out)1: pull apart with hands

Zoom in (Zoom out)2-4: Use Enlarge (Shrink)2-4,
performed on background.

Open1: double tap

2x

Open2-5: Use Enlarge1-4, atop an
“openable” object.

Minimize1: drag to bottom of surface

Minimize2: Use Move2 to move object to the 
bottom of the surface (as defined by user’s
seating position).

Select Single1: tap 

Cut: slash

Cuts current selection (made via 
Select Single or Select Group).

Menu: pull out

Finger touches 
corner to rotate.

After duplicating, source object
is no longer selected.

Move2: jump

Object jumps to index
finger location.

Pan: drag hand

Figure 4. The user-defined gesture set. Gestures depicted as using one finger could be performed with 1-3 fingers. Gestures 
not depicted as occurring on top of an object are performed on the background region of the surface or full-screen object. To 
save space, reversible gestures (enlarge/shrink, zoom in/zoom out, next/previous) have been depicted in only one direction.
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A definition in human discourse
“Gesture (…) are communicative movements of the hand 
s and arms which express — just as language — speakers’ 
attitudes, ideas, feelings and intentions…” (Müller, 1998)

2

Full taxonomy see (McNeill, 1992). Figure (Kelly et al., 2011)



A definition in HCI
“Gesture (…) is any physical movement that a 
digital system can sense and respond to without 
the aid of a traditional pointing devices such as a 
mouse or stylus” (Saffer, 2009)

3 Basic components of any gestural systems (Saffer, 2009)
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Do I need gestural user interface?
Gestural UI are not suitable: 

• Heavy data input (use keyboards instead) 

• Absence of visual feedback (e.g., a system without 
a screen or targeting users with visual impairments) 

• Unmet physical demands (e.g., swipe to receive a 
phone call in winter) 

• Context (e.g., privacy, embarrassment)

4 (Saffer, 2009)



Do I need gestural user interface?
Gestural UI are good for: 

• Natural interactions: interact directly with objects in 
physical way 

• Less cumbersome or visible hardware 

• Flexibility in hardware 

• Fun

5 (Saffer, 2009)



Design principles for gestural systems

• Discoverable: provide affordance and 
guidance on where & how 

• Responsive: acknowledge users’ action with 
feedback 

• Clear conceptual models: clear association 
between users’ action and consequences

6 See more in (Saffer, 2009) and (Norman, Interactions ’10)



Gesture design process
• Stock: generic set used by many applications 

• Recognizers provided by the toolkits 
• Potential reuse; no additional learning 

• Designed by experts 
• Easy  to tune the recognizers 

• Elicited from a representative group of users 
• Better match user’s needs and expectation 

• User-defined: let each end-user create her own 
gesture set 
• Good for expert users or users with disabilities

7 (Grijincu et al, ITS ’14; Nacenta et al., CHI ’13)
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Gesture elicitation
• Recruit participants from representative users 

• Show the results of the action (referent) 

• Ask participants to produce a gesture that 
come to their mind for that referent 

• Calculate agreement rate 

• Choose the gestures that have high 
agreement rate

8

Method

Method proposed in (Wobbrock et al., CHI ’05) 
Example: surface gesture elicitation in (Wobbrock et al., CHI ’09) 

Further refined in (Vatavu & Wobbrock, CHI ’15)



Elicitation setting

9

Referent: 
• State before & after 
• Action description

Action area
Video: (Grijincu, ITS ’14)



Agreement rate
The number of pairs of participants in agreement with 
each other divided by the total number of pairs of 
participants that could be in agreement.

10 (Vatavu et al., CHI ’15)

researchers have made important statistics contributions in
this direction, empowering practitioners with the right tools to
analyze their data resulted from complex or unconventional
experimental designs [11,17,38]. For example, Wobbrock et
al. [38] introduced the Aligned Rank Transform to assist prac-
titioners for detecting interaction effects in nonparametric data
resulted from conducting multi-factor experiments. Kaptein et
al. [11] pointed to nonparametric techniques for analyzing data
collected with Likert scales, and they provided an online tool
for analyzing 2⇥2 mixed subject designs. Kaptein and Robert-
son [10] were concerned with the HCI community adopting
a thorough consideration of effect size magnitudes when an-
alyzing experimental data. Martens [17] introduced Illmo, a
software application that implements log-likelihood modeling
to help practitioners analyze their data in an interactive way.

AGREEMENT, DISAGREEMENT, AND COAGREEMENT
Agreement rate
The definition of an agreement rate for a given referent r for
which feedback has been elicited from multiple participants
during a guessability study was introduced by Wobbrock et
al. [37] (p. 1871) as the following sum of square ratios:

A(r) =
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where P is the set of all proposals for referent r, |P | the size
of the set, and Pi subsets of identical proposals from P .

However, Wobbrock et al. did not provide any justification for
the specific mathematical formula chosen to define agreement
rate in equation 1, other than a note referring to the capabil-
ity of this formula to intuitively characterize differences in
agreement between various partitions of P : “for example, in
20 proposals for referent r, if 15/20 are of one form and 5/20
are of another, there should be higher agreement than if 15/20
are of one form, 3/20 are of another, and 2/20 are of a third.
Equation 1 captures this.” [37] (p. 1871).

In the following, we provide a mathematical argumentation
for the agreement rate formula introduced by Wobbrock et
al. [37] (eq. 1), and we show that two correcting factors need
to be applied to its current definition. Inspired by the modified
calculation formula of Findlater et al. [8] (p. 2680), we adopt
the same definition for agreement rate as the number of pairs of
participants in agreement with each other divided by the total
number of pairs of participants that could be in agreement:

AR(r) =
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Note the different notation AR (Agreement Rate) that we use in
eq. 2 to differentiate from Wobbrock et al.’s formula [37] (eq. 1).

+ EXAMPLE. Let’s assume a number of 20 participants,
from which |P |=20 proposals were collected for a given
referent r, out of which 15/20 are of one form and 5/20 of
another, i.e., |P1|=15 and |P2|=5. The number of pairs of

participants in agreement with each other is 15·14
2 + 5·4

2 ,
while the total number of pairs that could have been in
agreement is 20·19

2 . By dividing the two values, we obtain
the agreement rate AR(r) = 115

190 = .605. By comparison,
the original calculation from Wobbrock et al. [37] would
yield
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The definition of eq. 2 was introduced by Findlater et al. [8]
in their touch-screen keyboards study, but the authors did not
provide the connection with Wobbrock et al.’s initial definition
of agreement rate A [37]. In the following, we fill the gap
between the two papers and show how AR(r) is connected
to A(r). We also define two new measures of agreement, i.e.,
disagreement and coagreement that we use later in the paper
to introduce a statistical significance test for agreement rate
and to re-examine published data from user elicitation studies.

After successive stages of simplification of eq. 2, we obtain:
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We continue by placing |P |2 at the denominator of the values
|Pi|2 under the sum

P
Pi✓P in order to arrive at a formula

resembling the one introduced by Wobbrock et al. [37] (eq. 1):
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What we find is that eq. 3 is similar to the formula proposed
by Wobbrock et al. [37] (eq. 1), except for two correcting
factors ( |P |

|P |�1 and � 1
|P |�1 ) that depend on the number of

participants or, equivalently, the number of elicited proposals
|P |. The two correcting factors are related to the number of
degrees of freedom for computing the agreement rate, i.e.,
because the sum of all ratios |Pi|/|P | equals 1, the number
of observations |Pi|/|P | that are free to vary is one less than
the number of distinct proposals. In the following, due to the
many studies that have already used A(r) to report agreement
between participants [1,8,14,15,16,18,20,22,23,24,26,27,29,
31,32,33,34,39], we discuss the relationship between A(r)
and the new definition of agreement rate AR(r) with the two
correcting factors. The following properties characterize the
differences and relationship between the two definitions:

Property #1: AR(r) 2 [0..1], while A(r) 2 [1/|P |..1].
AR takes values in the entire unit interval, with 0 denoting
total disagreement between participants, and 1 absolute agree-

P
Pi✓P

�|Pi|
2

�

�|P |
2

�

researchers have made important statistics contributions in
this direction, empowering practitioners with the right tools to
analyze their data resulted from complex or unconventional
experimental designs [11,17,38]. For example, Wobbrock et
al. [38] introduced the Aligned Rank Transform to assist prac-
titioners for detecting interaction effects in nonparametric data
resulted from conducting multi-factor experiments. Kaptein et
al. [11] pointed to nonparametric techniques for analyzing data
collected with Likert scales, and they provided an online tool
for analyzing 2⇥2 mixed subject designs. Kaptein and Robert-
son [10] were concerned with the HCI community adopting
a thorough consideration of effect size magnitudes when an-
alyzing experimental data. Martens [17] introduced Illmo, a
software application that implements log-likelihood modeling
to help practitioners analyze their data in an interactive way.

AGREEMENT, DISAGREEMENT, AND COAGREEMENT
Agreement rate
The definition of an agreement rate for a given referent r for
which feedback has been elicited from multiple participants
during a guessability study was introduced by Wobbrock et
al. [37] (p. 1871) as the following sum of square ratios:

A(r) =
X

Pi✓P

✓
|Pi|
|P |

◆2

(1)

where P is the set of all proposals for referent r, |P | the size
of the set, and Pi subsets of identical proposals from P .

However, Wobbrock et al. did not provide any justification for
the specific mathematical formula chosen to define agreement
rate in equation 1, other than a note referring to the capabil-
ity of this formula to intuitively characterize differences in
agreement between various partitions of P : “for example, in
20 proposals for referent r, if 15/20 are of one form and 5/20
are of another, there should be higher agreement than if 15/20
are of one form, 3/20 are of another, and 2/20 are of a third.
Equation 1 captures this.” [37] (p. 1871).

In the following, we provide a mathematical argumentation
for the agreement rate formula introduced by Wobbrock et
al. [37] (eq. 1), and we show that two correcting factors need
to be applied to its current definition. Inspired by the modified
calculation formula of Findlater et al. [8] (p. 2680), we adopt
the same definition for agreement rate as the number of pairs of
participants in agreement with each other divided by the total
number of pairs of participants that could be in agreement:

AR(r) =

X

Pi✓P

1

2
|Pi| (|Pi|� 1)

1

2
|P | (|P |� 1)

(2)

Note the different notation AR (Agreement Rate) that we use in
eq. 2 to differentiate from Wobbrock et al.’s formula [37] (eq. 1).

+ EXAMPLE. Let’s assume a number of 20 participants,
from which |P |=20 proposals were collected for a given
referent r, out of which 15/20 are of one form and 5/20 of
another, i.e., |P1|=15 and |P2|=5. The number of pairs of

participants in agreement with each other is 15·14
2 + 5·4

2 ,
while the total number of pairs that could have been in
agreement is 20·19

2 . By dividing the two values, we obtain
the agreement rate AR(r) = 115

190 = .605. By comparison,
the original calculation from Wobbrock et al. [37] would
yield

�
15
20

�2
+
�

5
20

�2
=.625.

The definition of eq. 2 was introduced by Findlater et al. [8]
in their touch-screen keyboards study, but the authors did not
provide the connection with Wobbrock et al.’s initial definition
of agreement rate A [37]. In the following, we fill the gap
between the two papers and show how AR(r) is connected
to A(r). We also define two new measures of agreement, i.e.,
disagreement and coagreement that we use later in the paper
to introduce a statistical significance test for agreement rate
and to re-examine published data from user elicitation studies.

After successive stages of simplification of eq. 2, we obtain:

AR(r) =
1

|P | (|P |� 1)

X

Pi✓P

�
|Pi|2 � |Pi|

�

=
1

|P | (|P |� 1)

0

@
X

Pi✓P

|Pi|2 �
X

Pi✓P

|Pi|

1

A

and, knowing that
X

Pi✓P

|Pi| = |P |, we obtain:

AR(r) =
1

|P | (|P |� 1)

X

Pi✓P

|Pi|2 �
1

|P |� 1

We continue by placing |P |2 at the denominator of the values
|Pi|2 under the sum

P
Pi✓P in order to arrive at a formula

resembling the one introduced by Wobbrock et al. [37] (eq. 1):

AR(r) =
|P |

|P |� 1

X

Pi✓P

✓
|Pi|
|P |

◆2

� 1

|P |� 1
(3)

What we find is that eq. 3 is similar to the formula proposed
by Wobbrock et al. [37] (eq. 1), except for two correcting
factors ( |P |

|P |�1 and � 1
|P |�1 ) that depend on the number of

participants or, equivalently, the number of elicited proposals
|P |. The two correcting factors are related to the number of
degrees of freedom for computing the agreement rate, i.e.,
because the sum of all ratios |Pi|/|P | equals 1, the number
of observations |Pi|/|P | that are free to vary is one less than
the number of distinct proposals. In the following, due to the
many studies that have already used A(r) to report agreement
between participants [1,8,14,15,16,18,20,22,23,24,26,27,29,
31,32,33,34,39], we discuss the relationship between A(r)
and the new definition of agreement rate AR(r) with the two
correcting factors. The following properties characterize the
differences and relationship between the two definitions:

Property #1: AR(r) 2 [0..1], while A(r) 2 [1/|P |..1].
AR takes values in the entire unit interval, with 0 denoting
total disagreement between participants, and 1 absolute agree-

P

Pi

|P |
is set of all proposals for the referent 
is the size of the set 
are subsets of identical proposals from

r

P
P



Agreement rate
Example: Responding to one referent, five participants 
produces two gestures:       ,       . Connected pairs 
represents how two participants performed the same 
gesture.

11 (Vatavu et al., CHI ’15)
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many studies that have already used A(r) to report agreement
between participants [1,8,14,15,16,18,20,22,23,24,26,27,29,
31,32,33,34,39], we discuss the relationship between A(r)
and the new definition of agreement rate AR(r) with the two
correcting factors. The following properties characterize the
differences and relationship between the two definitions:

Property #1: AR(r) 2 [0..1], while A(r) 2 [1/|P |..1].
AR takes values in the entire unit interval, with 0 denoting
total disagreement between participants, and 1 absolute agree-
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Enlarge (Shrink)4: splay fingers

Accept: draw check

Enlarge (Shrink)3: pinchEnlarge (Shrink)2: pull apart with fingersEnlarge (Shrink)1: pull apart with hands

Move1: drag

Help: draw ‘?’

Next (Previous): draw line across object

Paste1: tap

Rotate: drag corner

Undo: scratch out

Select Single2: lasso

Duplicate: tap source and destination

Select Group1: hold and tap

Select Group2 and Select Group3: Use Select Single1 or Select Single2 
on all items in the group.

Paste2: drag from offscreen

Paste3: Use Move2, with off-screen
source and on-screen destination.

Delete1: drag offscreen

Delete2: Use Move2 with on-screen
source and off-screen destination.

Reject: draw ‘X’

Reject2, Reject3: If rejecting an object/dialog

with an on-screen representation, use Delete1

or Delete2.

Zoom in (Zoom out)1: pull apart with hands

Zoom in (Zoom out)2-4: Use Enlarge (Shrink)2-4,
performed on background.

Open1: double tap

2x

Open2-5: Use Enlarge1-4, atop an
“openable” object.

Minimize1: drag to bottom of surface

Minimize2: Use Move2 to move object to the 
bottom of the surface (as defined by user’s
seating position).

Select Single1: tap 

Cut: slash

Cuts current selection (made via 
Select Single or Select Group).

Menu: pull out

Finger touches 
corner to rotate.

After duplicating, source object
is no longer selected.

Move2: jump

Object jumps to index
finger location.

Pan: drag hand

Figure 4. The user-defined gesture set. Gestures depicted as using one finger could be performed with 1-3 fingers. Gestures 
not depicted as occurring on top of an object are performed on the background region of the surface or full-screen object. To 
save space, reversible gestures (enlarge/shrink, zoom in/zoom out, next/previous) have been depicted in only one direction.
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Calculate agreement rate from the result of a gesture elicitation below 
Referent: “Enlarge”    20 participants

researchers have made important statistics contributions in
this direction, empowering practitioners with the right tools to
analyze their data resulted from complex or unconventional
experimental designs [11,17,38]. For example, Wobbrock et
al. [38] introduced the Aligned Rank Transform to assist prac-
titioners for detecting interaction effects in nonparametric data
resulted from conducting multi-factor experiments. Kaptein et
al. [11] pointed to nonparametric techniques for analyzing data
collected with Likert scales, and they provided an online tool
for analyzing 2⇥2 mixed subject designs. Kaptein and Robert-
son [10] were concerned with the HCI community adopting
a thorough consideration of effect size magnitudes when an-
alyzing experimental data. Martens [17] introduced Illmo, a
software application that implements log-likelihood modeling
to help practitioners analyze their data in an interactive way.

AGREEMENT, DISAGREEMENT, AND COAGREEMENT
Agreement rate
The definition of an agreement rate for a given referent r for
which feedback has been elicited from multiple participants
during a guessability study was introduced by Wobbrock et
al. [37] (p. 1871) as the following sum of square ratios:

A(r) =
X

Pi✓P

✓
|Pi|
|P |

◆2

(1)

where P is the set of all proposals for referent r, |P | the size
of the set, and Pi subsets of identical proposals from P .

However, Wobbrock et al. did not provide any justification for
the specific mathematical formula chosen to define agreement
rate in equation 1, other than a note referring to the capabil-
ity of this formula to intuitively characterize differences in
agreement between various partitions of P : “for example, in
20 proposals for referent r, if 15/20 are of one form and 5/20
are of another, there should be higher agreement than if 15/20
are of one form, 3/20 are of another, and 2/20 are of a third.
Equation 1 captures this.” [37] (p. 1871).

In the following, we provide a mathematical argumentation
for the agreement rate formula introduced by Wobbrock et
al. [37] (eq. 1), and we show that two correcting factors need
to be applied to its current definition. Inspired by the modified
calculation formula of Findlater et al. [8] (p. 2680), we adopt
the same definition for agreement rate as the number of pairs of
participants in agreement with each other divided by the total
number of pairs of participants that could be in agreement:

AR(r) =

X

Pi✓P

1

2
|Pi| (|Pi|� 1)

1

2
|P | (|P |� 1)

(2)

Note the different notation AR (Agreement Rate) that we use in
eq. 2 to differentiate from Wobbrock et al.’s formula [37] (eq. 1).

+ EXAMPLE. Let’s assume a number of 20 participants,
from which |P |=20 proposals were collected for a given
referent r, out of which 15/20 are of one form and 5/20 of
another, i.e., |P1|=15 and |P2|=5. The number of pairs of

participants in agreement with each other is 15·14
2 + 5·4

2 ,
while the total number of pairs that could have been in
agreement is 20·19

2 . By dividing the two values, we obtain
the agreement rate AR(r) = 115

190 = .605. By comparison,
the original calculation from Wobbrock et al. [37] would
yield

�
15
20

�2
+
�

5
20

�2
=.625.

The definition of eq. 2 was introduced by Findlater et al. [8]
in their touch-screen keyboards study, but the authors did not
provide the connection with Wobbrock et al.’s initial definition
of agreement rate A [37]. In the following, we fill the gap
between the two papers and show how AR(r) is connected
to A(r). We also define two new measures of agreement, i.e.,
disagreement and coagreement that we use later in the paper
to introduce a statistical significance test for agreement rate
and to re-examine published data from user elicitation studies.

After successive stages of simplification of eq. 2, we obtain:

AR(r) =
1

|P | (|P |� 1)

X

Pi✓P

�
|Pi|2 � |Pi|

�

=
1

|P | (|P |� 1)

0

@
X

Pi✓P

|Pi|2 �
X

Pi✓P

|Pi|

1

A

and, knowing that
X

Pi✓P

|Pi| = |P |, we obtain:

AR(r) =
1

|P | (|P |� 1)

X

Pi✓P

|Pi|2 �
1

|P |� 1

We continue by placing |P |2 at the denominator of the values
|Pi|2 under the sum

P
Pi✓P in order to arrive at a formula

resembling the one introduced by Wobbrock et al. [37] (eq. 1):

AR(r) =
|P |

|P |� 1

X

Pi✓P

✓
|Pi|
|P |

◆2

� 1

|P |� 1
(3)

What we find is that eq. 3 is similar to the formula proposed
by Wobbrock et al. [37] (eq. 1), except for two correcting
factors ( |P |

|P |�1 and � 1
|P |�1 ) that depend on the number of

participants or, equivalently, the number of elicited proposals
|P |. The two correcting factors are related to the number of
degrees of freedom for computing the agreement rate, i.e.,
because the sum of all ratios |Pi|/|P | equals 1, the number
of observations |Pi|/|P | that are free to vary is one less than
the number of distinct proposals. In the following, due to the
many studies that have already used A(r) to report agreement
between participants [1,8,14,15,16,18,20,22,23,24,26,27,29,
31,32,33,34,39], we discuss the relationship between A(r)
and the new definition of agreement rate AR(r) with the two
correcting factors. The following properties characterize the
differences and relationship between the two definitions:

Property #1: AR(r) 2 [0..1], while A(r) 2 [1/|P |..1].
AR takes values in the entire unit interval, with 0 denoting
total disagreement between participants, and 1 absolute agree-
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Figure 3. Agreement for each referent sorted in descending order 
for 1-hand gestures. Two-hand gesture agreement is also shown. 

Our user-defined set is useful, therefore, not just for what it 
contains, but also for what it omits. 

Aliasing has been shown to dramatically increase input 
guessability [8,33]. In our user-defined set, ten referents are 
assigned 1 gesture, four referents have 2 gestures, three 
referents have 3 gestures, four referents have 4 gestures, 
and one referent has 5 gestures. There are 48 gestures in the 
final set. Of these, 31 (64.6%) are performed with one hand, 
and 17 (35.4%) are performed with two. 

Gratifyingly, a high degree of consistency and symmetry 
exists in our user-defined set. Dichotomous referents use 
reversible gestures, and the same gestures are reused for 
similar operations. For example, enlarge, which can be 
accomplished with four distinct gestures, is performed on 
an object, but the same four gestures can be used for zoom 
in if performed on the background, or for open if performed 
on a container (e.g., a folder). Flexibility exists insofar as 
the number of fingers rarely matters and the fingers, palms, 
or edges of the hands can often be used interchangeably. 

Taxonometric Breakdown of User-defined Gestures 
As we should expect, the taxonometric breakdown of the 
final user-defined gesture set (Figure 4) is similar to the 
proportions of all gestures proposed (Figure 2). Across all 
taxonomy categories, the average difference between these 
two sets was only 6.7 percentage points. 

Planning, Articulation, and Subjective Preferences 
This section gives some of the performance measures and 
preference ratings for gesture planning and articulation. 

Effects on Planning and Articulation Time 
Referents’ conceptual complexities (Table 1) correlated 
significantly with average gesture planning time (r=.71, 
F1,25=26.04, p<.0001). In general, the more complex the 
referent, the more time participants took to begin 
articulating their gesture. Simple referents took about 8 
seconds of planning. Complex referents took about 15 
seconds. Conceptual complexity did not, however, correlate 
significantly with gesture articulation time. 

Effects on Goodness and Ease 
Immediately after performing each gesture, participants 
rated it on two Likert scales. The first read, “The gesture I 
picked is a good match for its intended purpose.” The 
second read, “The gesture I picked is easy to perform.” 
Both scales solicited ordinal responses from 1 = strongly 
disagree to 7 = strongly agree. 

Gestures that were members of larger groups of identical 
gestures for a given referent had significantly higher 
goodness ratings (χ2

(1,N=1074)=34.10, p<.0001), indicating 
that popularity does, in fact, identify better gestures over 
worse ones. This finding goes a long way to validating this 
user-driven approach to gesture design. 

Referents’ conceptual complexities (Table 1) correlated 
significantly and inversely with participants’ average 
gesture goodness ratings (r=-.59, F1,25=13.30, p<.01). The 
more complex referents were more likely to elicit gestures 
rated poor. The simpler referents elicited gestures rated 5.6 
on average, while more complex referents elicited gestures 
rated 4.9. Referents’ conceptual complexities did not 
correlate significantly with average ratings of gesture ease. 

Planning time also significantly affected participants’ 
feelings about the goodness of their gestures 
(χ2

(1,N=1074)=38.98, p<.0001). Generally, as planning time 
increased, goodness ratings decreased, suggesting that good 
gestures were those most quickly apparent to participants. 
Planning time did not affect perceptions of gesture ease. 

Unlike planning time, gesture articulation time did not 
significantly affect goodness ratings, but it did affect ease 
ratings (χ2

(1,N=1074)=17.00, p<.0001). Surprisingly, gestures 
that took longer to perform were generally rated as easier, 
perhaps because they were smoother or less hasty. Gestures 
rated as easy took about 3.4 seconds, while those rated as 
difficult took about 2.0 seconds. These subjective findings 
are corroborated by objective counts of finger touch events 
(down, move, and up), which may be considered rough 
measures of a gesture’s activity or “energy.” Clearly, long 
lived gestures will have more touch events. The number of 
touch events significantly affected ease ratings 
(χ2

(1,N=1074)=21.82, p<.0001). Gestures with the fewest touch 
events were rated as the hardest; those with about twice as 
many touch events were rated as easier. 

Preference for Number of Hands 
Overall, participants preferred 1-hand gestures for 25 of 27 
referents (Table 1), and were evenly divided for the other 
two. No referents elicited gestures for which two hands 
were preferred overall. Interestingly, the referents that 
elicited equal preference for 1- and 2-hands were insert and 
maximize, neither of which were included in the user-
defined gesture set because they reused existing gestures. 
As noted above, the user-designed set (Figure 4) has 31 
(64.6%) 1-hand gestures and 17 (35.4%) 2-hand gestures. 
Although participants’ preferences for 1-hand gestures was 
strong, some 2-hand gestures had good agreement scores 
and nicely complemented their 1-hand counterparts. 
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Agreement rating can be used to decide action sets for gestures

Graph: (Wobbrock et al., CHI ’09)



Taxonomies of gestures
• Classifications of gestures according to defined 

dimensions 

• Allows designers to 
• Compare  gestures 
• Explore design alternatives 
• Analyze common properties 
• Describe gestural system capabilities 

• Multiple taxonomies exist for different purposes 

• Also known as design space (see: DIS2)
14



A taxonomy of hands-to-arm gesture

15

http://udigesturesdataset.cs.st-andrews.ac.uk/

(Grijincu, ITS ’14)



Comparing gestures
• Global measures 

• Total path length 

• Articulation time 

• Relative accuracy measures: compare gesture 
articulation with task axis as it unfolds

16

Dependent
variable

(Vatavu et al., ICMI ’13)



Relative accuracy measures

17 (Vatavu et al., ICMI ’13)

Figure 3: Gesture task axes (orange lines) computed using the TEMPLATE scheme for single- and multi-stroke gestures from public
datasets: the “question mark” symbol [24]; “flower” and “stairs” [20]; “pitchfork” and “asterisk” [2]; and the “person” symbol [22].

stroke datasets [2,8,22] to reveal new findings about users’ articu-
lation behavior in terms of stroke count and stroke ordering. Where
possible, we compare differences in the values reported by absolute
versus relative measures (such as path length versus length error).

5.1 Effect of Articulation Speed on Geometric
Accuracy

We employ for this experiment the $1 gesture set [24], composed
of 16 gesture types (p. 159) articulated by 10 participants with 10
repetitions each4. Participants entered gestures at low, medium,
and fast speeds, corresponding to the instructions “as accurately as
possible” (for low), “balance speed and accuracy” (medium), and
“as fast as you can” (fast). The authors of the $1 work found a
significant effect of articulation speed on recognition errors for all
tested recognizers ($1, Rubine, and DTW). The smallest error oc-
curred for medium speed, explained that “at medium speeds, sub-
jects’ gestures were neither overly tentative nor overly sloppy” (p.
166). In the following, we provide supporting data for this hypoth-
esis by employing our relative measures, and reveal new findings
on users’ gesture articulation.

We computed task axes for each gesture type in the set under
both user-dependent and user-independent training scenarios. For
the first scenario, task axes were computed for each participant in-
dividually, while for the second, all participants’ data contributed to
the computation of the task axes. We then computed accuracy mea-
sures for candidate gestures, which were selected with a leave-one-
out cross-validation testing procedure5: one gesture sample was se-
lected as the candidate, while all the others were used to compute
the task axis.

There was a significant effect of articulation speed on Shape
Error (�2

(2)=70.355 for user-dependent and �

2
(2)=77.889 for

user-independent training, p<.001), with medium gestures show-
ing the smallest difference in Shape Error and Shape Variability for
the user-dependent case. This result confirms the original authors’
finding on medium gestures exhibiting the highest recognition ac-
curacy, as we can confirm such gestures are “closer” to their cen-
troid, while the point-to-point distances exposed lower Shape Vari-
ability than encountered at other speeds (see Figure 4, next page).
Slow and fast gestures, which delivered lower recognition accu-
racies, also presented larger Shape Error and Variability values in
the user-dependent scenario, which is the scenario reported in [24].
The same negative correlation between recognition accuracy and
Shape Error/Variability was found for the user-independent sce-
nario6: an increase in Shape Error/Variability corresponds to lower
recognition rates. These findings reveal new insights about the ef-
fect of articulation speed on users’ stroke gesture executions, but

4http://depts.washington.edu/aimgroup/proj/dollar/
5This has the desirable property of being almost unbiased [21] (p. 255).
6Because the $1 work [24] does not report user-independent recognition
rates, we computed them by following the same training/testing procedure.

also help explain why $1’s recognition rates vary under increased
articulation speed. Using our relative measures, we confirm the
$1 authors’ hypothesis about fast gestures being more “sloppy”
and show that shape errors are equally introduced by over-focus
on accuracy (i.e., slow gestures being more “tentative”). We note
that this confirmation cannot be delivered by absolute performance
measures (e.g., recognition rates reported in [24]) that only show
differences between conditions, without providing explanations for
these differences.

Besides these results, we can further employ our relative stretch-
ing and bending accuracy measures to report new findings about the
gestures in the $1 set. For instance, articulation speed had a signif-
icant effect on absolute gesture length (�2

(2)=191.649, p<.001)
and area (�2

(2)=276.001, p<.001), with both length and area de-
creasing with increased speed (Figure 5 left, next page). However, a
closer look employing our relative measures shows people produc-
ing gestures with different variations in length and area depending
on the articulation speed (Figure 5 right, next page), with medium-
speed gestures being the most accurately articulated (p<.001).

Interestingly, participants exhibited a tendency to stretch their
strokes more when producing fast gestures, as indicated by Length
Error, but slow articulations led to larger variations in gesture area,
as shown by Size Error (p < .001). We also found that participants
exhibited a tendency to bend their strokes relative to the average
behavior. The significant effect of speed on the absolute turning
angle (�2

(2) = 887.134, p < .001) was also revealed in the Bend-
ing Error and Variability relative measures (Figure 6, next page).
However, the relative measures characterize users’ articulations at
more subtle levels of detail. For example, we now know that the
average shape “bending” expected from users across consecutive
articulations of gestures from the $1 set lies between 0.22 and 0.26
radians (12.6�15.0�), and users are more accurate in producing the
curvature of these shapes at fast speeds.

5.2 Effect of Gesture Practice on Kinematic
Accuracy

We employ for this experiment the gesture set of Vatavu et
al. [20], which contains 18 gestures (p. 94) executed by 14 par-
ticipants with 20 repetitions each7. The set includes both familiar
(practiced) and unfamiliar (new) gestures, verified by asking par-
ticipants. Vatavu et al. found that articulation time correlated best
with perceived difficulty; i.e., gestures that took longer to articulate
were generally perceived as more difficult by users. However, no
explanation is provided for the cause of this phenomenon. Next,
we reveal new findings about users’ articulation behavior in the
time domain by employing our kinematic relative measures.

Absolute measures show that familiar gestures were articu-
lated with lower overall duration (1323 vs. 2433 ms, Z=�40.975,
p<.001) and faster (0.7 vs. 0.5 pixels/ms, Z=�37.660, p<.001)

7http://www.eed.usv.ro/~vatavu/index.php?menuItem=downloads
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ABSTRACT
Current measures of stroke gesture articulation lack descriptive
power because they only capture absolute characteristics about the
gesture as a whole, not fine-grained features that reveal subtleties
about the gesture articulation path. We present a set of twelve new
relative accuracy measures for stroke gesture articulation that char-
acterize the geometric, kinematic, and articulation accuracy of sin-
gle and multi-stroke gestures. To compute the accuracy measures,
we introduce the concept of a gesture task axis. We evaluate our
measures on five public datasets comprising 38,245 samples from
107 participants, about which we make new discoveries; e.g., ges-
tures articulated at fast speed are shorter in path length than slow
or medium-speed gestures, but their path lengths vary the most, a
finding that helps understand recognition performance. This work
will enable a better understanding of users’ stroke gesture articula-
tion behavior, ultimately leading to better gesture set designs and
more accurate recognizers.

Keywords
Gesture task axis; relative accuracy measures; gesture error;
unistrokes; multi-stroke gesture; geometric accuracy; kinematic ac-
curacy; articulation accuracy; toolkit.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces

1. INTRODUCTION
As touch gesture interaction becomes more common, the need to

understand how to design appropriate gesture interactions grows.
One key aspect is understanding how users actually articulate pen
and finger gestures. For example, variations in stroke gesture ar-
ticulation have been studied in different ways in the literature, in-
cluding examining the consistency between and within users [1],
differences between user populations [9], and the impact of input
devices [17]. However, all of these methods focus on characteriz-
ing absolute and global features of the gesture itself, such as total
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Figure 1: Gesture task axes for single and multi-stroke gestures
(a, b), defined analogous to MacKenzie et al.’s [12] reference
axis for pointing tasks (c). The gesture task axis, acting as rep-
resentative articulation of a gesture type, is computed from a
set of gesture samples.

path length or articulation time. What has been missing are fine-
grained analyses of gesture articulations to support an understand-
ing of how gestures vary relative to each other and to recognizers’
canonical template forms. Once we have this knowledge, better
gesture set designs and more accurate template-based recognizers
can be proposed.

We present a set of relative gesture accuracy measures that de-
scribe the way gestures unfold and what happens during their pro-
duction in terms of their closeness to their ideal forms. Our mea-
sures are inspired by and analogous to MacKenzie et al.’s path-
based pointing measures [12], which describe the accuracy of a
pointing movement while it unfolds. As with that work, our work
reveals the accuracy of gesture motion while it takes place, rather
than just after-the-fact. MacKenzie et al. [12] defined the task axis
as a straight line between the starting point of the user’s mouse and
the pointing target, to which the accuracy of users’ pointing paths
was compared (Figure 1c). We conceptualize the problem in the
same way: a reference path or task axis is defined, and variations
from this path are captured in the measures we present. We define
the gesture task axis as a representative way to articulate a stroke
gesture (Figure 1a,b), similar to the gesture templates stored by
template-based gesture recognizers, such as $1 [24], $N [2,3], and
$P [19]. Our accuracy measures then capture local deviations of
users’ candidate gestures relative to the gesture task axis, in terms
of geometric, kinematic, and articulation accuracy. We evaluate our
relative accuracy measures on five public gesture datasets compris-
ing 38,245 samples from 107 participants and report new gesture
findings, not revealed by absolute measures, that have implications
for designing improved gesture sets and gesture recognizers.
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1. The geometric gesture task axis (GEOMETRIC), defined by
the gesture set designer by employing geometric primitives,
such as lines and curves.

2. The average gesture task axis (AVERAGE), computed as the
average shape of a set of user-captured gesture samples.

3. The canonical template form (TEMPLATE) supplied to a rec-
ognizer to which articulated gestures will be compared in a
template-based matching approach.

The GEOMETRIC gesture task axis needs to be specified by the
designer as a set of geometric primitives in a CAD-like manner.
In order to help this process, we developed a simple application
that takes the designer’s stroke input and converts it into lines and
curves. A stroke is replaced by a line if all the intermediate points
are within a threshold distance from the line segment defined by the
first and last points of the stroke. Otherwise, the stroke is modeled
using a polynomial interpolating spline, for which the shape can be
entirely customized by editing and manipulating its control points.

The AVERAGE gesture task axis is meant to be reflective of ac-
tual user-articulated gestures. Inspired by previous work on 2D
shape averaging [7,16], we devised a simple technique to compute
the “centroid gesture” of a set of samples. Let T be a set of sam-
ples for a given gesture symbol, T = {tj |j = 1..|T |}, where each
sample, tj , is represented as a series of two-dimensional points.
We first resample gestures to the same number of points and trans-
late them such that their centroid point is at the origin (using for
example the pseudocode made available with the $1, $N, or $P rec-
ognizers [2,19,24]). This approach allows us to work with point
sets of equal cardinality, which simplifies the subsequent gesture
alignment procedures, as well as assuring translation-invariance
for the computed accuracy measures. One of the gesture samples
is selected as a reference, to which all the other gestures are be-
ing aligned3. If the articulation patterns of the gestures in the set
are alike (e.g., a rectangle that is always executed from the same
starting point and in the same direction, such as in the $1 ges-
ture set [24]), the alignment is a simple 1:1 matching that connects
points with the same index on the two gestures. Otherwise, the
point cloud alignment of the $P gesture recognizer [19] is used to
best match the points of the two gestures for gestures that are exe-
cuted with different stroke directions or stroke ordering, such as the
gestures in [2]. Figure 2 illustrates the two point alignment types.
Once the alignments are computed, point pi of the reference gesture
is associated to a set of |T |� 1 points from the remaining samples
in the set. We then average the x and y coordinates of these points
in all the gestures to compute the i

th point of the AVERAGE task
axis.

We use the AVERAGE result to define the TEMPLATE gesture
task axis as the gesture from the set that is “closest” to the average
gesture (in terms of the nearest-neighbor classification procedure
implemented by the $1 and $P recognizers, depending on how point
alignments were computed). Using this approach, the TEMPLATE
task axis is an actual user-articulated sample, representative of the
ones stored by template-based gesture recognizers [2,19,24] in their
training sets, and also representative of the “average” articulation
performance of the user.

4.1 Pilot Study for the Gesture Task Axis
We note that the GEOMETRIC task axis is artificially created and,

consequently, can only be used to assess geometric accuracy, as
timestamps are unavailable. The AVERAGE task axis allows com-
putation of the geometric and kinematic accuracy measures, but

3Previous work [16] has showed that how the reference is selected has little
influence on the final result.

Figure 2: Gesture points are aligned in their chronological or-
der of input if the two gestures conform to the same articulation
pattern, such as the case of the “question mark” symbols (a) ex-
ecuted from the same starting point and in the same direction.
Otherwise, points are aligned using the point-cloud matching
procedure of $P [19], such as for the “question mark” symbols
executed in opposite directions (b) or the “person” symbol (c)
executed with different number of strokes and stroke ordering.

for single strokes only (in the case of multi-strokes, AVERAGE is
a point-cloud [19], for which the execution details get lost dur-
ing the alignment procedure). On the other hand, the TEMPLATE
gesture task axis can compute all the geometric, kinematic, and
articulation-related accuracy measures for both single and multi-
strokes, as it represents an actual articulation of a stroke gesture.
However, in order to better inform our choice for the task axis,
we conducted a pilot evaluation, in which we computed the task
axes for the single-stroke gestures of the $1 set [24] (p. 159) and
the multi-stroke gestures of the MMG set [2] (p. 245), against
which we computed the geometric accuracy measures (8,000 to-
tal gesture samples). We found the values significantly correlated
(at p=.01), with Pearson r coefficients ranging between .138 and
.903 for single-strokes (average r=.562) and between .117 and
.909 for multi-strokes (average r=.659). These results confirm the
hypothesis that correlations will exist between the values of rela-
tive measures computed against different task axes, simply because
of their relative nature. Also, as anticipated, the objective GEO-
METRIC task axis produced larger values (e.g., higher errors) for
the accuracy measures than the subjective task axes (almost twice
as large on average), because of its inability to capture allographic
differences and “short-cutting” behaviors during articulation [6].
Also, given that results were similar for AVERAGE and TEMPLATE,
but TEMPLATE represents an actual user articulation, we employ in
this paper the TEMPLATE task axis as reference for computing rela-
tive accuracy measures. Figure 3 illustrates the TEMPLATE gesture
task axes for single and multi-stroke gestures from actual users’
data [2,20,22,24].

5. CASE STUDIES
We discuss the applicability of our relative accuracy measures to

several existing stroke gesture experiments and datasets reported in
previous work [2,3,8,20,22,24]. In order not to overload this paper
with exhaustive numerical data supplied by the entire set of mea-
sures, we focus on one case study example per accuracy type: ge-
ometric, kinematic, and articulation-related. We discuss geometric
accuracy measures on the $1 dataset [24] and compare our find-
ings to the recognition results reported in that work. We then dis-
cuss kinematic accuracy measures for the gesture set of Vatavu et
al. [20], who were interested in the time profile of stroke gestures
for estimating execution difficulty. Finally, we employ three multi-
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Relative accuracy measures
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• Geometric accuracy: shape, size, and bending 

• Kinematic accuracy: time (how fluent) 

• Articulation accuracy: consistency 

• Stroke count 

• Stroke ordering



Geometric accuracy: shape error
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The contributions of this work are: (1) a set of relative stroke
gesture accuracy measures to characterize users’ gesture articula-
tion patterns; (2) an operational definition of the gesture task axis;
(3) new findings regarding existing datasets enabled by our new ac-
curacy measures; and (4) the Gesture RElative Accuracy Toolkit
(GREAT) to compute the measures. These results can be used in
new gesture studies to characterize in more detail how users make
gestures. Ultimately, this work informs our understanding of de-
signing gesture sets and recognizers to accommodate users’ gesture
articulation patterns.

2. RELATED WORK
In prior work, evaluating the performance of user stroke ges-

ture articulation has been mainly confined to reporting conventional
measurements, such as accuracy rates for recognizers [2,19,24], ar-
ticulation time for user performance [6,24], and self-reported rat-
ings for user preference [20,23]. Such high-level measures charac-
terize gestural performance, but fail to capture more nuanced artic-
ulation behaviors. For example, pen and finger gestures have been
found similar in terms of articulation time and shape distance, but
different in aperture, corner distance, and intersecting points, which
may impact future finger-gesture designs [17].

Beyond these general long-established measures in HCI, the ar-
ticulation path of stroke gestures can be used to compute many ge-
ometric and kinematic features (e.g., see Blagojevic et al. [5] for a
comprehensive set of 114 absolute gesture features). However, de-
spite their potential to characterize articulation performance in fine
detail, such features have been primarily used for gesture recogni-
tion [5,14,18,22], rather than to understand how users actually ar-
ticulate gestures. In some cases, local features were used to inform
gesture analysis approaches, such as the connection between cur-
vature and tangential velocity employed by Cao and Zhai’s model
to predict gesture articulation time [6]. Only recently, a few studies
have started to employ feature analysis to evaluate gesture articu-
lation beyond error rates and task times. One example is Kane et
al. [9], who compared gestures articulated by blind versus sighted
people and reported differences picked up by newly-introduced fea-
tures, such as gesture size variation and line steadiness. Tu et
al. [17] defined new measures for stroke gestures, such as axial
symmetry and intersecting points deviation. They were thus able
to expose subtle differences between pen and finger gestures not
revealed when employing only production time and proportional
shape distance. Using absolute gesture features, Anthony et al. [1]
found that increased geometric complexity of gesture shapes leads
to people producing gestures less consistently.

In contrast to the work we present in this paper, gesture features
investigated by all of these previous studies characterize absolute
gesture articulation behavior, such as comparing path length or ar-
ticulation time between different conditions. However, they cannot
account for relative differences in individual gesture articulations.
Yet such comparisons and analyses could inform the design of
template-based recognizers, which operate based on comparisons
between pairs of gestures (candidates and templates). To address
this problem, we formulate new measures for quantifying and eval-
uating the accuracy of user gesture articulation behavior compared
to some fixed example gesture (the gesture task axis), reflective of
relative differences between individual executions.

3. RELATIVE ACCURACY MEASURES
We evaluate the precision of stroke gesture articulation relative to

the gesture task axis in terms of (1) geometric, (2) kinematic, and
(3) articulation accuracy. Geometric accuracy reflects how well

users are able to reproduce a gesture, given its geometric shape
alone. Kinematic accuracy captures differences in the time domain
and, therefore, informs how fluent or smooth the gesture path is.
Articulation accuracy measures how consistent users are in pro-
ducing stroke gestures by looking at the difference in number of
strokes and stroke ordering. Articulation accuracy may also be in-
terpreted as recall accuracy, showing how well users can reproduce
the exact execution details of a given gesture (e.g., always start the
gesture from the same point and follow the same direction, a con-
straint imposed by some recognizers [24]). In order to evaluate the
three types of accuracy, we employ the concepts of error and vari-
ability from MacKenzie et al. [12], who relied on them to evaluate
the accuracy of pointing tasks1. Error is an indicator of the absolute
difference between a measurement and a reference, and variability
is the standard deviation of a set of differences.

In the following discussion, we represent a stroke gesture as
a series of 2-D points, p = {pi = (xi, yi, ti) | i = 1..n}. The
task axis is denoted by p =

�
pi =

�
xi, yi, ti

�
| i = 1..n

 
, and

will be defined in the next section. We employ standard local
features at point pi: (1) arc-length si=

Pi
j=2 kpj � pj�1k for

i=2..n and s1=0; (2) turning angle ✓i=\ (pi�1pi, pipi+1); and
(3) local speed vi=(si+1 � si�1) / (ti+1 � ti�1). Local values
are aggregated into global measures: (4) path length, L(p)=sn;
(5) total absolute turning angle, ⇥(p)=

Pn�1
i=2 ✓i; (6) area of ges-

ture bounding box, A(p)=(maxi=1,n xi �mini=1,n xi) ⇥
(maxi=1,n yi �mini=1,n yi); and (7) average speed,
S(p)=(

Pn�1
i=2 vi)/(n � 2). We employ these measures later

in the paper when we compare absolute versus relative measures.
All the measures we will introduce are relative to the gesture

task axis and, therefore, the candidate gesture (for which the ac-
curacy is to be determined) and the task axis must first be aligned.
The alignment is a 1:1 matching defined as a permutation func-
tion � : {1, 2, ..., n} ! {1, 2, ..., n}, meaning that point pi on
the task axis is aligned to point p�(i) on the candidate gesture. If
the gestures are always executed in the same direction (e.g., such
as the unistrokes of [24]), this function is the identity permutation,
�(i) = i. Otherwise, the alignment is produced with the $P match-
ing technique [19].

3.1 Geometric accuracy
Geometric accuracy measures evaluate the deviation of the can-

didate gesture from the task axis in terms of shape distance, and
capture tendencies of the users to stretch and bend strokes during
articulation.

1. Shape Error (ShE) represents the average absolute deviation
of the candidate gesture points from the task axis in terms of the
Euclidean distance:

ShE(p) =
1

n

nX

i=1

��
p�(i) � pi

�� (1)

ShE relates to the cost function of the $1 recognizer [24], the
Proportional Shape Distance of SHARK2 [10], and the $P recog-
nizer [19], depending on the point alignment procedure.

2. Shape Variability (ShV) computes the standard deviation of
the distances between the points of the candidate and the task axis:

ShV(p) =

vuut 1

n� 1

nX

i=1

���
p�(i) � pi

��� ShE(p)
�2 (2)

1MacKenzie et al. evaluated pointing tasks using, among other measures,
movement error (ME), movement offset (MO), and movement variability
(MV), computed relative to the pointing task axis [12].
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Low ShV values show uniform shape distance errors across the en-
tire gesture path, while large values indicate that errors are larger
for some parts of the gesture and smaller for others.

3. Length Error (LE) measures users’ tendencies to “stretch”
gesture strokes with respect to the task axis:

LE(p) =
nX

i=1

��
s�(i) � si

�� (3)

As we employ uniform resampling of gestures as a preprocessing
step, similar to gesture recognizers [2,19,24], arc-lengths can be
written as si = (i� 1) · L

n�1 , which leads to:

LE(p) = |L(p)� L(p)| (4)

This compact form has the advantage of being generalizable for
multi-stroke gestures, for which directly comparing arc-lengths of
points aligned by the $P point-cloud algorithm is irrelevant. We can
also measure the stretching behavior as the difference in gesture
bounding box area, for which we derive the following definition
analogous to LE:

4. Size Error (SzE) measures users’ tendencies to “stretch” ges-
ture strokes in terms of the gesture area size:

SzE(p) = |A(p)�A(p)| (5)

5. Bending Error (BE) measures users’ tendencies to “bend”
the strokes of the articulated gesture with respect to the gesture
task axis. It is defined as the absolute average of the differences
between corresponding turning angles at the i

th point, measured
on the gesture and the task axis:

BE(p) =
1

n

nX

i=1

��
✓�(i) � ✓i

�� (6)

6. Bending Variability (BV) computes the standard deviation of
the differences in turning angle:

BV(p) =

vuut 1

n� 1

nX

i=1

���
✓�(i) � ✓i

��� BE(p)
�2 (7)

3.2 Kinematic accuracy
Kinematic accuracy measures evaluate articulation differences in

the time domain, and capture how fluent or smooth the articulated
path is in terms of production time and speed.

7. Time Error (TE) measures the difference in articulation time
(total duration) between the candidate and the task axis:

TE(p) = |T (p)� T (p)| (8)

8. Time Variability (TV) represents the standard deviation of the
differences between timestamps measured at each individual point
on the gesture path:

TV(p) =

vuut 1

n� 1

nX

i=1

���
ti � ti

��� TE(p)
�2 (9)

9. Speed Error (VE)2 measures the difference in the speed pro-
files of the candidate and the gesture task axis:

VE =

1

n

nX

i=1

|vi � vi| (10)

2Where letter “V” in VE comes from “Velocity,” which is an innocent abuse
of notation to prevent multiple, confounding abbreviations startingwith “S”.

10. Speed Variability (VV) represents the standard deviation of
the local differences between the speed profiles:

VV =

vuut 1

n� 1

nX

i=1

(|vi � vi|� VE(p))2 (11)

3.3 Articulation accuracy
Articulation accuracy measures how consistent users are in pro-

ducing the individual strokes of gestures, for which perfect accu-
racy is required by some recognizers (e.g., always start strokes from
the same starting point and following the same direction) or use
cases (e.g., Japanese script).

11. Stroke Count Error (SkE) reports the difference in the num-
ber of strokes between the candidate and the task axis.

12. Stroke Ordering Error (SkOE) is an indicator of stroke or-
dering accuracy, computed as the absolute difference between the
$1 cost measure (defined as the sum of Euclidean distances be-
tween chronologically-aligned points) [24] and the $P cost mea-
sure (defined as the sum of Euclidean distances between point
clouds) [19]:

SkOE(p) = |$1(p, p)� $P (p, p)| (12)

=

�����

nX

i=1

kpi � pik �
nX

i=1

��
p�(i) � pi

��
�����

If the candidate gesture has been articulated in the same way as the
gesture task axis, the ordering error will be low, as both $1 and $P
will return approximately the same value. Should any difference
exist in stroke ordering between the candidate and reference, SkOE
will reflect it with a larger value.

4. THE GESTURE TASK AXIS
In the above measures, we use the term gesture task axis to mean

a specific articulation of a gesture type that serves as a reference,
against which the accuracy of other, candidate gestures is com-
puted. The task axis can be a geometrically-perfect shape definition
of the gesture (similar to MacKenzie et al.’s straight line for point-
ing tasks [12]), or it can be a representative gesture sample acquired
from the user that captures the articulation specificity of both the
user and the input device, as found in the training sets of template-
based gesture recognizers [2,19,24]. Both alternatives represent
reasonable design choices for computing gesture task axes to ac-
count for differences in gesture articulation behavior. The ideal
shape can be specified as a series of geometric primitives, such as
lines and arcs. Previous work has employed such representations
for gestures, either for the purpose of recognition [13] or for ges-
ture analysis [6]. However, despite the desirable objectivity of this
perfectly-shaped reference, such a representation may not neces-
sarily be reflective of actual user articulation patterns, which of-
ten reveal “chunking” and “corner-cutting” behaviors in an attempt
to produce gestures faster [6] (p. 1503). Also, such a reference
may not reflect the true accuracy of allographic handwriting [15]
(e.g., individual differences in letters that personalize one’s hand-
writing, such as A, A, A, or for the letter “A”), for which it
may artificially overemphasize differences where they do not ex-
ist. Therefore, an alternative would be a subjective, user-dependent
reference, reflective of users’ articulation patterns. Following these
considerations, we arrived at three possible definitions for the ges-
ture task axis:
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straight line. Lastly, the orange gesture, paired with ‘Find’, 
was composed of a long straight line connected to a short 
straight line at a 90° angle. 

Guide types 
We evaluated four types of gesture learning systems. Three 
of the guides have been previously described in the litera-
ture or are very similar to previously described guides 
(crib-notes, static-tracing, and dynamic-tracing), while the 
fourth (adaptive) is a novel contribution. 

The crib-notes guide used a half-scale depiction of the ges-
tures placed in the top-left corner of the screen (Figure 1a). 
Participants using this system were not informed of the 
scale relation between the guide and the target gesture, and 
learned the appropriate scale through the KP provided after 
each trial. This guide provides the least guidance, as partic-
ipants cannot directly compare their current trajectory to 
the template and the template does not adapt to their 
movement. 

The static-tracing guide used a full-scale depiction of each 
of the template gestures, radiating from the initial pen loca-
tion (Figure 1b). This guide allowed the participant to trace 
over the target gesture. As the participant drew their stroke, 
the guide was not updated in any way. The use of this guide 
allowed us to examine what effects the continuous updating 
has on the learning and performance of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ 
in Bau and MacKay [9]) used a full-scale depiction of the 
gestures, as with the static-tracing guide, but as the partici-
pant moved the pen, the guide dynamically updated to re-
flect the state of the recognizer (Figure 1c). As the partici-
pant drew their stroke, the opacity of each of the four ges-
tures was mapped to a function of the similarity between 
the participant’s trajectory and the template of the target 
gesture. Gesture similarity during training was measured by 
computing the RMSE between the participant’s trajectory 
and an equivalent path length from each of the target ges-
tures. In addition to modifying the opacity of the guide 
strokes, the initial segment of each the template gesture was 
removed (an amount equal to the current participant’s 
stroke length), and the result is appended at the current pen 
location. This procedure effectively provided the ‘feedfor-

ward’ information to help guide the participant to the cor-
rect performance. 

The adaptive guide provided a traceable guide identical to 
the one used in the static-tracing condition, but the guide 
disappeared at some point in time during the trial. The cur-
rent trial as well as the current length of the participant’s 
stroke determined when the guide disappeared. For the first 
trial, the guide disappeared once the participant’s stroke 
had the same path length as the target gestures. Midway 
through the trials, the guide disappeared once the partici-
pant’s stroke was half the path length of the target gestures. 
By the end trial, the gesture guide did not appear at all. This 
approach let participants initially trace the gestures with 
high accuracy and usability, but eventually required them 
to draw the gestures without the guide. While the imple-
mentation of this guide for the lab study is straightforward, 
as the number of trials is known, the implementation in a 
real-world scenario is potentially more difficult. Various 
methods of implementing an adaptive guide in a real-world 
scenario are described in the Discussion section. 

All of the guides used in this study were not dynamic in the 
sense that they changed scale or orientation in response to 
the user’s strokes, as in other recent guide designs [2,25]. 
This is an intentional choice, as it allows control over the 
exact gesture being learned by the participants. This deci-
sion allows more precision in studying the effects of the 
guide on learning a particular gesture. It is highly unlikely 
that the ability to change scale or orientation will have any 
effect on the degree to which the user is guided, or subse-
quently learns the gesture. Once a user determines or se-
lects a particular scale and orientation, they will likely use 
the guide to continue drawing the gesture at that particular 
scale or orientation. That is, the users would still be guided 
to the same degree, they would just be guided to a different 
target gesture.  

Procedure 
Participants were shown where to place the pen on the 
screen to activate the guide and where their score would 
appear. They were told to accrue as many points as possible 
and that their score was derived from the similarity to the 
target gesture, with additional points for faster perfor-
mance. To compute the points, the training system awarded 

a) 

 

b) 

 

c) 

 
Figure 1: Behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) static-
tracing, and c) dynamic-tracing. Note that adaptive is not shown as its behavior is identical to the 'static-tracingʼ 
guide, except the guide is removed partway through the trial. 
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straight line. Lastly, the orange gesture, paired with ‘Find’, 
was composed of a long straight line connected to a short 
straight line at a 90° angle. 

Guide types 
We evaluated four types of gesture learning systems. Three 
of the guides have been previously described in the litera-
ture or are very similar to previously described guides 
(crib-notes, static-tracing, and dynamic-tracing), while the 
fourth (adaptive) is a novel contribution. 

The crib-notes guide used a half-scale depiction of the ges-
tures placed in the top-left corner of the screen (Figure 1a). 
Participants using this system were not informed of the 
scale relation between the guide and the target gesture, and 
learned the appropriate scale through the KP provided after 
each trial. This guide provides the least guidance, as partic-
ipants cannot directly compare their current trajectory to 
the template and the template does not adapt to their 
movement. 

The static-tracing guide used a full-scale depiction of each 
of the template gestures, radiating from the initial pen loca-
tion (Figure 1b). This guide allowed the participant to trace 
over the target gesture. As the participant drew their stroke, 
the guide was not updated in any way. The use of this guide 
allowed us to examine what effects the continuous updating 
has on the learning and performance of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ 
in Bau and MacKay [9]) used a full-scale depiction of the 
gestures, as with the static-tracing guide, but as the partici-
pant moved the pen, the guide dynamically updated to re-
flect the state of the recognizer (Figure 1c). As the partici-
pant drew their stroke, the opacity of each of the four ges-
tures was mapped to a function of the similarity between 
the participant’s trajectory and the template of the target 
gesture. Gesture similarity during training was measured by 
computing the RMSE between the participant’s trajectory 
and an equivalent path length from each of the target ges-
tures. In addition to modifying the opacity of the guide 
strokes, the initial segment of each the template gesture was 
removed (an amount equal to the current participant’s 
stroke length), and the result is appended at the current pen 
location. This procedure effectively provided the ‘feedfor-

ward’ information to help guide the participant to the cor-
rect performance. 

The adaptive guide provided a traceable guide identical to 
the one used in the static-tracing condition, but the guide 
disappeared at some point in time during the trial. The cur-
rent trial as well as the current length of the participant’s 
stroke determined when the guide disappeared. For the first 
trial, the guide disappeared once the participant’s stroke 
had the same path length as the target gestures. Midway 
through the trials, the guide disappeared once the partici-
pant’s stroke was half the path length of the target gestures. 
By the end trial, the gesture guide did not appear at all. This 
approach let participants initially trace the gestures with 
high accuracy and usability, but eventually required them 
to draw the gestures without the guide. While the imple-
mentation of this guide for the lab study is straightforward, 
as the number of trials is known, the implementation in a 
real-world scenario is potentially more difficult. Various 
methods of implementing an adaptive guide in a real-world 
scenario are described in the Discussion section. 

All of the guides used in this study were not dynamic in the 
sense that they changed scale or orientation in response to 
the user’s strokes, as in other recent guide designs [2,25]. 
This is an intentional choice, as it allows control over the 
exact gesture being learned by the participants. This deci-
sion allows more precision in studying the effects of the 
guide on learning a particular gesture. It is highly unlikely 
that the ability to change scale or orientation will have any 
effect on the degree to which the user is guided, or subse-
quently learns the gesture. Once a user determines or se-
lects a particular scale and orientation, they will likely use 
the guide to continue drawing the gesture at that particular 
scale or orientation. That is, the users would still be guided 
to the same degree, they would just be guided to a different 
target gesture.  

Procedure 
Participants were shown where to place the pen on the 
screen to activate the guide and where their score would 
appear. They were told to accrue as many points as possible 
and that their score was derived from the similarity to the 
target gesture, with additional points for faster perfor-
mance. To compute the points, the training system awarded 

a) 

 

b) 

 

c) 

 
Figure 1: Behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) static-
tracing, and c) dynamic-tracing. Note that adaptive is not shown as its behavior is identical to the 'static-tracingʼ 
guide, except the guide is removed partway through the trial. 
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straight line. Lastly, the orange gesture, paired with ‘Find’, 
was composed of a long straight line connected to a short 
straight line at a 90° angle. 

Guide types 
We evaluated four types of gesture learning systems. Three 
of the guides have been previously described in the litera-
ture or are very similar to previously described guides 
(crib-notes, static-tracing, and dynamic-tracing), while the 
fourth (adaptive) is a novel contribution. 

The crib-notes guide used a half-scale depiction of the ges-
tures placed in the top-left corner of the screen (Figure 1a). 
Participants using this system were not informed of the 
scale relation between the guide and the target gesture, and 
learned the appropriate scale through the KP provided after 
each trial. This guide provides the least guidance, as partic-
ipants cannot directly compare their current trajectory to 
the template and the template does not adapt to their 
movement. 

The static-tracing guide used a full-scale depiction of each 
of the template gestures, radiating from the initial pen loca-
tion (Figure 1b). This guide allowed the participant to trace 
over the target gesture. As the participant drew their stroke, 
the guide was not updated in any way. The use of this guide 
allowed us to examine what effects the continuous updating 
has on the learning and performance of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ 
in Bau and MacKay [9]) used a full-scale depiction of the 
gestures, as with the static-tracing guide, but as the partici-
pant moved the pen, the guide dynamically updated to re-
flect the state of the recognizer (Figure 1c). As the partici-
pant drew their stroke, the opacity of each of the four ges-
tures was mapped to a function of the similarity between 
the participant’s trajectory and the template of the target 
gesture. Gesture similarity during training was measured by 
computing the RMSE between the participant’s trajectory 
and an equivalent path length from each of the target ges-
tures. In addition to modifying the opacity of the guide 
strokes, the initial segment of each the template gesture was 
removed (an amount equal to the current participant’s 
stroke length), and the result is appended at the current pen 
location. This procedure effectively provided the ‘feedfor-

ward’ information to help guide the participant to the cor-
rect performance. 

The adaptive guide provided a traceable guide identical to 
the one used in the static-tracing condition, but the guide 
disappeared at some point in time during the trial. The cur-
rent trial as well as the current length of the participant’s 
stroke determined when the guide disappeared. For the first 
trial, the guide disappeared once the participant’s stroke 
had the same path length as the target gestures. Midway 
through the trials, the guide disappeared once the partici-
pant’s stroke was half the path length of the target gestures. 
By the end trial, the gesture guide did not appear at all. This 
approach let participants initially trace the gestures with 
high accuracy and usability, but eventually required them 
to draw the gestures without the guide. While the imple-
mentation of this guide for the lab study is straightforward, 
as the number of trials is known, the implementation in a 
real-world scenario is potentially more difficult. Various 
methods of implementing an adaptive guide in a real-world 
scenario are described in the Discussion section. 

All of the guides used in this study were not dynamic in the 
sense that they changed scale or orientation in response to 
the user’s strokes, as in other recent guide designs [2,25]. 
This is an intentional choice, as it allows control over the 
exact gesture being learned by the participants. This deci-
sion allows more precision in studying the effects of the 
guide on learning a particular gesture. It is highly unlikely 
that the ability to change scale or orientation will have any 
effect on the degree to which the user is guided, or subse-
quently learns the gesture. Once a user determines or se-
lects a particular scale and orientation, they will likely use 
the guide to continue drawing the gesture at that particular 
scale or orientation. That is, the users would still be guided 
to the same degree, they would just be guided to a different 
target gesture.  

Procedure 
Participants were shown where to place the pen on the 
screen to activate the guide and where their score would 
appear. They were told to accrue as many points as possible 
and that their score was derived from the similarity to the 
target gesture, with additional points for faster perfor-
mance. To compute the points, the training system awarded 

a) 

 

b) 

 

c) 

 
Figure 1: Behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) static-
tracing, and c) dynamic-tracing. Note that adaptive is not shown as its behavior is identical to the 'static-tracingʼ 
guide, except the guide is removed partway through the trial. 
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straight line. Lastly, the orange gesture, paired with ‘Find’, 
was composed of a long straight line connected to a short 
straight line at a 90° angle. 

Guide types 
We evaluated four types of gesture learning systems. Three 
of the guides have been previously described in the litera-
ture or are very similar to previously described guides 
(crib-notes, static-tracing, and dynamic-tracing), while the 
fourth (adaptive) is a novel contribution. 

The crib-notes guide used a half-scale depiction of the ges-
tures placed in the top-left corner of the screen (Figure 1a). 
Participants using this system were not informed of the 
scale relation between the guide and the target gesture, and 
learned the appropriate scale through the KP provided after 
each trial. This guide provides the least guidance, as partic-
ipants cannot directly compare their current trajectory to 
the template and the template does not adapt to their 
movement. 

The static-tracing guide used a full-scale depiction of each 
of the template gestures, radiating from the initial pen loca-
tion (Figure 1b). This guide allowed the participant to trace 
over the target gesture. As the participant drew their stroke, 
the guide was not updated in any way. The use of this guide 
allowed us to examine what effects the continuous updating 
has on the learning and performance of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ 
in Bau and MacKay [9]) used a full-scale depiction of the 
gestures, as with the static-tracing guide, but as the partici-
pant moved the pen, the guide dynamically updated to re-
flect the state of the recognizer (Figure 1c). As the partici-
pant drew their stroke, the opacity of each of the four ges-
tures was mapped to a function of the similarity between 
the participant’s trajectory and the template of the target 
gesture. Gesture similarity during training was measured by 
computing the RMSE between the participant’s trajectory 
and an equivalent path length from each of the target ges-
tures. In addition to modifying the opacity of the guide 
strokes, the initial segment of each the template gesture was 
removed (an amount equal to the current participant’s 
stroke length), and the result is appended at the current pen 
location. This procedure effectively provided the ‘feedfor-

ward’ information to help guide the participant to the cor-
rect performance. 

The adaptive guide provided a traceable guide identical to 
the one used in the static-tracing condition, but the guide 
disappeared at some point in time during the trial. The cur-
rent trial as well as the current length of the participant’s 
stroke determined when the guide disappeared. For the first 
trial, the guide disappeared once the participant’s stroke 
had the same path length as the target gestures. Midway 
through the trials, the guide disappeared once the partici-
pant’s stroke was half the path length of the target gestures. 
By the end trial, the gesture guide did not appear at all. This 
approach let participants initially trace the gestures with 
high accuracy and usability, but eventually required them 
to draw the gestures without the guide. While the imple-
mentation of this guide for the lab study is straightforward, 
as the number of trials is known, the implementation in a 
real-world scenario is potentially more difficult. Various 
methods of implementing an adaptive guide in a real-world 
scenario are described in the Discussion section. 

All of the guides used in this study were not dynamic in the 
sense that they changed scale or orientation in response to 
the user’s strokes, as in other recent guide designs [2,25]. 
This is an intentional choice, as it allows control over the 
exact gesture being learned by the participants. This deci-
sion allows more precision in studying the effects of the 
guide on learning a particular gesture. It is highly unlikely 
that the ability to change scale or orientation will have any 
effect on the degree to which the user is guided, or subse-
quently learns the gesture. Once a user determines or se-
lects a particular scale and orientation, they will likely use 
the guide to continue drawing the gesture at that particular 
scale or orientation. That is, the users would still be guided 
to the same degree, they would just be guided to a different 
target gesture.  

Procedure 
Participants were shown where to place the pen on the 
screen to activate the guide and where their score would 
appear. They were told to accrue as many points as possible 
and that their score was derived from the similarity to the 
target gesture, with additional points for faster perfor-
mance. To compute the points, the training system awarded 

a) 

 

b) 

 

c) 

 
Figure 1: Behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) static-
tracing, and c) dynamic-tracing. Note that adaptive is not shown as its behavior is identical to the 'static-tracingʼ 
guide, except the guide is removed partway through the trial. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 

Session: Gesture Studies CHI 2013: Changing Perspectives, Paris, France
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Sensors
• Data sources: 

• Accelerometer & gyroscope 

• Vision 

• Muscle 

• Touch screen 

• Data types: 

• Time series 

• Point coordinates
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Extra

Not covered in the lecture 
= Not in the exam



WiSee use wifi signals for gesture recognition
(Pu et al., Mobicom ‘13)

Extra

Video: http://wisee.cs.washington.edu/



Recognition: template matching
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time for $N and even for $N-Protractor, albeit to a lesser
extent. For example, a 2-stroke gesture such as an “X” has
8 permutations to represent, and a 4-stroke gesture such as
a square has 4! × 24 = 384 different permutations. To sup-
port a cube, a symbol typically drawn with 9 strokes2, the
system must represent 9!× 29 = 185,794,560 permutations.
This exceedingly high number poses a challenge for mod-
ern desktops, let alone mobile platforms. Although $N uses
run-time optimizations that reduce the number of compar-
isons to stored permutations [2], the cost of storing these
permutations is currently its main limiting factor [3].

To address the aforementioned problems, we present our new
approach, the $P recognizer, which avoids the storage com-
plexity of $N by representing gestures as “clouds of Points”
and thus ignoring variable user behavior in terms of stroke
order and direction. Just like its predecessors $1 [23] and
$N [2, 3], $P yields high accuracy, low complexity, and low
barriers to adoption (only 70 lines of code, 50% reusing $1
code [23]). Experiments showed an average accuracy of 98%
for $P, which outperformed $N in both user-dependent and
user-independent testing3. Also, $P delivered >99% accu-
racy in user-dependent testing with 5+ training samples per
gesture and stayed above 99% for user-independent tests
when using data from 10 participants.

The contributions of our work include: (1) a straightforward
algorithm called $P that represents and recognizes stroke
gestures as point clouds; (2) an evaluation of $P showing
that it is more accurate and needs considerably less memory
than $N-Protractor [3]; and (3) a pseudocode listing for $P
to enable rapid uptake of this new member of the $-family of
stroke recognizers for user interface prototypes. Finally, to
assist developers in selecting the most suitable classifier for
their needs ($1, $N, $P), we contribute a “cheat sheet” for
the $-family of recognizers highlighting the main similarities
and differences among the family members.

2. RECOGNIZING POINT CLOUDS
Most limitations of the $N recognizer come from reasoning
about gestures in terms of a chronological order of drawn
points, which enforces a predefined order for strokes and
points within each stroke. In consequence, to retain user
independence, $N needs to permute and store gestures by
stroke order and direction, which considerably affects the
size of the training set [2, 3] and negatively impacts mem-
ory usage and system performance. However, such com-
plications no longer apply when reasoning outside the ges-
ture timeline. Discarding the timeline makes gestures ap-
pear as simple sets without any particular order associated
to strokes or points: {pi = (xi, yi) | i = 1..n}. Point pi does
not necessarily follow pi−1, nor does it necessarily precede
pi+1. Point p1 does not mark the starting point of the ges-
ture nor is pn its endpoint. Instead, gestures are seen as
unordered sets, or what we call clouds, grouping points to-
gether. By adopting this time-free view of gestures, aspects
such as the number of strokes, stroke ordering, and stroke
direction become irrelevant. To make an analogy, such a
diminished representation resembles the input of off-line op-
tical character recognition systems that only use bitmaps
delivered by an optical scanner [16].

2See http://embedded.eecs.berkeley.edu/research/hhreco/
3For conciseness, we use the term $N to refer to the state of the
art $N, which is $N-Protractor [3], an improved version over [2].

Figure 2: Point alignments for two spiral gestures.
The time-ordered alignment performed by $1 and
$N (a) fails when one of the spirals is simply drawn
backwards (b) which is why $N creates permutations
of all stroke orders and directions in its training set.
The time-free alignment of point clouds (c) ignores
such execution details.

In order to better highlight the advantages of discarding the
execution timeline, Figure 1 illustrates some of the many
ways to draw a square. Drawing a square could be done
via 1, 2, 3, or 4-stroke gestures with many variations for the
individual strokes in terms of ordering and direction. In-
stead, when looking at the same gesture as a simple cloud
of points with no time labels, all such execution details are
hidden away into the final result. Indeed, just by looking at
the point cloud of Figure 1, the reader cannot tell whether
this is a unistroke or a multistroke gesture; whether it is
composed of 2 or 3 strokes; or what the order and direction
of strokes might be. We argue that the answers to these
questions are not essential for recognizing the gesture, and
in many cases they even complicate the structure of the rec-
ognizer [2] rather than helping with classification.

Once the gesture execution timeline has been discarded, the
number of strokes, stroke ordering, and stroke direction be-
come irrelevant. The task of the recognizer remains to match
the point cloud of the candidate gesture (C) to the point
cloud of each template (T ) in the training set and compute a
matching distance. In the tradition of the Nearest-Neighbor
approach, the template located at the smallest distance from
C delivers the classification result.

We define the matching between two point clouds C and T
as a function M that associates each point Ci ∈ C with
exactly one point Tj ∈ T , Tj = M(Ci). If C and T have
been both resampled4 into the same number of points n,
then the matching will also consist of exactly n pairs of
points. Inspired by the Euclidean sum of $1 [23] and the
Proportional Shape Distance of Shark2 [13], we define the
goodness of matching M as the sum of Euclidean distances
for all the pairs of points from M:

n
∑

i=1

∥Ci − Tj∥ =
n
∑

i=1

√

(Ci.x− Tj .x)
2 + (Ci.y − Tj .y)

2 (1)

In this equation, j depends on i but, for ease of notation, we
only iterate on i and discard additional notation formalisms
by simply considering that point Ci from the first cloud was
matched to point Tj from the second cloud by some match-
ing algorithm implementing M. Note that when j equals
i (i.e., M = {(Ci, Ti) | i = 1..n}), the formula becomes the
Euclidean sum of the $1 recognizer. Figure 2 illustrates
the difference between time-ordered (a and b) and time-free
point alignments (c).
4Resampling is a common practice in gesture preprocessing [2,
14, 20, 23] in order to uniformize input data for classifiers.
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ABSTRACT
Rapid prototyping of gesture interaction for emerging touch
platforms requires that developers have access to fast, sim-
ple, and accurate gesture recognition approaches. The $-
family of recognizers ($1, $N) addresses this need, but the
current most advanced of these, $N-Protractor, has signifi-
cant memory and execution costs due to its combinatoric
gesture representation approach. We present $P, a new
member of the $-family, that remedies this limitation by con-
sidering gestures as clouds of points. $P performs similarly
to $1 on unistrokes and is superior to $N on multistrokes.
Specifically, $P delivers >99% accuracy in user-dependent
testing with 5+ training samples per gesture type and stays
above 99% for user-independent tests when using data from
10 participants. We provide a pseudocode listing of $P to
assist developers in porting it to their specific platform and a
“cheat sheet” to aid developers in selecting the best member
of the $-family for their specific application needs.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies; I.5.2 [Pattern Rec-
ognition]: Design Methodology—Classifier design and eval-
uation

General Terms
Algorithms, Experimentation, Performance

Keywords
Gesture recognition, point clouds, comparing classifiers, mul-
tistrokes, Euclidean, Hausdorff, Hungarian, $P, $1, $N.

1. INTRODUCTION
The currently increasing mainstream use and adoption of
touch input devices like the iPad, iPhone, and Microsoft
Surface, along with the surge in touch-based app develop-
ment, fosters a rising need for tools to support development
for such platforms. New applications may require gesture
recognition tailored to new gestures that are simply not built
into existing software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’12, October 22–26, 2012, Santa Monica, California, USA.
Copyright 2012 ACM 978-1-4503-1467-1/12/10 ...$10.00.

Figure 1: Even a simple square can be drawn using
1, 2, 3, or 4 strokes which can vary in order and
direction (with a total of 442 possible cases). How-
ever, all the articulation details are ignored when
looking at the square as a time-free cloud of points.

State-of-the-art gesture recognition techniques, such as Hid-
den Markov Models [19], feature-based statistical classifiers
[17, 22], or mixture of classifiers [12], typically require signif-
icant technical knowledge to understand and develop them
for new platforms, or knowledge from other fields such as
graph theory [11]. Therefore, our growing body of work
has been tackling this problem by proposing low-cost, easy
to understand and implement, yet high performing, gesture
recognition approaches [2, 3, 23]. These approaches, which
we will call the $-family of techniques, involve only simple
geometric computations and straightforward internal repre-
sentations. Furthermore, the algorithms are highly accessi-
ble through the publication of pseudocode which developers
may use for their own platforms. Indeed, both $1 and $N
have experienced swift uptake with implementations avail-
able in JavaScript, C#, and Objective-C by third-party de-
velopers1.

Yet the $-family approaches each have limitations. For ex-
ample, $1 and Protractor only handle unistroke gestures [14,
23]. $N and $N-Protractor have focused on remedying this
limitation, adding support for multistrokes [2, 3]. The $N
approaches do so by treating multistrokes as unistrokes ob-
tained by connecting individual strokes“in the air” [2], which
enables them to use the same matching algorithm as $1.
However, as stroke order and direction may differ among
users drawing the same symbol (Figure 1), $N needs to gen-
erate all possible permutations of a given multistroke [2, 3],
which causes an explosion in both memory and execution

1See “$1 implementations by others” at $1 homepage,
http://depts.washington.edu/aimgroup/proj/dollar/
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$P recognizer

Software & online demo:
https://depts.washington.edu/aimgroup/proj/dollar/



Recognition: machine learning
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Ready-to-use Gesture Recognition Toolkit:
http://www.nickgillian.com/software/grt



Zensors: hybrid crowd sourcing and machine learning
(Laput et al., CHI ‘15)
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Video: http://zensors.chrisharrison.net/
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Across all users, the average estimated project cost was 
$3,044 (SD=$2,113), with an average completion time of 
4.5 weeks (SD=2.2 weeks), excluding time spent for data 
collection. While these results are anecdotal – given that 
none of the developers went ahead and actually built the 
system – we do believe it illustrates the significant com-
plexity, cost and development time of special purpose com-
puter-vision-driven sensing systems. 
ZENSORS 
We now describe how Zensors provides end-users with in-
telligent sensing capabilities, leveraging both crowd-
sourcing and machine learning. Figure 1 provides an illus-
trated overview of the architecture. 
System Architecture 
First, a mobile application serves as the primary end-point 
for creating and modifying sensors. Users highlight a region 
of the camera image and an associated question, e.g., “how 
many parking spots are available?” As images stream from 
the device’s front-facing camera, our system intelligently 
decides when to push requests to the crowd. 
Next, crowd workers process these requests through a web-
based interface. To reduce noise and reject malicious work-
ers, several answers are collected per image, then fused to-
gether using quality-control algorithms (e.g., voting) to de-
termine the best response for a given instance. Finally, the 
responses gathered from the crowd are stored into a back-
end database. These responses provide immediate, human-
intelligent answers to the questions asked by users, and also 
serve as a corpus for training computer-vision based, ma-
chine learning classifiers. 
Sensors from Images 
Leveraging cameras as multi-purpose sensors. From mobile 
phones, security cameras, and Kinects in people’s living 

rooms, cameras are everywhere. They continue to become 
more powerful, while remaining small. More importantly, 
time-series data from cameras offers rich contextual infor-
mation about an activity or environment far more than what 
basic sensors (e.g., proximity) can provide. One can ask 
several multi-dimensional questions from camera images 
across a time period, such as “how many people are smil-
ing?”, “is it sunny?” or “is the table messy?”, all of which 
provide useful information in learning about the context or 
activity within an environment. Thus, the cost, availability, 
and information bandwidth that cameras offer make them an 
ideal “multi-purpose” commodity sensor. 
Repurposing old mobile devices as sensor hosts. Users up-
grade their devices on average once every two years [27]. It 
is not uncommon for people to have a slew of older smart 
devices stashed in a drawer or closet. Although older, these 
devices are capable computers, typically featuring one or 
more cameras, a touchscreen, and wifi connectivity. This is 
the ideal platform for rapidly deployable, image-based sens-
ing. Users simply download our Zensors app onto the de-
vices, which allows them to create or modify sensors. Users 
then "stick" the device in a context of their choosing.  
WiFi Cameras. Zensors can also utilize stand-alone wifi-
enabled cameras, costing as little as $30 today. In this case, 
a web interface can be used to define sensors (Figure 3). 
Privacy Preservation 
Image Subregions. Contextual information from cameras 
creates an inherent tradeoff between information and priva-
cy [4,5,14]. A naïve approach would utilize the entire raw 
image. However, this can easily violate privacy, especially 
when personally identifying information is present, or when 
images depict people in sensitive situations. To partially 
mitigate this issue, our system asks users to select an arbi-

 

Figure 1. Zensors architecture. A bartender repurposes a tablet as a sensor host, affixing it to the wall behind the bar (A). 
Using the live view from the front facing camera, he selects a region of the scene and asks, “how many glasses need a 
refill?” (B). Periodically, the device takes snapshots, and forwards this data to a dispatcher (C). Initially, the dispatcher 
uses crowd workers to power the sensor, providing immediate human-level accuracy (D). In the background, answers 
from the crowd train a computer-vision-based, machine learning classifier (E). As it approaches crowd-level accuracy, the 
system employs a hybrid crowd-ML scheme to power the sensor stream. Sensor output can drive end-user applications, 
such as a real time visualizer (F, left) or event-based end-user programmable system (F, right). 

 
(Laput et al., CHI ‘15)
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Summary
• Design principles for gestural systems 

• Gesture elicitation and taxonomy 

• Gesture accuracy measures 

• Gesture guidance and learning 

• Sensor data and gesture recognizers

43

Reading assignment: Vatavu et al. "Relative accuracy 
measures for stroke gestures."  ICMI ’13.
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