
by
Sven Jung

Leap Blender:
A Software Testbed

for Bare Hand Input
in 3D Graphics

Editing

Bachelor’s Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Torsten Kuhlen

Registration date: 28.05.2014
Submission date: 25.09.2014

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2014
Sven Jung

v

Contents

Abstract xiii

Acknowledgments xv

Conventions xvii

1 Introduction 1

1.1 Mainstream Graphical Input Device 1

1.2 Bare-Hand Input Device 2

1.3 User Studies for Graphical Input Devices . . 3

1.4 Contributions 4

2 Related Work 5

2.1 Bare-Hand Input Devices 5

2.2 Leap Motion Controller in Research 6

2.3 Bimanual Interaction 7

3 Software Testbed 9

vi Contents

3.1 Environment 9

3.2 Structure . 10

3.3 Functionality 15

3.3.1 Displaying 15

3.3.2 Transformation 17

Leap Motion to Camera Transformation 18

Camera to Blender Transformation . . 19

3.3.3 Gestures 21

3.3.4 Pinch 21

3.3.5 Flathand 24

3.3.6 Modes 27

3.4 Extensibility 28

3.4.1 StudyLogger 29

3.4.2 Simulator 30

3.4.3 Settings 31

4 Case Study: Replicating Symmetric Bimanual In-
teraction Study 33

4.1 Experiment . 33

4.1.1 Tasks 33

4.1.2 Setups 35

4.2 Metrics . 36

4.3 Apparatus . 38

Contents vii

4.3.1 Touchscreen Setup 39

4.3.2 Leap Motion Controller Setup 39

4.4 Participants 39

4.5 Design . 39

4.6 Hypotheses 42

4.6.1 Each Setup 42

4.6.2 Overall 43

5 Results and Discussion 45

5.1 Results . 45

5.1.1 Performance 45

5.1.2 Symmetry 47

5.1.3 Parallelism 49

5.1.4 Comparison of Setups 51

5.1.5 Comparison to Original Study 52

5.1.6 Limitations 52

6 Summary and Future Work 53

6.1 Summary and Contributions 54

6.1.1 Case Study 54

6.1.2 Software Testbed 56

6.2 Future Work 56

A Study user information 59

viii Contents

Bibliography 63

Index 65

ix

List of Figures

1 Axis convention in 2D xviii

2 Axis convention in 3D xviii

3 Axis convention of Leap Motion Controller . xix

4 Graph convention for statistic evaluation . . xix

1.1 Overview of input devices 3

3.1 Overview of layer structure 11

3.2 Context of modularity 14

3.3 Overview of data-flow 15

3.4 Depth sense 16

3.5 Coordinate system transformations 18

3.6 Gestures . 23

3.7 Customized scene example 28

4.1 Tracking task 34

4.2 Setup overview 36

4.3 M-metric for parallelism 38

x List of Figures

4.4 Path overview 41

5.1 Evaluation of overall tracking performance . 46

5.2 Evaluation of symmetry (overview) 47

5.3 Evaluation of symmetry (hands) 48

5.4 Evaluation of symmetry (all factors) 50

5.5 Evaluation of parallelism 51

A.1 Consent form 60

A.2 User information form 61

xi

List of Tables

2.1 Property comparison of bare-hand input de-
vices. 6

5.1 Comparison of the hypotheses among the
three setups. 51

5.2 Comparison of the results between our study
and the original study. 52

xiii

Abstract

New bare-hand input devices have been invented to simplify the input for the user,
especially in 3D manipulation tasks. These devices use free hand gestures as input.
Many research questions about the behavior of the user using this new kind of
input device are open. In this thesis the software testbed ”Leap Blender: A Software
Testbed for Bare Hand Input in 3D Graphics Editing” is presented. It is a platform
to manipulate objects in Blender with the Leap Motion Controller, which can be
customized and extended. With this program tasks for user studies investigating
bare-hand input can be created easily. No longer a new system for each research
question and task has to be developed expensively, like it was done before.
In the end, a study which makes use of this testbed is presented to show how it
can be customized. The study investigates the natural behavior of the user using a
touchscreen and the bare-hand input device Leap Motion Controller to perform 2D
and 3D tasks.

xv

Acknowledgments

First, I would like to thank Chatchavan Wacharamanotham for his guidance and
support.

Thanks to the people of the i10 for the nice work environment and to the people
who participated in my study.

I would like to thank Prof. Dr. Jan Borchers and Prof. Dr. Torsten Kuhlen for their
time.

Special thanks goes to my girlfriend, who supported me over the course of my
thesis.

Thank you!

Sven Jung

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

The whole thesis is written in American English.

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Hypotheses are marked with a H and a number for identi-
fication.

H1:
Input device A is better than B. Hypothesis:

H1

Source code and implementation symbols are written in
typewriter-style text.

myClass

Experimental factors and conditions are emphasized:

factor

xviii Conventions

Graphical conventions

Two-dimensional axis convention:

(0,0) X

Y

Figure 1: Axis convention in 2D.

Three-dimensional axis convention:

(0,0,0)

Y

X

Z

Figure 2: Axis convention in 3D.

Conventions xix

Leap Motion Controller axis convention:

(0,0,0)

Z

X

Y

Figure 3: Axis convention of the Leap Motion Controller.

Evaluation conventions

Graphs with mean and 95% confidence interval are used
for statistical evaluation:

Y

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1
X

Figure 4: Graph convention for statistic evaluation: using mean
and 95% confidence interval.

xx Conventions

Formula conventions

Formulas are indented and italicized:

a2 + b2 = c2

Vector notation:

−→vec =

a
b
c



Matrix notation:

Matrixpurpose

The coordinate system of a vector is marked with an infe-
rior character, L for the Leap Motion coordinate system, C
for the camera coordinate system, and B for the Blender co-
ordinate system:

−→vecB

1

Chapter 1

Introduction

This chapter is an introduction to the topic of input de-
vices and the problem of finding the best use of them in
programs to provide a most natural usage to the user. Fur-
thermore, the topic of symmetric bimanual interaction is
introduced and the contributions of this thesis are outlined.

To communicate with a computer, an input device is nec- Necessity of an input
deviceessary. Many kinds have been invented and analyzed con-

cerning the natural use by a user in order to integrate them
in programs and make the usage easy and intuitive.

1.1 Mainstream Graphical Input Device

The first and still mostly used device is the mouse (figure Mouse is a proven
standard input
device.

1.1a), which in combination with a keyboard is the standard
input device for the computer. Most of the graphical user
interfaces are optimized for a mouse and every new kind of
input device has to fight against it - a proven, accurate, and
fast hardware. But there are also negative aspects, like the
time for homing1 and a relative mapping2.

1Time to switch from the mouse to the keyboard
2The movement of the mouse is transfered to a movement for the

cursor. The position of the mouse and the position of the cursor are not
interdependent

2 1 Introduction

Another kind of input device is the tablet or touchscreenTouchscreen allows
direct manipulation. (figure 1.1b). Even if it has not reached to replace the mouse

completely, it is an established way of communicating with
a computer today. The advantage of them is a direct in-
put3, what provides an intuitive usage and a faster point-
ing. But they have a lack in accuracy - programs have to be
adapted or designed especially for this input device to pro-
vide a GUI4, which can be operated easily. They are used
where it is annoying to have a mouse or an intuitive usage
is required - for example, hand-held tablets or info-screens.

1.2 Bare-Hand Input Device

People always dreamed of using the 3D space for inputBare-hand devices
add a 3rd dimension

and are more
intuitive.

and with that the most natural mapping. They are called
bare-hand input devices and let the user use hand gestures
for interaction. Conceptual models have been invented,
like the Mockup Builder from Ara‘jo et al. [2012], which
is a combination of a touchscreen and a 3D input above.
The problem is that the hardware is expensive and restricts
the free movement of the user. More commercial products
are the Kinect5 from Microsoft or the Vicon6 system. Both
are expensive and require good programming skills to in-
tegrate them into an application. The Leap Motion Con-
troller7 (figure 1.1c) is small, less expensive, and makes use
of the space above the keyboard. It also provides a sim-
ple API for several languages. Even if bare-hand devices
are still expensive and not that accurate, the further devel-
opment will go on. The great advantage for 3D graphics
editing is that this kind of device adds a 3rd dimension.

3Objects can be manipulated directly by touching them on the dis-
play.

4Graphical User Interface
5www.kinect.com
6www.vicon.com
7www.leapmotion.com

www.kinect.com
www.vicon.com
www.leapmotion.com
www.leapmotion.com

1.3 User Studies for Graphical Input Devices 3

Figure 1.1: Overview of input devices: (a) mouse, (b) touchscreen and (c) Leap Motion
Controller.

1.3 User Studies for Graphical Input De-
vices

In order to compare different input devices and find the Time intensive
studies for
investigating how to
interact with a
device. Testbed
shortens the
implementation
phase.

best method of handling an input device in computer pro-
grams, studies are necessary. Independent from the input a
study needs a well structured task to gather data. Besides,
hypotheses, the right experimental setup, and the imple-
mentation of the task is a main factor in the planning of a
study. Even if the structure of the input is often the same
(e.g. coordinates of the input device), every study group
implements its own system. The drawback of implement-
ing everything from scratch is that common parts have to
be reimplemented all the time - for example, logging, coor-
dinate transformation, and gestures. Additionally, a reim-
plementation is error-prone. These factors take a lot of time
of a study process. This is where the testbed Leap Blender
comes into, which provides base functionality for imple-
menting tasks of a study. That shortens the implementation
process to study specific requirements. Details are given in
chapter 3 “Software Testbed”.

In order to test the quality and the real benefit of the A study of symmetric
bimanual interaction
tests the testbed.

testbed, a case study was conducted. Especially bare-hand
devices are not yet studied much and studied behavior of
the mouse and touchscreen has to be checked for its validity
with bare-hand devices. So, there are many open research

4 1 Introduction

questions. Because the interaction with bare-hand input de-
vices is no longer bound to a physical device, bimanual in-
teraction8 came up. This new interaction principle enables
the user to perform two tasks at the same time. Whereas
asymmetric assignment9 is already studied much, the less
studied symmetric assignment10 of tasks to the hands is
very effectively in 3D editing. The study of how attention,
task speed, and visual integration affect the performance
and the motions of the user enabled us to derive patterns
for designing interfaces. Further information are given in
chapter 4 “Case Study: Replicating Symmetric Bimanual
Interaction Study”.

1.4 Contributions

The main contributions are the following:

• Design and implementation of the testbed “Leap
Blender” to provide fast task development and study
conduction for bare-hand input devices (Chapter 3
“Software Testbed”).

• A user study about the natural behavior of the user
performing a symmetric bimanual object tracking
task with a touchscreen for 2D input, the Leap Motion
Controller for 2D input, and the Leap Motion Con-
troller for 3D input (Chapter 4 “Case Study: Replicat-
ing Symmetric Bimanual Interaction Study”).

In the following, existing systems and related studies are
presented. Then the implementation of our own system is
described and the setup and conditions of the study is pre-
sented. Afterwards, the study are discussed and evaluated.
In the end, a summary of the thesis, future work, and pos-
sible additional studies are given.

8Two-handed input
9Two different roles for each hand

10Identical role for each hand

5

Chapter 2

Related Work

The previous chapter pointed out the most common input
devices and the bare-hand devices as the current research
area. Many different approaches came up in the last years
with different advantages and disadvantages. This chapter
discusses different bare-hand input devices and their com-
parison. Besides, information about the by this new kind of
device enabled bimanual interaction are given.

2.1 Bare-Hand Input Devices

The most known bare-hand input device is the Kinect1 from There are several
bare-hand input
devices.

Microsoft. Actually developed as input device for games it
is used for any kind of body movement recognition today.
The 3Gear2 system, for example, provides a software kit to
get movement and gesture information from the Kinect de-
vice for further use in applications. A wearable approach
are Data Gloves3, which recognize finger movements of the
user. In 2012 a controller especially for mid-air gestures
was published, the Leap Motion Controller4 . These devices
vary in different properties and have different advantages
and disadvantages (see comparison in table 2.1).

1www.kinect.com
2www.threegear.com
3www.vrealities.com
4www.leapmotion.com

www.kinect.com
www.threegear.com
www.vrealities.com
www.leapmotion.com

6 2 Related Work

Kinect 3Gear Data Gloves Leap Motion
Price 200e 220e 150e -1500e 100e
API C# C++, C#, Java C 6 common, web port

Space needed large distance big stand none small above keyboard
Accuracy good good just fingers middle, but improved

Applications Games No No App Store
Gestures Grip, Point No No Circle, Swipe, Tabs

Table 2.1: Property comparison of bare-hand input devices.

The Leap Motion Controller is suitable as representativeLeap Motion
Controller is a good

choice as
representative for

bare-hand devices.

for bare-hand input devices. It is commercially available
and the software is improved continuously to provide bet-
ter accuracy and more gestures. “Comparable controllers
in the same price range, e.g., the Microsoft Kinect, were
not able to achieve this accuracy,” said Weichert et al. [May
2013]. Furthermore, it is quite inexpensive compared to
other input devices. The dimensions of the controller are
just 7.6 x 3 x 1.3 cm on a desktop where already a keyboard
and a mouse are. It has a very good compatibility by sup-
porting common programming languages and a web port.
Since it was developed only for motion and gesture recog-
nition, the provided information are presented very well:
wrapped into gesture, finger, and hand objects with cer-
tain attributes. These advantages, compared to the other
devices, make the Leap Motion Controller interesting for
several studies.

2.2 Leap Motion Controller in Research

The Leap Motion Controller has been used in manySeveral studies used
the Leap Motion

Controller.
different studies investigating bare-hand input.

2.3 Bimanual Interaction 7

Vatavu et al. [2014] used the controller to evaluate dif-
ferent gestures for controlling a tv. Potter et al. [2013]
conducted a study about the potential of the Leap Motion
Controller to recognize the Australian Sign Language. To
improve creativity, Sutton [2013] used the controller to
create an air painting application. Zubrycki et al. [2014]
compared the Leap Motion Controller to the 3Gear system
in order to control a 3-finger gripper.

Nunnari et al. [Last visited: Juli 2014] wrote a Blender plug- Leap Motion
Controller is used for
3D editing.

in to use the Leap Motion Controller for manipulation of
3D scenes. Since Blender is a ready-to-use 3D editing envi-
ronment, its functionality can be used to model objects and
create scenes easily. The plug-in then uses the data from the
Leap Motion Controller to manipulate objects.

2.3 Bimanual Interaction

Buxton et al. [1986] and Balakrishnan et al. [1999] showed Symmetric
interaction
outperforms
asymmetric
interaction.

that bimanual techniques outperform one-hand tech-
niques. In our study we used bimanual interaction as a
test case. A model to describe this interaction technique
is the kinematic chain model of Guiard [1987] , which says
that naturally one hand follows the other. Bimanual inter-
action can be symmetric or asymmetric - symmetric biman-
ual interaction means an identical assignment of roles to the
hands, asymmetric a different assignment of roles. Results
of Casalta et al. [1999] showed that symmetric assignment
results in better performance and parallelism.

Balakrishnan et al. [2000] investigated how symmetric Several factors
influence symmetric
bimanual interaction.

bimanual tasks are performed and which potential fac-
tors may influence symmetric bimanual interaction. They
found out that increased difficulty, divided attention, and
missing visual integration lead to a more sequential con-
duction of a symmetric task. Also, there is a slight asym-
metry of 8% between the left and right hand, regarding to
the error.

8 2 Related Work

This chapter showed that the Leap Motion Controller is
suitable as representative for bare-hand input devices.
There is a great interest of using the Leap Motion Controller
as bare-hand input device in studies to answer questions of
many different kinds. Therefore, a testbed which provides
basic functionality would be a great simplification and save
time for further studies. In the next chapter our testbed is
presented and detailed design decisions are given.

9

Chapter 3

Software Testbed

In order to avoid the explained drawbacks of a reimple- Customizable
testbed safes time
and avoids
drawbacks of
reimplementation.

mentation and to save time when designing a study, we im-
plemented a testbed with some base functionalities which
can be easily customized. Because there are already some
studies with the Leap Motion Controller, there seems to
be the need of such a testbed. This chapter is about the
software testbed we developed and gives detailed informa-
tion about design decisions and the structure of the pro-
gram. Furthermore, steps how to customize the testbed for
a study are explained. Please find an instruction of how to
install the software in the “install” directory of the program
files.

3.1 Environment

As environment the open-source1 3D graphics editing soft- Blender is used as
environment,
because of 3D
graphics editing
functionality.

ware Blender2 is used. It is free for everyone and any
kind of use. Besides, the main distributions are sup-
ported - Windows, Mac, and Linux - and the source code is
open. Blender provides functionalities for creating complex
scenes, modeling objects, animations, and rendering. Al-
though no very special tools are needed for creating a study

1GPL licensed
2www.blender.org

www.blender.org

10 3 Software Testbed

task scene, the base functionalities of displaying, modeling,
and moving objects are given and an own implementation
would be error prone and take a long time. Furthermore,
Blender provides a Python3 integration, so that manipula-
tions can be done by using a large and well-documented
API with an interactive console and a text editor to write
scripts. This allows to create complex tasks with the tools
of Blender and add logic by scripts.

3.2 Structure

There are four main actors in this program: Blender as en-Layer structure
encapsulates the

different parts.
vironment, the scene of Blender for handling the objects
and the appearance, the Leap Motion Controller which pro-
vides the data of detected hands and fingers on a web port,
and finally Python to manipulate the scene by the provided
API in order to add logic. Figure 3.1 shows the layer struc-
ture of the testbed. This layer structure encapsulates the
design from the logic and the data part. The functional-
ity of the testbed is implemented in Python to process the
data of the Leap Motion Controller. The object data are ex-
changed between Python and Blender in order to manipu-
late the current state of objects. Blender automatically up-
dates the scene according to the states set by the Python
module or uses the scene to get the information requested
by the Python module.

The explained layers and an interface structure are chosenInterface structure for
adaptability of the

testbed.
to make the testbed easily customizable (see figure 3.1). To
use the testbed for a study, first the appearance of a task
has to be designed in the scene with the functionality of
Blender. Afterwards, the Simulator can be modified to
add custom logic to the scene. The StudyLogger can be
customized to gather task specific information for an eval-
uation. Of course the structure of the different Python mod-
ules of the testbed can be extended to add more base func-
tionality. A more detailed explanation of how to customize
these modules can be found in section 3.4.

3Interpreted high-level programming language

3.2 Structure 11

ExtensionsStudyLogger Simulator

RawLogger

Figure 3.1: Overview of the layer structure, which encapsulates each part from the others.

For the Python part of the testbed a modularization is cho- Modularization of the
Python part supports
extensibility of the
testbed.

sen to make the testbed understandable and extendable.
Each of the modules has its own area of responsibility (see
classes and association in functionality in figure 3.2). Figure
3.3 shows the data-flow of the data of the Leap Motion Con-
troller between the python modules and the concurrency of
receiving and processing.

The main Python module is the LeapModal operator,4 Detailed description
of the modularized
structure.

which handles the singletons, the data handling, and the
sequential processing of the data. This operator is continu-
ously called by Blender (50 Hz; can be changed in the set-
tings) in order to update the scene according to the data
of the Leap Motion Controller. A separate LeapReceiver
thread receives and stores the data of the Leap Motion
Controller, so that the stored data are always the newest.
Since the LeapReceiver works with a blocking socket
connection, we assume that the update rate equals the up-

4Blender Operator: modal execution

12 3 Software Testbed

date rate of the Leap Motion Controller, which is up to
200 fps and depends on the number of detected objects.
The data are inquired by the main operator in each update
step and given to the Manipulator. The Manipulator
uses the data structure of the Leap Motion Controller to
update and create Finger and Hand objects, which build
the data model of the testbed. These objects implement
the functionality of independently displaying the finger-
tips as cursors. At initialization time the Finger and
Hand objects get passed the data structure of the Leap Mo-
tion Controller and then use the LeapSelector to extract
necessary information. The Manipulator also calls the
GestureHandler, which detects gestures and creates ges-
ture objects by using the available Finger and Hands ob-
jects. The GestureHandler then updates the gesture ob-
jects in each update step (see section 3.3.3 for more infor-
mation about the gesture recognition). A gesture object
handles the task and the end of the gesture by using in-
formation provided by the Hands and the Fingers. This
structure of independent gesture objects and a central ges-
ture management enables an easy extensibility. After the
call of the Manipulator the LeapModal operator calls
the Simulator, where the scene can be manipulated in
each update step, like moving an object around (see sec-
tion 3.4.2 for more information about adding logic to the
scene). Finally, the main operator calls the StudyLogger
module, where study related states of objects can be logged
into a file or on a console (see section 3.4.1 for information
about logging). The structure of calling the Simulator
and the StudyLogger frequently during an update step
provides the interface for a customization of the two main
requirements for a study: to animate the task and to log
necessary information. Four singletons can be called by ev-
ery module and provide general functionality. This avoids
a confusing structure of passing the objects to a module
which needs them. The function getLogger(name) re-
turns a logger object, which can be defined in the settings
and used in a certain scope to have different logger for dif-
ferent modules to log debug information to the console. A
Transformator provides functions to transform coordi-
nates from one coordinate system to another (for explana-
tions of the used transformations see section 3.3.2), to get
projections of a vector, or to get camera parameter. The

3.2 Structure 13

LeapSelector offers functions which take the data pro-
vided by the Leap Controller and return requested parts
of it. This module is necessary to have the structure of
the input device data independent and replaceable from
the structure used by the testbed. The last singleton is
the ObjectHandler, which handles the objects used for
displaying and provides functions to manipulate them in
order to be able to manage the objects at a central place
and keep the scene clean. All parameters are handled by a
settings file, which is included by every module to pro-
vide a place where the testbed can be adjusted. In this file
parameters like the update rate of the LeapModal opera-
tor, the debug level of the logger of each module, or the
thresholds for starting a gesture can be adjusted. For the
full list of parameters have a look into the settings file, each
parameter is documented there.

The GUI is designed by a Panel with buttons to call dif- GUI for controlling
the testbed.ferent operators. For example, the “Start” button calls the

LeapModal operator to start the program. Some opera-
tors set global flags to handle if different modules of the
testbed are called during the sequential processing of the
LeapModal operator. Therefore, the “Start logging” button
calls an operator which sets a logging flag. Then, during the
update step the StudyLogger is called.

In order to get a better performance, basic logging func- RawLogger in
Blender source code
for basic logging
functionality.

tionality is outsourced to Blender itself so that with the
StudyLogger module only task related logging has to be
done (See figure 3.1). This RawLogger is called internally
in Blender and can be started and stopped separately from
the GUI. It logs selections and movements of objects and
points of meshs. Also button and mouse presses are cap-
tured. For that, a logging module is added to the source
code of Blender. This module checks in each update step if
the selection or the position of an object has changed and
logs changes into a log file.

14 3 Software Testbed

Le
a
p

M
o
d

a
l

Le
a
p

R
e
ce

iv
e
r

se
tt

in
g

s
lo

g
g

e
r

Tr
an

sf
or

m
at

or
O

b
je

ct
H

a
n
d

le
r

Fi
n
g

e
r

H
a
n
d

M
a
n
ip

u
la

to
r

Le
a
p

S
e
le

ct
o
r

g
lo

b
a
l
G

U
I

st
a
te

s

U
IP

a
n
e
l

P
in

ch
Fl

a
th

a
n
d

O
n
e
E
u

ro
Fi

lt
e
r

G
e
st

u
re

H
a
n
d

le
r

G
e
st

u
re

 R
e
co

g
n
it

io
n

S
im

u
la

to
r

S
tu

d
y
Lo

g
g

e
r

E
x
te

n
si

b
ili

ty

D
a
ta

 M
o
d
e
l

S
in

g
le

to
n
s

Fi
gu

re
3.

2:
C

on
te

xt
of

th
e

di
ffe

re
nt

Py
th

on
m

od
ul

es
in

vo
lv

ed
in

th
e

te
st

be
d

an
d

as
so

ci
at

io
n

in
fu

nc
tio

na
lit

y.

3.3 Functionality 15

Leap Motion
Controller

LeapReceiver LeapModal Manipulator GestureHandler

Figure 3.3: Overview of the flow of data, detected by the Leap Motion Controller, in the
program.

3.3 Functionality

Besides a modularized structure, there are other basic func-
tionalities provided by the testbed.

3.3.1 Displaying

To use a bare-hand input device, the user needs a point of Each Finger

displays a sphere as
cursor at the fingertip
position.

reference in the program to know where he is manipulating
at the moment, like a mouse cursor. In this testbed spheres
are used to display the fingertips. For that, each Finger
object has the logic to independently request a free display-
ing object from the ObjectHandler at creation and return
it at deletion time. This object is used by the Finger to dis-
play the fingertip in the view of the camera. The position
of the displaying object is adapted in each update step ac-
cording to the data from the Leap Motion Controller. The Torus and cylinder

provide a sense of
depth.

distance of the cursors to the camera can be edited in the
settings. To provide a sense of depth, additionally to the
cursor spheres a torus is shown at the projection of each
fingertip onto the ground plane:

−−−−−−−→
cursorLocB =

x
y
z


−−−−−−→
torusLocB =

x
y
0


A cylinder connects the sphere and the torus (see figure
3.4). The length of the cylinder is adapted to the distance
between the cursor sphere and the torus and the location

16 3 Software Testbed

Figure 3.4: Displaying a torus and a vertical cylinder as addition to the finger cursors in
order to provide a sense of depth.

of the cylinder is set to the point in the middle between the
sphere and the torus:

−−−−−−−−→
cylinderLocB =

 x
y
z/2



cylinderLenB = |z|

These two objects are also managed by the Finger itself.
The idea is taken from the system Wang et al. [2011] devel-
oped.

In order to provide feedback to the user if something is se-Selected objects are
colored. lected, selected objects are colored. For that, the Pinch

gesture hides all Finger objects of the gesture if a grab
is detected and calls the ObjectHandler to color the se-
lected object. If the grab is released, the Finger objects are
displayed again and the ObjectHandler requested to re-
move the color of the object.

3.3 Functionality 17

3.3.2 Transformation

The Leap Motion Controller and Blender have their own Transformations of
the data between the
coordinate systems
are necessary.

coordinate system what requires a coordinate transforma-
tion before displaying. Additionally, there is the coordi-
nate system of the camera to provide displaying of the
cursors according to the current view. For this transfor-
mations the Transformator singleton is responsible and
provides functions to transform coordinates from one co-
ordinate system to another. As described in section 3.2,
the Manipulator passes the data structure of the Leap
Motion Controller to the Hand and Finger objects at cre-
ation and at update time. Therefore, the objects get the
data in the coordinate system of the Leap Motion Con-
troller. Then, the necessary information are extracted by
using the LeapSelector and transformed to the coordi-
nate system of the camera by using the Transformator
to have the right scaling and axis directions (see the differ-
ences between the coordinate systems in figure 3.5). Each
object stores the data in the camera coordination system.
For displaying the coordinates are transformed to the coor-
dinate system of Blender to display in the view direction of
the user - for example the fingertip positions to display the
cursors always from the perspective of the user, like mouse
pointers do. Also the gestures use the Transformator to
convert calculated changes from the camera coordinate sys-
tem to the coordinate system of Blender before application,
like the Pinch gesture for moving an object into a certain
direction from the point of view of the user.

To avoid repeated time expensive calculations each time Distilled
representations save
time intensive
calculations.

a transformation is called during one update step, the
Transformator is updated at the beginning of an update
step and the transformation matrices are calculated accord-
ing to the current view. Then, if a transformation function
is called, there is only a multiplication of the vector with the
transformation matrix. The matrices are calculated by the
concatenation of different matrices for translation, rotation
and scaling, what is described in the following.

18 3 Software Testbed

(0,0,h)

-YC

XC

ZC

(0,0,0)

ZL

XL

YL

Leap Motion Controller Camera

(0,0,0)

-YB XB

ZB

Blender

Figure 3.5: Transformation of the Leap Motion coordinate system to the camera coordinate
system for calculations and from the camera coordinate system to the Blender coordinate
system for displaying.

Leap Motion to Camera Transformation

This transformation is needed, because the Leap MotionCorrect the origin
and the axis direction

for calculations.
Controller uses another axis direction then Blender. Be-
sides, the origin of the coordinate system of the Leap Mo-
tion Controller is on the surface of the device what makes it
impossible to make manipulations below the ground plane.
To correct both, a translation of LEAPOFFSET steps up-
wards (editable in the settings) and a rotation of 90 degrees
around the x-axis is done (see figure 3.5):

MLeapToCam = Rotation(radians(90), ′X′) ∗ Translation(−1 ∗ LEAPOFFSET)

The fact that the y-axis of the camera coordinate system is
pointing backwards does not matter, because this is auto-
matically taken into account. The matrix for transforma-
tions from the camera to the Blender coordinate system in-
cludes this in the rotation of the camera around the z-axis.

This transformation is used by the Hand and Finger ob-Used before saving
data in internal

model.
jects to convert the extracted coordinates from the Leap Mo-
tion data structure to the camera coordinate system before
saving.

3.3 Functionality 19

Camera to Blender Transformation

The transformation from the camera coordinate system to Take position and
rotation of the
camera into account
for displaying.

Blender is for the displaying and the manipulation to be
from the perspective of the user and independent of the
current camera position and rotation in Blender (see figure
3.5). It is distinguished between a point, a rotation, and a
direction transformation, because different calculations are
necessary.

The point transformation is used to get the Hand and Point transformation
approach.Finger positions relative to the Blender coordinate sys-

tem for displaying. For that, additionally to the rotation
and position of the camera in the Blender coordinate sys-
tem, a certain distance of the point to the camera position is
taken into account, because the center of manipulation is in
the focus field of the camera. Therefore, the point is trans-
lated along the camera view direction to have it at a certain
distance from the camera:

−−−−−−−→
cursorLocB =

−−−−−→
camLocB + distanceB ∗

−−−−−→
camDirB

The distance from the camera is different in each mode
of the testbed (see section 3.3.6) and can be edited in the
settings file. Besides, the point is rotated around the z-
axis so that the point is in the view of the camera relative
to Blender. For that, the Python API is used to extract the
rotation of the camera rz around the z-axis from the rotation
matrix McamRot of the camera to apply the same rotation to
the point. Finally, the location of the point is scaled by the
DIRECTNESS factor, because the Leap Motion Controller
has a more fine coordinate system. The DIRECTNESS factor
can also be edited in the settings. Then, the transformation
matrix is calculated to have a compact representation which
can be easily applied to the point by a multiplication:

MCamToBlender = Translation(cursorLocB) ∗Rotation(rz , ′Z′) ∗ Scale(DIRECTNESS)

No rotation of the camera around the x-axis and y-axis
is taken into account to display the point relative to the
ground plane and give the user a point of reference and
avoid confusion (see figure 3.5).

20 3 Software Testbed

The rotation transformation is needed to get angles fromRotation
transformation

details.
the camera coordinate system relative to the coordinate sys-
tem of Blender. For example, if the camera is rotated 90
degrees around the z-axis, a rotation around the x-axis of
the camera is a rotation around the y-axis of Blender. This
transformation is used by the Flathand gesture to get an
angle difference of the hand relative to the current cam-
era position (see section 3.3.3 for information about gesture
recognition). As result a rotation matrix is calculated for a
given rotation in the camera coordinate system, so that the
result can be directly applied. First, the axes of the cam-
era relative to Blender are calculated. The current y-axis of
the camera relative to Blender is the projection of the cam-
era direction onto the ground plane (xy-plane), because the
y-axis always points into the view direction of the camera
(see figure 3.5):

−−−−−−→
curY axisB =

−−−−−→
camDirB−(

−−−−−→
camDirB ·

−−−−−−−−−−→
planeNormalB√−−−−−→

camDirB ·
−−−−−→
camDirB

)∗
−−−−−−−−−−→
planeNormalB

Then, the current x-axis of the camera relative to Blender
is calculated by using the Python API to rotate the current
y-axis by 90 degrees. The z-axis always points upwards,
because rotations around the x-axis and y-axis are not taken
into account for displaying:

−−−−−−→
curZaxisB =

0
0
1


These axes are calculated while the Transformator is up-
dated so that it is not necessary to calculate them each time
they are needed. Finally, to transform a rotation rC from
the camera coordinate system to the coordinate system of
Blender, the Python API is used to calculate a rotation ma-
trix around a current axis

−−−−−−→
curAxisB of the camera relative

to Blender:

MrotB = Rotation
(rC ,

−−−−−→
curAxisB)

There also is the need of transforming directions, becauseDirection
transformation

procedure.
it is not necessary to apply a translation to a given direc-
tion, like what is done with point transformations. This

3.3 Functionality 21

kind of transformation is used by the gestures to transform
the difference of two hand positions from the camera co-
ordinate system to the Blender coordinate system, because
the movement direction of an object depends on the current
camera angle. A direction can be divided into part vectors
along each axis:

−→
dirC =

x
0
0

+

0
y
0

+

0
0
z


What means, to get the direction it is necessary to go x
units along the x-axis, y units along the y-axis and z-
units along the z-axis. For direction transformations these
lengths along each axis of the camera have to be applied to
the current axes of the camera relative to Blender:

−→
dirB = x ∗

−−−−−−→
curXaxisB + y ∗

−−−−−−→
curY axisB + z ∗

−−−−−−→
curZaxisB

3.3.3 Gestures

As gestures, a pinching gesture (see figure 3.6(a)) for ma- Pinch and flathand
gesture for
manipulations.

nipulating objects and a flat hand gesture (see figure 3.6(b))
for manipulating the camera are chosen. With this two ges-
tures the main manipulations for study tasks - manipulat-
ing objects and the camera - are given. Special gestures can
be added easily (see section 3.4).

3.3.4 Pinch

The pinch gesture is the natural expectation of how to grab Pinch is natural grab
gesture.an object and manipulate it, as one would do in the real

world. Since there was no build in pinch gesture when the
testbed was developed, an own recognition is written.

To enable a pinch, two fingers have to be brought together Activated by
connecting two
fingers.

and for releasing they have to be separated again. For the
gesture recognition it is distinguished between creating a
Pinch object, set a Pinch object active (object grabbed),
and set a Pinch object released (let object go). In each

22 3 Software Testbed

update step the GestureHandler calculates the distanceDetails of pinch
recognition. between any two Fingers of a Hand. A Finger has the

logic to calculate the euclidean distance between itself and
a given other Finger:

−−−−−−−−−→
fingersDiffC =

−−−−−→
ownLocC −

−−−−−−→
otherLocC =

dx
dy
dz


distanceC =

√
(dx)2 + (dy)2 + (dz)2

If there are two Fingers of a Hand which are within the
distance of releasing (PINCHEND) and creating the gesture
(PINCHSTART), the GestureHandler creates a Pinch object.
These distances can be set in the settings module. From
then on the gesture is updated in each update step and in-
dependently checks the state of itself. By this, only a small
part of the logic has to be in the GestureHandler and
the main part is organized in the gesture itself. If there
are more than the two fingers of the gesture or the dis-
tance between the two gesture fingers is larger than the
PINCHEND parameter, the gesture is released. But if there
is only one finger detected, the pinch gesture is set active
(object grabbed). We chose this method for indicating an
active pinch, because the Leap Motion Controller can’t dis-
tinguish between the thumb and the index finger (most
natural fingers of a pinch gesture) if they are to close. If
the Pinch gesture is active, it manipulates the nearest ob-
ject. For that, the gesture requests the nearest object or ver-
tex (dependent of the current mode; see section 3.3.6) in a
certain range (range modifiable in the settings module)
from the ObjectHandler. The ObjectHandler iterates
through the vertexes of each manipulation object to find the
closest one to the Pinch position and returns either the ver-
tex or the object of the vertex. It is distinguished between
manipulation objects and non-manipulation objects so that
there are objects which can not be manipulated by a ges-
ture and can be used for creating the appearance of a task.
This differentiation is done by a keyword in the name of the
manipulation objects (key is editable in the settings). Af-
terwards, the Pinch displays the grab as described in sec-
tion 3.3.1. It still is updated to detect if the two Fingers
are separated enough to abort the gesture and to move the
grabbed object.

3.3 Functionality 23

Figure 3.6: Gestures: (a) Pinch, (b) Flathand.

The movement of the object is calculated by measuring the Hand position
change used for
location update of
object.

difference between two successive hand positions:

−−−−−−−−→
handsDiffC =

−−−−→
oldLocC −

−−−−→
curLocC

Using the hand for the moving step of an object is much
more stable than using the fingertip position, because the
Leap Motion Controller can detect the hand better and
more accurate than the fingers. Then, the distance is mul-
tiplied with a smoothness factor to scale down the move-
ments of the user, transformed to the Blender coordinate
system, and applied to the object:

−−−−−−→
objectLocB =

−−−−−−→
objectLocB +

−−−−−−−−→
handsDiffB

If the object is moved to far away (OBJECTDROPLINE) from Drop range to hide
inaccuracy of
detection.

the camera, the pinch is aborted:

−−−−−−−−−→
objCamDiffB =

−−−−−−−−→
cameraLocB −

−−−−−−→
handLocB

This drop range is used, because the accuracy of the Leap
Motion Controller decreases the farer away the fingers are
from the origin of the controller. To hide that fact from the
user and avoid lack of assurance, the object is dropped if
it is out of a certain range (range editable in the settings
module). In order to abort a Pinch gesture, it is set re-
leased, the object is deselected, and the gesture is deleted
by the GestureHandler in the next update step.

24 3 Software Testbed

3.3.5 Flathand

For the camera manipulation a flathand gesture suits theFlathand gesture for
camera manipulation

provides enough
degrees of freedom.

best, because it provides translation into each direction and
rotation around each axis what is necessary to manipulate
the 6 degrees of freedom of a camera. Furthermore, the
movements can be controlled more accurate than, for ex-
ample, with a fist, because the surface is bigger.

This gesture is enabled by holding the hand horizontallyActivated by
connecting and

releasing two fingers
while hand is
horizontally.

and then bringing any two fingers together and separate
them again. It can be aborted by showing less than five fin-
gers, so by bringing two fingers together. Here again it is
distinguished between the creation of a Flathand object
and an active gesture. The GestureHandler just detects a
possible Flathand gesture, the rest is handled by the ges-
ture object to hide the functionality independently in the
gesture itself. If the GestureHandler detects a Hand withDetails of flathand

recognition. five Fingers, it creates a Flathand object which then is
updated in each update step and checks the starting and
the aborting of the gesture. The gesture counts the visible
Fingers of the Hand. If there is an update step with four
detected Fingers, followed by an update step with 5 de-
tected Fingers, the gesture additionally checks the torque
of the Hand. For that, the angle between the Hand normal5

and the z-axis is calculated by using the Python API. If the
torque of the Hand is less than the FLATHANDANGLE pa-
rameter, the gesture is started. In the settings module
the offset of holding the hand horizontally to start the ges-
ture can be adapted. The gesture is aborted if there are less
than four Fingers while the gesture is not yet active and
while the gesture is active if less than five fingers are visi-
ble.

If the gesture is active, the camera can be rotated by rotatingHand position
change used for

location update of
the camera.

the hand around the z-axis and tilted downwards and up-
wards by tilting the hand downwards and upwards. Hand
translation is used for zooming (translation along the view
direction; y-axis) and translation of the camera along the x-
axis and z-axis (relative to the user). This is done, because
the hand only provides 3 degrees of freedom for transla-

5Vertical vector to the hand

3.3 Functionality 25

tion. Zooming is more important than a translation along
the y-axis, because the center of manipulation is at the ori-
gin most of the time and zooming is used more often. It can
be circumvented by rotating the camera so that the transla-
tion direction is possible by a x-axis translation. This four
possibilities are the same provided by each 3D editing tool,
but adapted to the hand. Adding more possible manipu-
lations, like tilting to the right and left, would make the
camera manipulation more difficult, because more degrees
of freedom are manipulated at the same time. Also, this
kinds of manipulation are not essential, because no profes-
sional 3D editor implements them. Camera translation and
the zooming are detected by using the difference of two po-
sitions of the Hand between two update steps as relative
change. Here also the position change of the hand is used,
because the detection of the hand is much more stable than
the detection of the fingers:

−−−−−−−−→
handsDiffC =

−−−−→
oldLocC −

−−−−→
curLocC =

dx
dy
dz


The difference is multiplied with a smoothness factor to
smooth the movements of the user. Since the zooming
value of the camera is always along the view direction, it is
independent from the current camera angle in the Blender
coordinate system. The y-component of the difference in
the camera coordinate system can be used directly:

cameraZoomB = cameraZoomB − y

For the camera translation only the x-axis and the z-axis are
taken into account:

−−−−−−−→
changeLocC =

dx
0
dz


Because the x-axis and the z-axis of the difference
are relative to the camera, it is necessary to use the
Transformator to convert the changes to the Blender co-
ordinate system (see section 3.3.2). Then the changes can be
applied to the camera location:

−−−−−−−−→
cameraLocB =

−−−−−−−−→
cameraLocB +

−−−−−−−→
changeLocB

26 3 Software Testbed

For the rotation around the z-axis the direction dir of theHand direction
change used for
rotation update

around the z-axis.

hand is used6. The current direction and the direction of
the last update step are projected onto the xy-plane:

−−−−−−−−−−−−→
planeProjectionC =

−→
dirC−(

−→
dirC ·

−−−−−−−−−−→
planeNormalC√−→
dirC ·

−→
dirC

)∗
−−−−−−−−−−→
planeNormalC

Then, the Python API is used to calculate the angles be-
tween the y-axis and the projections. The relative rotation
change then is the difference between the last Hand rotation
and the current Hand rotation:

changeRotC = oldRotC − curRotC

Here again the value is multiplied with a smoothness factor
to smooth the hand motions. Because the rotation differ-
ence is relative to the camera and not to the current camera
rotation in Blender, the Transformator is used to trans-
form the rotation into a rotation matrix of the Blender co-
ordinate system (see section 3.3.2). Finally, the rotation
change is applied to the camera by using the Python API
to rotate the camera rotation matrix through the calculated
rotation matrix.

For the rotation around x-axis the same math is used. HereHand normal change
used for rotation

update around the
x-axis.

just the hand normals of two successive update steps are
used and the projection onto the yz-plane. Then again the
rotation of the last and current Hand normal compared to
the y-axis are calculated. Finally, the angle difference be-
tween the last rotation and the current rotation of the Hand
is smoothed by a smoothness factor, transformed to the
Blender coordinate system, and applied to the camera ro-
tation matrix.

The explained smoothness factors can be adjusted in the
settings file. Bigger factors result in a more direct manip-
ulation, whereas smaller values are used for a more smooth
manipulation. Besides these factors, the by Casiez et al.Filter remove jitter of

the hand. [2012] presented OneEuroFilter is used to remove jitter of
the hand. This filter takes a value and returns a filtered
value with eliminated fluctuations. There are filters for the
x, y, and z axis of the Hand normal, Hand direction, and

6In which direction the fingers are pointing on average

3.3 Functionality 27

Hand position. The filters are applied to the vectors of the
Hand before they are used for the above calculations. To
find the parameters of the OneEuroFilter, the standard pa-
rameters are used as a starting point. Then, the mincutoff
parameter is adjusted to remove jitter while moving the
hand at a very low speed. Afterwards, the beta param-
eter is increased to minimize lag while moving the hand
quickly. It showed that a value of 1.0 for the beta param-
eter, a value of 300.0 for the mincutoff parameter of the
filter for the Hand normal, and 100.0 for the mincutoff pa-
rameter of the translation filter and the filter for the Hand
direction works. Also the settings for the OneEuroFilter can
be edited in the settings file in order to change the direct-
ness of the gestures.

3.3.6 Modes

There are two possible modes in this testbed, which are Object mode for
translating objects
and edit mode for
changing their form.

analogue to modes of Blender: the object mode and the edit
mode which enable the user to translate objects and change
the form of an object. In the edit mode objects can be se-
lected and moved with the Pinch gesture, as described in
section 3.3.3. To edit an object, it has to be in edit mode. For
that, first an object has to be selected and then the “d” key
pressed. The mode of Blender is changed to edit mode so
that the wire frame of the selected object is shown. Fur-
thermore, all other objects which were not selected are hid-
den. Now, the Pinch gesture manipulates vertexes and no
longer object origins. The difference to the object mode is that
the ObjectHandler returns the nearest vertex and not the
object of the nearest vertex. In this mode the form of an ob-
ject can be changed. Because more accurate movements are
needed to edit an object, the fingertip spheres (see section
3.3.1) are nearer to the camera in the edit mode than in the
object mode. To get back to the object mode, the “d” key has “d” key switches

mode of selected
object.

to be pressed again. Then, all objects are shown and the
edited object is deselected. This two modes allow the func-
tionality of moving and editing objects so that studies with
coarse objects can be done as well as studies with precise
manipulations with vertices.

28 3 Software Testbed

Figure 3.7: Example for a customized scene to design the
appearance of a task.

3.4 Extensibility

The advantages of having a testbed which provides a basic
structure to remove the time expensive step of implement-
ing everything from scratch were discussed in section 1.3.
This section shows the interface to customize the testbed
and how easy it is to create a specific task for a study.

First a scene has to be created to design the appearance ofDesign the
appearance of a task

in the scene of
Blender.

the task. Figure 3.7 shows a scene with two cursors and two
targets which was created for our study. The functionality
of Blender is used to add objects and to design and posi-
tion them according to the needed structure for the task.
Additionally, the camera has to be set and fixed if a specific
camera position is needed.

Sometimes the base functionality has to be extended. In or-Modularized
structure can be

easily extended to
add more base

functionality.

der to provide an interface for quick task development, in-
terchangeability and extensibility are very important. For
that, the different modules with the base functionality can
be extended. Additional task specific functionality can be
added easily by implementing new submodules and call-
ing them from the central responsible module. For exam-
ple, for adding a new gesture only a new one similar to
the structure of the existing ones, but with new logic has
to be created. Then, it has to be called from the initiating
part, the GestureHandler, like the other ones. This sim-

3.4 Extensibility 29

ple process is possible, because each module has its own
logic, is managed by a central station, and is independent
from the others. For simply changing the input device the
receiver thread has to be adapted in a way that it always
provides the newest data from the new device. Also, the
LeapSelector has to be replaced by a module which re-
turns the correct parts of the new data structure.

Besides extending the base functionality further customiza- Two interfaces are
provided to add logic
and logging.

tion has to be done to add task related logic to the scene
and to log specific information for evaluation of the study.
This process is simplified by a base structure which encap-
sulates the structure of the program from the task related
code. There are two interfaces provided which are inte-
grated into the existing program and are called automati-
cally. Therefore, one can concentrate more on what to do
in a task and not on implementing the structure. The two
interfaces are explained in the following.

3.4.1 StudyLogger

The StudyLogger module provides the functionality to Customize the
StudyLogger for
task specific logging.

gather study related information to evaluate the study af-
terwards. During the sequential processing of the main op-
erator the update method of the StudyLogger is called
and thus every time something changed. This function
handles the start and stop of the logging and the logging
itself. It can be customized to log information which are
not captured by the RawLogger integrated in the Blender
source code. The Python API of Blender is used to get states
of the scene, like the position of an object. Then, the logger
of the StudyLogger module, which creates a file on the
desktop, can be used to log the needed states in each update
step. To manage the stopping of the module, return True to
stop or False to proceed the updating of the StudyLogger.
Because the state of the Simulator (see section 3.4.2) is
passed, one can stop if the simulation stopped (can be en-
abled in the settings).

30 3 Software Testbed

The following code snippet is an example of how the
StudyLogger module was used in our study:

def update(self,runState, simulationFinished):
cursor = bpy.context.scene.objects["Cursor"]
target = bpy.context.scene.objects["Target"]
diff = cursor.location - target.location
self.logger.info("Distance: {0}".format(diff.length))

We customized the update function of the StudyLogger
to log the euclidean distance between a cursor and a target.
This enabled us to evaluate the users performance when
tracking a target with a cursor.

The structure of a frequently called module and the pro-Available structure
allows to focus on

the task.
vided logging functionality enables to start directly with
the implementation of the task specific information without
the need of setting up a logger and a structure for continu-
ous calling.

3.4.2 Simulator

This module is to add logic to the task. It is similar toCustomize the
Simulator to add

task specific logic to
the scene.

the StudyLogger - there is an updateAlways and an
update function which handle the start and stop and can
be customized to do task related logic. Return True to stop
the simulation and False to proceed. The updateAlways
function is called every time the main operator is called and
the update function every time the main operator is called
and the simulation is set active by the GUI. Because of this,Distinguish between

startable and always
active logic.

one can distinguish between always active logic and logic
which can be started. These two functions offer the possi-
bility of manipulating the appearance of a scene easily and
changing attributes of objects by using the Python API of
Blender.

For example, the update function can be used for moving
an object a step further in every update step to animate the
object. The updateAlways function can be used to draw
general things of the scene, like a connection between two
moving spheres. In the following a code snippet is shown,
which is an example of how we used the updateAlways

3.4 Extensibility 31

function to animate the scene:

def updateAlways(self):
cursor = bpy.context.scene.objects["Cursor"]
target = bpy.context.scene.objects["Target"]
material = bpy.data.materials["Matching"]
diff = cursor.location - target.location

if diff.length <= ERRORTHRESHOLD: # color object
if len(cursor.data.materials) == 0:

cursor.data.materials.append(material)
else:

pass # already colored
else: # delete color
if len(cursor.data.materials) != 0:

cursor.data.materials.pop(0,True)
else:

pass # already deleted color

There is a target and a cursor which is manipulated by the
user. By this code we achieve that the cursor is colored if it
is close enough to the target.

The animation rate can be assumed as the same than the up- Animation rate
equals LeapModal
update rate
(max 222 Hz).

date rate of the LeapModal operator (50 Hz, editable in the
settings), because the Simulator is called during the sequen-
tial processing of the LeapModal operator and the Blender
internal update rate for displaying is faster than the update
rate of the testbed. As maximum animation rate 222 Hz
were measured. This was achieved by setting the update
rate parameter of the testbed to an infinite small value and
measuring the average time between two animation steps.
Thus, smooth animations are possible.

Also in this module a supporting structure is given so that Provided base
structure saves time.one can concentrate on the logic for a task and does not

have to spend time on implementing a base structure.

3.4.3 Settings

As described in section 3.2, the settings module is inte- Find all adjustable
parameters in the
settings module.

grated into every module and manages all parameters. This

32 3 Software Testbed

is useful, because there is a central place where the program
can be adjusted and it is not necessary to search through
each file. The standard parameters should work good, but
if some problems occur or special settings are needed, the
parameters can be changed there. For example, if a more
direct manipulation is necessary, the relevant smoothness
factor can be adjusted. Each parameter is documented in
this settings file.

In this chapter the structure and base functionalities of the
testbed were described. Also, the way how to design a spe-
cific task with this testbed and how easy it is compared
to implementing everything from scratch was shown. To
prove the functionality of the testbed, it is used to conduct a
case study. In the following chapter this study is presented.

33

Chapter 4

Case Study: Replicating
Symmetric Bimanual
Interaction Study

The previous chapter presented a testbed for 3D editing
with bare-hand input devices. To test the testbed, we repli- Study was conducted

to test the testbed.cated the study of Balakrishnan et al. [2000]. As mentioned
in section 2.3, he showed useful facts for bimanual interac-
tion with digitizing tablets. We added midair bare-hand
input as a condition to the original study. This chapter
describes the experimental setup and the next chapter de-
scribes the results.

4.1 Experiment

4.1.1 Tasks

The task was a bimanual object tracking task, adapted from Symmetric bimanual
object tracking task
was used to
investigate
influencing factors.

Balakrishnan et al. [2000], in which the user had to track
moving targets on the screen with both hands (see figure
4.1). This kind of task was chosen in order to provide a con-
stant difficulty over the whole task and to investigate fac-
tors of bimanual performance in general. There were four

34 4 Case Study: Replicating Symmetric Bimanual Interaction Study

Figure 4.1: Tracking task overview with green targets and grey cursors: (a) separated 2D,
(b) integrated 2D, (c) separated 3D, and (d) integrated 3D.

independent variables: attention, visual integration, difficulty,
and setup.

To change visual integration, there was a separated and anFactor one: visual
integration. integrated variant. In the separated variant (see Figure 4.1

(a) and (c)) the user manipulated two cursor spheres, one by
each hand, to follow two target spheres. The cursor spheres
were of 1.8 cm diameter and in grey, the target spheres were
of 2.4 cm diameter and in green. The participant controlled
the left cursor sphere with his left index fingertip and the
right cursor sphere with his right index fingertip. For each
task the path of the target spheres were different, but pre-
determined (see section 4.5). The movements were sym-
metric - both targets moved the same distance in a given
time. Over the task the distance between the targets and
the speed of the targets was kept constant. In the integrated
variant (see Figure 4.1 (b) and (d)) the target spheres and the
cursor spheres were connected by a solid cylinder. Partici-

4.1 Experiment 35

pants had to match the cursor rectangle exactly with the tar-
get rectangle. The target rectangle moved around in the same
way the target spheres did in the corresponding separated
condition. Also here the speed and length of the rectan-
gle was kept constant. Both, the separated and the integrated
condition, are the same in a motor action point of view, but
they differ in a visual point of view. The integrated variant
is perceived as a single target, whereas the separated variant
is perceived as two separated targets.

The attention was varied by the distance between the mov- Factor two: attention.
ing targets. For the singular attention variant a distance of
4cm was used so that the targets were visible in the focus
field of the user and he had to attend only to a single area.
For the divided attention variant 21 cm were used so that the
user had to divide attention and switch with his focus be-
tween the two targets.

The difficulty of the task was manipulated by using different Factor three:
difficulty.speeds of the moving targets. For the slow variant a speed

of 2 cm/s was used and for the fast variant a speed of 4
cm/s .

4.1.2 Setups

There were three setups: touchscreen with 2D tasks (T2D), Factor four: setup.
Leap Motion with 2D tasks (L2D), and Leap Motion with
3D tasks (L3D). These were chosen to see whether the ef-
fects explored in the study of Balakrishnan et al. [2000] hold
also for bare-hand input devices. The T2D condition repre-
sented the digitizing tablet stylus condition in the original
study. The effect of midair manipulation was investigated
by comparing the T2D and L2D condition. L2D and L3D
were compared to illustrate the effect of adding the third
dimension. In the touchscreen setup the user sat in front
of a horizontal touchscreen (see figure 4.2(a)), in the Leap
Motion Controller setup he sat in front of a monitor with
the Leap Motion Controller under his hands which was 24
cm away from the screen (see Figure 4.2(b)). The controller
was placed in a height such that when the user manipu-
lated a sphere at the top most position of the screen, the

36 4 Case Study: Replicating Symmetric Bimanual Interaction Study

Figure 4.2: Setup overview: (a) touchscreen, (b) Leap Motion Controller.

angle between his torso and his arm was 80 degrees. In
the 2D variants the user was presented a scene which was
orthogonally projected onto the ground plane (see Figure
4.1(a) and (b)), in the 3D variant he was presented a 3D
scene with the camera looking from the front downwards
to the origin (see Figure 4.1(c) and (d)).

4.2 Metrics

In this study three different measures to evaluate the be-
havior of the participant were used.

One important measure to compare the accuracy is the over-Average root mean
square error was

used as measure for
the performance.

all tracking performance. The used metric was the average
root mean square error, since it is independent from the di-
mension and enables to compare the different setups. For
this, in each update step the root mean square error (RMS)
between each cursor sphere and the corresponding target

was calculated:

−−→
diff l/r =

−−−−→
targetl/r −−−−−→cursorl/r

4.2 Metrics 37

RMSlh/rh =

√√√√ 1

dim
(−−→
diff l/r

)−−→diff l/r ∗
−−→
diff l/r

This lead to an error for the left and right hand (RMSlh and
RMSrh). The total RMS error for a task was calculated by
adding up the error for the left and right hand:

RMStot = RMSlh +RMSrh

In an symmetrically assigned task1 the performance can be Symmetry compared
the average root
mean square error of
both hands.

distinguished between symmetric and parallel performance.
Symmetric means that the performance of the hands is equal
in terms of error rate. So the average RMS errors of the left
and right hand was compared. If statistically significant,
the performance was not symmetric.

Parallelism describes the equality of the movement of the Level of parallelism
was measured by
using the m-metric
for tracking tasks.

two hands, so if the two hands perform the same move-
ments at the same time. To measure parallelism, Masliah
et al. [1999] introduced the m-metric for docking tasks.
Here, the adapted m-metric of Balakrishnan et al. [2000]
was used to measure parallelism in a tracking task. This
metric takes magnitude and direction into consideration
and not only if movements of the two hands are performed
just at the same time. First, in each update step the error
reduction between each cursor and the target position was
calculated (see figure 4.3) :

%ER =
magnitude of movement towards target
movement required to reduce error to 0

This value is 1 if the cursor matches perfectly the target and
0 if the cursor isn’t following the target. In the case that the
denominator is zero %ER is 0.

The parallelism was calculated in each update step by com-
paring the error reduction of each hand:

Parallelism =
min{%ERlh,%ERrh}
max{%ERlh,%ERrh}

1Identical assignment of roles to the hands

38 4 Case Study: Replicating Symmetric Bimanual Interaction Study

Target

Cursor

t1

t2

t1

t2

m

d

p

m movement required to reduce error to 0

d moved distance of the cursor

p magnitude of movement towards target (projection)

Figure 4.3: M-metric for measuring parallelism.

The average parallelism of a task was used to measure the
level of parallelism. It results in 1 if the hands are reduc-
ing their errors identically and in 0 if the hands are moving
sequentially. In the case that the denominator is zero the
parallelism is 1.

4.3 Apparatus

The background was always black, a grid on the xy-planeDetailed values for
the testbed and

tasks.
was shown, and the program was updated every 0.02 sec-
onds for the Leap Motion Controller setups. For the touch-
screen setup the rate had to be adapted to a faster rate of
one update per 0.008 seconds, because of delays of the cur-
sor following the finger position. There was no delay in the
Leap Motion setup so the update rate was kept. In order
to see if the cursor is inside the corresponding target, it had
an opacity of 0.7. The camera view was fixed and 20.46 cm
away from the origin, the eyes were 40cm away from the
screen.

4.4 Participants 39

We had two different study setups: one for the T2D setup
and another for the L2D and L3D setup.

4.3.1 Touchscreen Setup

This experiment was conducted on a graphics accelerated 2
x 2.26 GHz Quad-Core Intel Xeon Mac Pro with OS X. The
screen was a 27-inch Perceptive Pixel LCD capacitive dis-
play with a resolution of 2560x1440, a touch input sample
rate of 120 Hz, and an display update rate of 60 Hz. The
fingers were used for the input.

4.3.2 Leap Motion Controller Setup

In this setup a graphics accelerated 2.4 GHz Intel Core 2
Duo Mac mini with OS X was used. The screen was a 23-
inch Apple Cinema Display with 1920x1200 resolution and
an update rate of 60 Hz.

4.4 Participants

Eight right-handed participants at the mean age of 23.88
years participated voluntarily in the study, six male and
two female.

4.5 Design

For the attention, setup, and difficulty factor a within-group Mixed design was
chosen to reduce the
time for each
participant.

design was used. To reduce the duration of the experiment
for each participant and avoid fatigue, for the visual integra-
tion factor a between-group design was chosen. The pre-
sentation order of the setups for Leap2D and Leap3D were
counterbalanced across the participants of a group, because
between these two a learning effect could have been oc-
curred, since the Leap Motion Controller was used for two

40 4 Case Study: Replicating Symmetric Bimanual Interaction Study

conditions. We expected no learning effect between the
touchscreen and the Leap Motion Controller.

Each participant performed the tasks with either the inte-Setups were
counterbalanced. grated or the separated condition and the setups in a for the

group counterbalanced order. To measure a stable perfor-
mance after an initial learning curve, for each setup condi-
tion the participant performed practice trials until the stan-
dard deviation of average root mean square of three succes-
sive trials was less than 0.3 (this threshold was determined
by a pilot study). At most six practice trials per setup wereInitial learning curve

was excluded. performed to avoid fatigue. Each participant stabilized be-
fore this limit and performed on average 3.17 practice trails
before the actual study. Afterwards, four testing trails were
performed, one for each of the combination of speed and
attention. The order was fixed for each setup and partici-Fixed order of tasks

was used. pant: slow and singular, slow and divided, fast and singular,
fast and divided. Each trial lasted 45 seconds on average.
If a task failed during the execution because of detection
problems of the Leap Motion Controller (disappearing cur-
sors), the task was repeated at the end of the trials for thisFailed tasks were

repeated at the end. setup to avoid an adulterated RMS error. Between each trial
there was a break of about 20 seconds and after 15 minutes
a break of about 3 minutes.

For the experiment a total of 96 non-practice trials were per-
formed:
8 participants x
1 visual integration condition (Integrated, Separated) x
2 attention conditions (Singular, Divided) x
2 speed conditions (Slow, Fast) x
3 setup conditions (T2D, L2D, L3D)
= 96 trials of 45 seconds each

The experiment for each participant lasted 40 minutes on
average.

Participants started a trial by matching the cursors to theExperimenter started
the tasks, they

finished
automatically.

targets, the targets changed color to signal best fit. The ex-
perimenter then started the test by counting from 3 back-
wards and pressing a start button. Then, the targets began
to move for 45 seconds. Afterwards, they stopped moving
and the test was finished.

4.5 Design 41

Touch2D Leap2D Leap3D

Task 1

Task 2

Task 3

Task 4

Figure 4.4: Overview of the paths used for each setup and task.

The paths were different for each of the four tasks and each Predetermined paths
were used.setup, but predetermined. Because of that, they seemed to

be random for each participant, but the conditions stayed
the same. In figure 4.4 the used paths can be seen. 12
direction changes were used for the slow and 24 direction
changes for the fast variant.

42 4 Case Study: Replicating Symmetric Bimanual Interaction Study

4.6 Hypotheses

In the following the expected effects to occur are listed.

4.6.1 Each Setup

H1:
The integrated visual stimuli condition will result in more
accurate tracking than the separated condition.

H2:
The singular attention condition will result in more
accurate tracking than the divided attention condition.

H3:
The slow speed condition will result in more accurate
tracking than the fast speed condition.

Hypotheses:
Accuracy

H4:
The integrated visual stimuli condition will be performed
more symmetrically than the separated condition.

H5:
The singular attention condition will be performed more
symmetrically than the divided attention condition.

H6:
The slow speed condition will be performed more
symmetrically than the fast speed condition.

Hypotheses:
Symmetry

4.6 Hypotheses 43

H7:
The integrated visual stimuli condition will be performed
with greater parallelism than the separated condition.

H8:
The singular attention condition will be performed with
greater parallelism than the divided attention condition.

H9:
The slow speed condition will be performed with greater
parallelism than the fast speed condition.

Hypotheses:
Parallelism

4.6.2 Overall

H10:
The T2D setup will result in the same accurate tracking
than the L2D setup. The L3D setup will be performed
less accurate.

Hypothesis:
Accuracy

H11:
The T2D setup will be performed equally to the L2D
setup, according to the symmetry. The L3D setup will
be performed less symmetrically.

Hypothesis:
Symmetry

H12:
The T2D setup will be performed with greater paral-
lelism than the L2D setup, which will be performed with
greater parallelism than the L3D setup.

Hypothesis:
Parallelism

H13:
The hypotheses H1-H9 are the same for each setup. Hypothesis:

Generality

In this chapter a detailed description of the study and ex-
pected effects were given. The next step is to evaluate the
gathered data by the study and check if the hypotheses are
true.

45

Chapter 5

Results and Discussion

This chapter deals with the evaluation of the conducted
user study described in the previous chapter. Only statis-
tical results are given, whereas the next chapter contains
interpretations. In order to analyze the hypotheses (see
section 4.6), it is highlighted which conditions influenced
the investigated measures and graphs are given. In the end
limitations of the study are discussed.

5.1 Results

5.1.1 Performance

For the overall tracking performance the average total root
mean square error (AvgRMStot) is computed (see section
4.2). The AvgRMStot for all conditions can be seen in fig-
ure 5.1.

Users made similar errors regardless of the integration Integration had no
effect on the
performance, but
attention and speed
had.

(F(1,6)=0.1221, p=0.7387). Thus, H1 is not confirmed. As
expected, users made more error when the attention is di-
vided (M=1.5266 cm) than in the singular attention condi-
tion (M=1.2970 cm)(F(1,77)=27.3684, p<0.0001). So, hy-
pothesis H2 is confirmed. H3 also is confirmed, because
users performed better in the slow condition (M=1.0599 cm)

46 5 Results and Discussion

Performance
Setup ordered by AvgRMStot (cm) (ascending)

Touch2D Leap2D Leap3D

Av
gR

M
St

ot
 (c

m
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast
Difficulty / Attention

Integration
Integrated
Separated

Figure 5.1: Overall tracking performance for all conditions, measured by AvgRMStot.
Constructed using mean and 95% confidence interval.a

aUsed for every graph from now on

than in the fast condition (M=1.7637 cm)(F(1,77)=256.9912,
p<0.0001). The only other significant effect is found forPerformance differed

among the setups. the setup factor (F(2,77)=152.0937, p<0.0001), showing that
performance varied between the three setups. The least
errors were made in the T2D setup (M=0.9863 cm), fol-
lowed by the L2D setup (M=1.3347 cm). In the L3D setup
the most errors were made (M=1.9145 cm). Thus, H10
is also not confirmed. One conspicuous difference be-
tween the setups is that performance differed much more
among the users in the L3D setup (SD=0.5497 cm) than
in the L2D (SD=0.4319 cm) and the T2D setup (SD=0.3421
cm)(Levene(2,93)=4.4963, p=0.0137). There are no further
significant interaction effects.

5.1 Results 47

Symmetry
Hand

LH RH

Av
gR

M
S

(c
m

)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Touch2D
Leap2D

Leap3D
Setup ordered by AvgR

M
S (cm

) (ascending)

Singular Divided Singular Divided

Slow Fast

Singular Divided Singular Divided

Slow Fast
Difficulty / Attention

Integration
Integrated
Separated

Figure 5.2: Average tracking performance of the left and right hand, measured by
AvgRMS, for all experimental conditions.

5.1.2 Symmetry

The results for each hand, broken down by the differ-
ent conditions, can be seen in figure 5.2. Overall, we
find a asymmetry between the two hands (F(1,172)=9.9752,
p=0.0019). Users made more errors with the left hand Asymmetry is found

between both hands.(M=0.7347 cm) than with the right hand (M=0.6771 cm) (see
figure 5.3).

Further analysis is done with the difference between the
performance of the right and left hand (AvgRMSlh −
AvgRMSrh) as dependent variable. H4 is not confirmed, Integration and

difficulty had no
effect on the
symmetry, attention
only in the L3D
setup.

because the tasks were performed with a similar symme-
try regardless of the integration (F(1,6)=0.0928, p=0.7709)
(see figure 5.4(a)). There is a significant difference
(F(1,77)=14.3371, p=0.0003) for the attention factor, what

48 5 Results and Discussion

Symmetry hands
Setup ordered by AvgRMS (cm) (ascending)

Touch2D Leap2D Leap3D

Av
gR

M
S

(c
m

)

0.2

0.4

0.6

0.8

1.0

1.2

LH RH LH RH LH RH
Hand

Mean

Figure 5.3: Mean of the average tracking performance of the left and right hand, measured
by AvgRMS, showing a slight asymmetry.

together with a significant difference for setup * attention
(F(2,77)=3.3188, p=0.0414) indicates that the attention factor
had a different effect in each setup. Figure 5.4(b) shows
that users performed the tasks with similar errors for both
hands in the singular attention condition of the L3D setup,
while they made more errors with the left hand (M=0.8163
cm) than with the right hand (M=0.7103 cm) in the divided
attention condition. No significant different errors were
made with both hands for the attention factor in the L2D and
T2D setup. Thus, H5 is confirmed for the L3D setup, but not
for the T2D and the L2D setup. Also, errors were similar for
both hands in the two difficulty conditions (F(1,77)=0.0832,
p=0.7738), so H6 is not confirmed (see figure 5.4(c)). Finally,Symmetry differed

among the setups. the three setups were performed with a different symme-
try (F(2,77)=7.6056, p=0.0010). Therefore, H11 is not con-

5.1 Results 49

firmed. The T2D setup was performed most symmetrically
with a mean difference between the hands of 0.0432 cm,
followed by the L2D setup with a mean difference of 0.0725
cm. The L3D setup was performed with a mean difference
of 0.1444 cm between the hands least symmetrically. Addi-
tionally, the difference between both hands differed more
among the users in the L3D setup (SD=0.1969 cm) than
in the L2D (SD=0.0607 cm) and the T2D setup (SD=0.0363
cm)(Levene(2,93)=12.9670, p<0.0001). No more significant
interaction effects are found.

5.1.3 Parallelism

To quantify the level of parallelism of the two hands, the
m-metric (see section 4.2) is used. The results can be seen
in figure 5.5.

Since users performed the tasks with similar parallelism re- Integration had no
effect on the
parallelism, but
attention and
difficulty had.

gardless of the integration (F(1,6)=0.4264, p=0.5380), H7 is
not confirmed. The amount of parallelism was higher in the
singular attention condition (M=0.4810) than in the divided
attention condition (M=0.4236) (F(1,77)=91.3177, p<0.0001).
Thus, H8 is confirmed. Also, with regard to the diffi-
culty factor the tasks were performed with different paral-
lelism (F(1,77)=71.4184, p<0.0001), but the average paral-
lelism was higher in the fast condition (M=0.4776) than in
the slow condition (M=0.4269). H9 is not confirmed. At Parallelism differed

among the setups.last, users performed with a different parallelism in the
three setups (F(2,77)=3.2568, p=0.0439), what confirms H12.
Movements were performed most parallel in the T2D setup
(M=0.4619), followed by the L2D setup (M=0.4517). The
least parallelism was reached in the L3D setup (M=0.4432).
There are no further interaction effects influencing the par-
allelism. Also the difference of parallelism among the users
stayed the same in the three setups (Levene(2,93)=1.4915,
p=0.2304).

50 5 Results and Discussion

Symmetry integration
Setup ordered by AvgRMS (cm) (ascending)

Touch2D Leap2D Leap3D

A
vg

R
M

S
 (c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LH RH LH RH LH RH

Hand

Integration

Integrated
Separated

(a)

Symmetry attention
Setup ordered by AvgRMS (cm) (ascending)

Touch2D Leap2D Leap3D

A
vg

R
M

S
 (c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LH RH LH RH LH RH

Hand

Attention

Divided
Singular

(b)

Symmetry difficulty
Setup ordered by AvgRMS (cm) (ascending)

Touch2D Leap2D Leap3D

A
vg

R
M

S
 (c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LH RH LH RH LH RH

Hand

Difficulty

Fast
Slow

(c)

Figure 5.4: Tracking performance of the left and right hand, measured by AvgRMS: (a)
visual integration, (b) attention, and (c) difficulty.

5.1 Results 51

Parallelism
Setup ordered by AvgParallelism (cm) (descending)

Touch2D Leap2D Leap3D

Av
gP

ar
al

le
lis

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast

Sing
ula

r

Divid
ed

Sing
ula

r

Divid
ed

Slow Fast
Difficulty / Attention

Integration
Integrated
Separated

Figure 5.5: Average parallelism, measured by the m-metric, for all experimental conditions.

5.1.4 Comparison of Setups

In order to see whether the hypotheses hold for each setup, One hypothesis
differs among the
setups.

they are checked independently. Table 5.1 compares the
three setups and shows that the results of the different hy-
potheses, except H5, are shared across the setups. Thus,
H13 is not confirmed.

H1 H2 H3 H4 H5 H6 H7 H8 H9
T2D 7 3 3 7 7 7 7 3 7

L2D 7 3 3 7 7 7 7 3 7

L3D 7 3 3 7 3 7 7 3 7

Table 5.1: Comparison of the hypotheses among the three setups.

52 5 Results and Discussion

5.1.5 Comparison to Original Study

Since we replicated the study of Balakrishnan et al. [2000],Only little differences
to the original study. a comparison to the original study is essential. Table 5.2

compares the results of both studies and highlights differ-
ences. Most of the results are the same, but in opposition

H1 H2 H3 H4 H5 H6 H7 H8 H9
Original 7 3 3 3 7 7 3 3 3

T2D 7 3 3 7 7 7 7 3 7

Table 5.2: Comparison of the results between our study and the original study.

to the original study we found no significant effect of vi-
sual integration on the users motions at all. The original
study showed a better symmetry and parallelism for the
integrated condition. Also, we found better parallelism for
the fast condition and not for the slow condition like Balakr-
ishnan et al. [2000] did.

5.1.6 Limitations

Since the user study only explored effects on symmetric bi-Generalizability of
the results is limited. manual interaction and not also on asymmetric bimanual

interaction, it is not possible to compare both interaction
types whether they differ among the investigated factors.
Furthermore, an object tracking task is no usual standard
task when using a bare-hand input device. Therefore, the
generalizability of the results is limited. We manipulated
the difficulty of the task by varying the speed, but there
might be other factors which influence the difficulty of a
task.

This chapter gave the statistical results and connections of
the conducted user study described in the previous chapter.
But what is the contribution of this study? The last thing is
to round off the study by giving interpretations and result-
ing further research questions.

53

Chapter 6

Summary and Future
Work

In this thesis the software testbed Leap Blender was pre- Testbed Leap
Blender was
presented.

sented. The diversity of different bare-hand input devices
and several studies with them show that there is the need
of investigating the users behavior with this new kind of
input. To avoid reimplementation and the drawbacks of
implementing everything from scratch, we developed the
software testbed Leap Blender. This testbed provides some
base functionalities and an extendable and customizable
structure to ease the preparation of studies for bare-hand
input. The concepts and the structure of the program and
how to use it to prepare a study task was explained. In Study tested the

testbed and showed
its benefits.

order to test the testbed and show the advantages over a
reimplementation, the study of Balakrishnan et al. [2000]
was replicated. The study conducted what potential fac-
tors may influence symmetric bimanual interaction with a
touchscreen, the Leap Motion Controller in 2D tasks, and
the Leap Motion Controller in 3D tasks. For that, we let
participants perform an object tracking task with different
conditions and setups.

This chapter summarizes the study and draws conclusions
from the results. Also, the usefulness of the testbed for the
preparation of our study and some possible future work is
highlighted.

54 6 Summary and Future Work

6.1 Summary and Contributions

6.1.1 Case Study

From the user study a set of results can be extracted. First,Summary of the
results of the study. an integrated visual stimuli has no effect on the users be-

havior. Neither the performance, nor the level of symmetry
and parallelism are influenced by this factor. Secondly, the
attention has an effect on manipulating objects, with a bet-
ter performance and parallelism of singular attention con-
ditions. The symmetry is influenced just in a 3D setup with
the Leap Motion Controller. In 2D setups the symmetry is
not influenced by attention. Thirdly, slow movements are
conducted with better performance, but fast movements
are conducted more parallelly. There is no effect on the
symmetry of motions by changing the difficulty. Fourthly,
there is a slight difference between the performance of both
hands. Lastly, performance and level of symmetry and par-
allelism of the motions of the user differ in setups for the
touchscreen, the Leap Motion Controller with 2D manipu-
lations and the Leap Motion Controller with 3D manipula-
tions. Best results are achieved with the touchscreen, with
which the results of the different users are close together.
With a Leap Motion setup for 3D manipulations the worst
results are achieved. The results of a setup with the Leap
Motion Controller for 2D manipulations are located in be-
tween the two other setups.

The shared phenomenon of the motions among the threeShared phenomenon
among the setups

explainable with
fundamental factors.

setups can be explained with the factors integration, atten-
tion and speed being fundamental factors of manipulation
and independent from the input device. But this is not cov-
ered by this study. The fact that divided attention causes
the motions of the user to be more asymmetric in the L3D
setup, but not in the other two setups, might come from theDifferences might

come from
orientation problems

in 3D.

problems of the user to orient in a 3D environment. This is
supported by overall worse symmetrical motions in the 3D
setup.

The differences to the original study do not exclude a valid-Differences among
the studies have to

be investigated.
ity of both results, because in the original study a digitizing
tablet with two pens was used and not a touchscreen. Users

6.1 Summary and Contributions 55

might perform motions differently when using objects for
input. This was not investigated by our study. But most of Same results prove

the credibility of the
testbed.

the results are the same, what proves the credibility of the
testbed.

Overall, there is a slight asymmetry between the two hands Total symmetry is not
possible.what supports the kinematic chain model of Guiard [1987],

because one hand follows the other. Therefore, total sym-
metry is not possible at all what has to be considered in GUI
design. Providing supporting constraints might be a solu-
tion. Even if the three setups differ in performance, symme- Considering needed

accuracy, symmetry,
and parallelism is
enough for finding a
device.

try, and parallelism of the motions of the user, each of them
is influenced by factors in nearly the same way. So, find-
ing the best input device is no matter of finding the best
device for the prevalent factors which might influence the
results, but finding an input device for the needed perfor-
mance of the user. If the motions of the user should be ac-
curate, symmetrical, and parallel, the touchscreen suits the
best. With it the expected results are best and stable among
the users. The advantage of the Leap Motion Controller
is to control three dimensions directly. This is not possi-
ble with the touchscreen which only can manipulate two
dimensions at the same time. Using the Leap Motion Con-
troller as 2D input device does not have benefits compared
to the touchscreen.

For symmetric bimanual interaction difficult tasks and di- Best performance
expected in slow
tasks with singular
attention.

vided attention should be avoided. Best results are ex-
pected for this kind of interaction if the task is concentrated
in the focal visual field of the user. Otherwise, additional
feedback is needed. Furthermore, divided attention and
difficulty cause the interaction to become sequential. Our No visual integration

is needed.results show that no visual integration is needed between
the two hands. Thus, it is not necessary to connect the cur-
sors of both hands or show the edges of a manipulating
object. Since there is only a slight difference between the
two hands and there is no effect influencing the symmetry,
one does not have to care about a leading or main hand
for a task. Comparing the symmetry and parallelism, we No parallelism is

needed for
symmetry.

found that worse parallelism does not lead to worse sym-
metry. Therefore, it is not necessary to choose a parallel task
to achieve symmetrical motions.

56 6 Summary and Future Work

6.1.2 Software Testbed

The testbed eased the implementation of the user study. Af-Testbed eased the
preparation of the

study.
ter the decision for a tracking task we could start directly
with the implementation and did not waste time for imple-
menting base functionalities for logging, communication
with the Leap Motion Controller, and displaying. First, the
scene was created by the tools of Blender, then the logging
module was customized to log necessary information for
the evaluation of the study. Because there is already a log-
ger set up, the only thing to do was to get the scene infor-
mation with the Python API of Blender. At last, the needed
logic was implemented in the simulation class. Much effort
was saved, because the structure of a frequently update is
already given. The Simulator was just extended by move-
ments for the target spheres, a function to draw big spheres
at the position of the index finger, and a function to connect
the two cursors for the integrated condition. So, just task
specific work had to be done.

There was no time intensive testing phase, because only theBenefits of the
testbed. extended parts had to be tested. The concentration was

on adapting the task specific functions. Additionally, for
this study it was not necessary to understand the whole
testbed, because no extensions of the base functionality
were needed and the study specific parts are fully indepen-
dent of the functionality of the testbed.

Because of this testbed, more time was available for set-Focus was on the
task. ting up a task, for conducting the study, and for evaluation.

Therefore, we could focus on the study and not on the sys-
tem.

6.2 Future Work

This thesis introduced the new software testbed LeapNecessary to
improve the detection
of hands and fingers.

Blender. Because of that, there is the possibility for fur-
ther improvements and enhancements. At some points
we struggled with the detection of the hands by the Leap
Motion Controller. If motions are performed where one

6.2 Future Work 57

hand covers the other, the controller loses the covered hand.
Also, at the corners of the detection range there were some
problems. To solve this, the testbed has to be upgraded
to the Leap Motion v2 software. This new version of the
Leap Motion Controller software provides an always visi-
ble and stable skeleton, based on assumptions, and would
solve the problems of detection and increase the smooth-
ness of motions. In order to provide a larger choice for in-
teraction techniques, more gestures could be implemented.
For that, the already provided gestures of the Leap Motion
Controller could be used and integrated into the testbed.

In order to make general statements about natural motions More studies are
needed to make
general statements.

of the user in mid-air manipulation, it is necessary to make
further studies about more natural tasks of interacting with
the computer and explore more influencing factors. Fur-
thermore, additional studies about asymmetric bimanual
interaction would make it possible to compare symmetric
and asymmetric interaction. Maybe there are fundamental
factors which are influencing the human performance, no
matter of the input type. Our study revealed a slight asym-
metry between both hands. To find out which hand follows
the other and if this differs between right and left handed
people, also further studies are necessary.

There are many open research questions for the topic of
midair manipulation. The introduced testbed is a way to
more and easier studies of bare-hand input. Further stud-
ies can improve the knowledge about the human behavior
in free space manipulation tasks and lead towards new and
easier interactions with the computer.

59

Appendix A

Study user information

60 A Study user information

Informed Consent Form
Symmetric Bimanual Interaction

Principal Investigator:
Sven Jung
Media Computing Group
RWTH Aachen University
sven.jung@rwth-aachen.de

Purpose of the study: The goal of this study is to study the behavior of the user using different kinds of input
devices: A touchscreen display for 2D manipulations and the bare-hand input device Leap Motion, for 2D and
3D manipulations. In the end, this three setups are compared according to the performance of the user
(distance error), the difference between the left and right hand and the symmetrical movement of both hands.

Procedure: Participants in this study will be asked to perform tasks with three different setups. A touchscreen
display to track objects which perform 2D Movements, the Leap Motion controller to track objects in 2D and the
Leap Motion Controller to perform 3D tracking. With each setup the participant will be requested to perform 4
tasks with different movement speeds and distances. In the task one finger of each hand controls a red sphere
which has to be tracked to a green target sphere.

Risks/Discomfort: You may become fatigued during the course of your participation in the study. You will be
given several opportunities to rest, and additional breaks are also possible. There are no other risks associated
with participation in the study. Should completion of the task become distressing to you, it will be terminated
immediately.

Benefits: The results of this study will be useful for integrating the new bare-hand input devices in software for
daily work and optimize the structure according to the natural behaviour of the user.

Alternatives to participation: Participation in this study is voluntary. You are free to withdraw or discontinue
the participation.

Costs and compensation: Participation in this study will involve no cost to you. There will be snacks for you
during and after the participation.

Confidentiality: All information collected during the study period will be kept strictly confidential. You will be
identified through identification numbers. No publications or reports from this project will include identifying
information on any participant. If you agree to join this study, please sign your name below .

__ I have read and understood the information on this form

__________________ __________________ ___________
 Participant's Name Participant's Signature Date

__________________ __________________ ___________
 Investigator's Name Investigator's Signature Date

Figure A.1: Consent form used for user study.

61

User Info
ID: ____

Gender: ______________

Age: ____

Background: ___

Experience tablets: time ______ frequency: __ daily __ weekly __ monthly

Experience bare-hand input: time ______ frequency: __ daily __ weekly __ monthly

Handedness: __ right __ left

Handicap (e.g. eye problems): ___

Figure A.2: User information form used for user study.

62 A Study user information

63

Bibliography

Bruno R. De Ara‘jo et al. Modeling on and above a stereo-
scopic multitouch display. 2012.

Ravin Balakrishnan et al. Exploring bimanual camera con-
trol and object manipulation in 3d graphics interfaces.
1999 ACM Conference on Human Factors in Computing
Systems (CHI’99), 1999.

Ravin Balakrishnan et al. Symmetric bimanual interaction.
CHI ’2000, 2000.

William Buxton et al. A study in two-handed input. CHI ’86
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, 1986.

Didier Casalta et al. Evaluating two-handed input tech-
niques: Rectangle editing and navigation. ACM CHI’99,
1999.

Géry Casiez et al. 1efilter: A simple speed-based low-pass
filter for noisy input in interactive systems. CHI ’2012,
2012.

Yves Guiard. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a model.
1987.

Maurice R. Masliah et al. Measuring the allocation of con-
trol across degrees-of-freedom. Graphics Interface (GI)
’99, 1999.

Fabrizio Nunnari et al. Hand tracking for 3d
editing, Last visited: Juli 2014. URL http:
//slsi.dfki.de/software-and-resources/
hand-tracking-for-3d-editing/.

http://slsi.dfki.de/software-and-resources/hand-tracking-for-3d-editing/
http://slsi.dfki.de/software-and-resources/hand-tracking-for-3d-editing/
http://slsi.dfki.de/software-and-resources/hand-tracking-for-3d-editing/

64 Bibliography

Leigh Ellen Potter et al. The leap motion controller: A view
on sign language. OzChi 13, 2013.

Jeremy Sutton. Air painting with corel painter freestyle and
the leap motion controller: A revolutionary new way to
paint! SIGGRAPH 13, 2013.

Radu-Daniel Vatavu et al. Leap gestures for tv: Insights
from an elicitation study. TVX 2014, 2014.

Robert Y. Wang et al. 6d hands: Markerless hand tracking
for computer aided design. UIST ’11, 2011.

Frank Weichert et al. Analysis of the accuracy and robust-
ness of the leap motion controller. May 2013.

Igor Zubrycki et al. Recent Advances in Automation, Robotics
and Measuring Techniques. Springer International Publish-
ing, 2014.

65

Index

3Gear, 5

asymmetric interaction, 4

Balakrishnan et al., 7
bare hand input device, 2
bimanual interaction, 4
Blender, 9

contributions
- abstract, 4
- detailed, 54–56

Data Gloves, 5

evaluation, see results
extensibility, 28–32

future work, 56–57

gestures, 21

hypotheses, 42

implementation, 9–32
independent variables, 34–35

Kinect, 5
Kinematic Chain Model, 7

L2D, see Leap Motion Controller 2D condition
L3D, see Leap Motion Controller 3D condition
Leap Blender, xiii
Leap Motion Controller

- advantages, 5
- appearance, 2

m-metric, 37
mode

- edit mode, 27

66 Index

- object mode, 27
module

- GestureHandler, 12
- LeapModal, 11
- LeapReceiver, 11
- LeapSelector, 13
- logging, 12
- Manipulator, 12
- ObjectHandler, 13
- Settings file, 13
- Simulator, 12
- StudyLogger, 12
- Transformator, 12

OneEuroFilter, 26

Python, 10

results, 45
RMS, see Root Mean Square Error
Root Mean Square Error, 36

study, 33–43
summary, 53
Symmetric Bimanual Interaction, 7
symmetric interaction, 4

T2D, see Touchscreen 2D condition
two-handed input, 4

Typeset September 24, 2014

	Abstract
	Acknowledgments
	Conventions
	Introduction
	Mainstream Graphical Input Device
	Bare-Hand Input Device
	User Studies for Graphical Input Devices
	Contributions

	Related Work
	Bare-Hand Input Devices
	Leap Motion Controller in Research
	Bimanual Interaction

	Software Testbed
	Environment
	Structure
	Functionality
	Displaying
	Transformation
	Leap Motion to Camera Transformation
	Camera to Blender Transformation

	Gestures
	Pinch
	Flathand
	Modes

	Extensibility
	StudyLogger
	Simulator
	Settings

	Case Study: Replicating Symmetric Bimanual Interaction Study
	Experiment
	Tasks
	Setups

	Metrics
	Apparatus
	Touchscreen Setup
	Leap Motion Controller Setup

	Participants
	Design
	Hypotheses
	Each Setup
	Overall

	Results and Discussion
	Results
	Performance
	Symmetry
	Parallelism
	Comparison of Setups
	Comparison to Original Study
	Limitations

	Summary and Future Work
	Summary and Contributions
	Case Study
	Software Testbed

	Future Work

	Study user information
	Bibliography
	Index

