Way Back in Current Topics...

Describing Each Condition

- Measures of central tendency
- Mean:"average"
- Median: the middle point of the sorted data
- Measures of spread
- SD: Standard deviation
- 95\% Confidence Interval (CI)

$\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i} \quad S D=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}$

Basic Statistical Analysis for HCl

- Research Question
- Do users type on touchscreen mobile phone faster using a stylus than using a finger?
- Between-subjects, II participants each
- Result
- The choice of method had a significant effect on the completion time, $t(20)=4.03, p<.001$
- Finger ($M=39.9695 \% \mathrm{Cl}[25.30,54.62]$) is faster than Stylus ($M=80.01$ [65.35, 94.67]). Effect size Cohens' $d=1.74$ (large effect).

Too complex to be useful

No change as N changes

Abstraction losses details

95\% Confidence Interval of Mean

$$
\pm 1.96 \times \frac{S D}{\sqrt{N}}
$$

- In an infinite number of experiments, 95% of the Cls will include the population mean
- Changes systematically as N change
- Better than SD
- Report both mean and confidence interval
- E.g., M $=39.9695 \% \mathrm{Cl}$ [25.30, 54.62]

Effect Size

Sample Size Influences Confidence

- Effect sizes indicate the strength of the phenomenon
- In experimental studies, they indicate how strong does the manipulation of independent variables results in the changes of the dependent variables
- Difference between two means
- E.g., Stylus is 40s slower than Touch
- In original unit, intuitive
- Percentage and ratio
- E.g., Stylus is twice slower than Touch
- Emphasize the magnitude of effect
- Cohen's d
- E.g., effect size Cohen's $d=2.0$
- The mean difference is roughly two SD
- Allow comparison across different measurement units
- Reference values:
0.2 (small)
0.5 (medium)
0.8 (large)

- Reporting:"Cohen's $d=0.25$ (small effect)

Basic Statistical Analysis for HCl

- Research Question
- Do users type on touchscreen mobile phone faster using a stylus than using a finger?
- Between-subjects, II participants each
- Result
- The choice of method had a significant effect on the completion time, $t(20)=4.03, p<.001$
- Finger $(M=39.9695 \% \mathrm{Cl}[25.30,54.62])$ is faster than Stylus ($M=80.01$ [65.35, 94.67]). Effect size Cohens' $d=1.74$ (large effect).

t-test

- t ratio: ratio between
- Variance explained by the model (Here: mean difference $80.01-39.96=40.05$)
- Variance that the model can't explain (Here: Standard Error of mean difference: 9.93)
- t ratio: $40.05 / 9.93=4.03$
- Theoretical probability distribution of t varies by degrees of freedom
- Degrees of freedom: number of values that are free to vary given the statistics
- Here: 22 participants -2 means $=20$ DOF
- Direction of difference
- By default, a significant result in a t-test indicates differences without stating the direction. (known as two-tailed tests)

NHST: Null Hypothesis Significance Testing

- Assuming no effect of IV
- E.g., keyboard type does not influence completion time
- Then p value is the probability that our measurements would occur
- E.g., $p=0.05$:
- "Assuming keyboard type does not influence completion time, then there would be a 5% probability that our measurement turns out as it did."
- De facto cutoff level of $p=.05$ for statistical significance

In-class Exercise:
 p value (Fine Prints)

- Suppose your want compare the number of hours that people watch TV between school students and collage students.
- You gathered survey data from 100 respondents.
- Results: On average, school students watch 3.4 hours per day, and college students watch 3.0 hours per day. $t(98)=1.04, p=.03$
- Which of the following statements are correct
- There are 3% probability that school students watch TV more than college students
- There are 3% probability that school students watch TV in different amount that college students
- Assuming that school students watch TV in different amount than college students there is a 3% probability that this result occur
- Assuming that school students and college students watch TV at the same amount, there is a 3% probability that this result occur.

In-class Exercise: p value (Fine Prints)

- Which of the following statements are correct?
- There are 3% probability that school students watch TV more than college student Incorrect: not the definition of p-value, specifying direction of the comparison
- There are 3% probability that school students watch TV in different amount that college students
Incorrect: not the definition of p -value, specifying direction of the comparison
- Assuming that school students watch TV in different amount than college students, there is a 3\% probability that this result occur
Incorrect: assuming the difference in population
- Assuming that school students and college students watch TV at the same amount there is a 3\% probability that this result occur

Correct: assuming no difference in the population and does not specify the direction

Basic Statistical Analysis for HCl

- Research Question
- Do users type on touchscreen mobile phone faster using a stylus than using a finger?
- Between-subjects, II participants each
- Result
- The choice of method had a significant effect on the completion time, $t(20)=4.03, p<.001$.
- Finger ($M=39.96$ 95\% Cl $[25.30,54.62]$) is faster than Stylus ($M=80.0$ I [65.35, 94.67]). Effect size Cohens' $d=1.74$ (large effect).

Statistical Assumptions

- Normality: distribution of sampled means are normally distributed
- Check from the normality of the data in each group
- Plotting data and use Shapiro-Wilk test
- Homogeneity of variance: sampled data from the populations of the same variance
- Check that variance across groups ar roughly equal
- Plotting data and Leven's test
- Independence: Sampled from different participants
- Interval data

Non-parametric Tests

- Used when normality, homogeneity of variance, or interval data assumptions are violated
- Lower statistical power
- Need larger sample size for the same p-value
- E.g.,Wilcoxon rank-sum test
t Test
Stylus-Finger
Difference $\quad 40.0500$ t Ratio 4.030356
Std Err Dif 9.9371 DF
Upper CL Dif 60.7784 Prob $>$ Itl 0.0007^{*} Lower CL Dif 19.3216 Prob > t 0.0003* Confidence $\quad 0.95$ Prob $<t \quad 0.9997$ Wilcoxon (Rank Sums)
$\begin{array}{rrr}\mathbf{S} & \text { Z } & \text { Prob }>\mathbf{I Z I} \\ 175 & 3.15192 & 0.0016^{*}\end{array}$

Statistical Analysis So Far

- For within-subject designs (violate independence assumption)
- E.g., paired t-tests, Wilcoxon signed rank test
- More statistical power

t Test

Stylus-Finger
Assuming equal variances
Difference $\quad 40.0500$ t Ratio 4.030356

Std Err Dif	9.9371 DF	

Upper CL Dif 60.7784 Prob > It 0.0007
$\begin{array}{lrll}\text { Lower CL Dif } & \text { 19.3216 Prob >t } & 0.0003 \\ \text { Confidence } & 0.95 \text { Prob <t } & 0.9997\end{array}$
Wilcoxon (Rank Sums)
$\begin{array}{cc}\text { S } & \text { Z } \\ 175 & \text { Prob } \\ 3.15192 & \text { Pr| } \\ 0.0016^{*}\end{array}$

Statistical Analysis So Far

Type I and Type II Error

- Each time we do a t-test ($p<.05$), we have 5\% probability to be false positive
- Probability of no false positive $=95 \%$
- Three t-tests: $0.95^{3}=0.857$
- Actual probability to be false positive $1-0.857=0.143$
- Overtesting increase probability to be false positive

ANOVA

- Candidate model fits better than null model \Rightarrow The effect is statistically significant
- Candidate model fits as well as null model \Rightarrow The effect is not statistically significant
- Conclusion:The differences among the levels are statistically significant

Statistically significant E.g., $F_{2,28}=73.07, p<.001$

ANOVA:
Analysis of Variance

- Fit different models and determine how good the models explain the data
- Maximal model: one parameter per data point
- Null model: one parameter (e.g., mean) represents all data points
- Determine just adequate candidate model that fits the data

Post-hoc Test

- Compare each pair of conditions as a follow-up of ANOVA
- E.g., t-tests
- Need to prevent the false-positive
- E.g., Bonferroni correction: set lower cut-off for p-value to be significant
- Three conditions: cut-off $0.05 / 3=.0167$
- Apply this cut-off to all tests

Statistical Analysis So Far

Reporting

- Result
- The choice of method had a significant effect on the completion time, $t(20)=4.03, p<.001$
- Finger ($M=39.96$ 95\% Cl $[25.30,54.62]$) is faster than Stylus ($M=80.01$ [65.35, 94.67]). Effect size Cohens' $d=1.74$ (large effect).
- Two-digit after the decimal point
- Except p-value: report exact iff more than 0.001
- Use 95% confidence interval as error bar and indicate so

Reading Assignment

- Required
- (Dragicevic et al., alt.chi 2014) Running an HCl experiment in multiple parallel universes
- Recommended
- Cumming, Geoff. "The New Statistics Why and How." Psychological science25.I (2014): 7-29
- Practical Statistics for HCl by Jacob O.Wobbrock, U. of Washington Independent study material with examples from HCl Uses SPSS and JMP (trial version: free download) http://depts.washington.edu/aimgroup/proj/ps4hci/

Summary

- Effect size (mean) and their confidence interval describes the data
- Cohen's d (standardized effect size) allows comparison across experiments
- p-value is the probability of that the result occurs assuming no effect of IV.
- Statistical assumptions and experimental design indicate appropriate type of the test
- Overtesting increase probability to be false positive

