Way Back in Current Topics...

Basic Statistical Analysis for HCI

Mean ± 95% CI

140

Stylus

Describing Each Condition

- Measures of central tendency
 - Mean: "average"
 - Median: the middle point of the sorted data
- Measures of spread
 - SD: Standard deviation
 - 95% Confidence Interval (CI)

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad SD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Distributions Label=Finger Data **Summary Statistics** Mean Std Dev 3.3166248 Upper 95% Mean 11.228139 Lower 95% Mean 6.7718611 Ν 11 Median 8 5 10 15 20

(Different data from previous slide)

Distributions Label=Stylus

Summary Statistics			
Mean	9		
Std Dev	3.3166248		
Upper 95% Mean	11.228139		
Lower 95% Mean	6.7718611		
Ν	11		
Median	9		

Different Plots, Different Purposes

media computing group

95% Confidence Interval of Mean

 $\pm 1.96 \times \frac{SD}{\sqrt{N}}$

- In an infinite number of experiments, 95% of the CIs will include the population mean
- Changes systematically as N change
 - Better than SD
- Report both mean and confidence interval
 - E.g., M = 39.96 95% CI [25.30, 54.62]

5

Sample Size Influences Confidence

Effect Size

• Effect sizes indicate the strength of the phenomenon

• In experimental studies, they indicate how strong does the manipulation of independent variables results in the changes of the dependent variables.

Difference between two means

- E.g., Stylus is 40s slower than Touch
- In original unit, intuitive
- Percentage and ratio
 - E.g., Stylus is twice slower than Touch
 - Emphasize the magnitude of effect

Effect Size

Cohen's d

- E.g., effect size Cohen's d = 2.0
- The mean difference is roughly two SD
- Allow comparison across different measurement units
- Reference values:
 - 0.2 (small)
 - 0.5 (medium)
 - 0.8 (large)
- Reporting: "Cohen's d = 0.25 (small effect)

Basic Statistical Analysis for HCI

Research Question

- Do users type on touchscreen mobile phone faster using a stylus than using a finger?
- Between-subjects, II participants each

Result

- The choice of method had a significant effect on the completion time, t(20) = 4.03, p < .001.
- Finger (M=39.96 95% CI [25.30, 54.62]) is faster than Stylus (M=80.01 [65.35, 94.67]). Effect size Cohens' d = 1.74 (large effect).

NHST: Null Hypothesis Significance Testing

- Assuming no effect of IV
 - E.g., keyboard type does not influence completion time
- Then p value is the probability that our measurements would occur
 - E.g., *p* = 0.05:
 - "<u>Assuming</u> keyboard type does *not* influence completion time, <u>then</u> there would be a 5% probability that our measurement turns out as it did."
- De facto cutoff level of p = .05 for statistical significance

- t ratio: ratio between
 - Variance explained by the model (Here: mean difference 80.01 39.96 = 40.05)
 - Variance that the model can't explain (Here: Standard Error of mean difference: 9.93)
 - *t* ratio: 40.05 / 9.93 = 4.03
- Theoretical probability distribution of t varies by degrees of freedom
- Degrees of freedom: number of values that are free to vary given the statistics
 - Here: 22 participants 2 means = 20 DOF
- Direction of difference
 - By default, a significant result in a *t*-test indicates differences without stating the direction. (known as two-tailed tests)

Probability Distribution of t

In-class Exercise: p value (Fine Prints)

- Suppose your want compare the number of hours that people watch TV between school students and collage students.
 - You gathered survey data from 100 respondents.
 - Results: On average, school students watch 3.4 hours per day, and college students watch 3.0 hours per day. t(98) = 1.04, p = .03.
- Which of the following statements are correct?
 - There are 3% probability that school students watch TV more than college students
 - There are 3% probability that school students watch TV in different amount that college students
 - Assuming that school students watch TV in different amount than college students, there is a 3% probability that this result occur.
 - Assuming that school students and college students watch TV at the same amount, there is a 3% probability that this result occur.

In-class Exercise: p value (Fine Prints)

• Which of the following statements are correct?

- There are 3% probability that school students watch TV more than college students Incorrect: not the definition of p-value, specifying direction of the comparison
- There are 3% probability that school students watch TV in different amount that college students

Incorrect: not the definition of p-value, specifying direction of the comparison

 Assuming that school students watch TV in different amount than college students, there is a 3% probability that this result occur.

Incorrect: assuming the difference in population

 Assuming that school students and college students watch TV at the same amount, there is a 3% probability that this result occur.

Correct: assuming no difference in the population and does not specify the direction

Basic Statistical Analysis for HCI

Mean ± 95% CI

Statistical Assumptions

16

- Normality: distribution of sampled means are normally distributed
 - Check from the normality of the data in each group
 - Plotting data and use Shapiro-Wilk test
- Homogeneity of variance: sampled data from the populations of the same variance
 - Check that variance across groups are roughly equal
 - Plotting data and Leven's test
- Independence: Sampled from different participants
- Interval data

2015

Spend more time in

homogeneity of variance

CTHCI - Chat Wacharamanotham

🗉 media computing group 🔡

Non-parametric Tests

- Used when normality, homogeneity of variance, or interval data assumptions are violated
- Lower statistical power
 - Need larger sample size for the same p-value
- E.g., Wilcoxon rank-sum test

t Test

Stylus-Finger			
Assuming equ	al variance	es	
Difference	40.0500	t Ratio	4.030356
Std Err Dif	9.9371	DF	20
Upper CL Dif	60.7784	Prob > Itl	0.0007*
Lower CL Dif	19.3216	Prob > t	0.0003*
Confidence	0.95	Prob < t	0.9997
Wilcoxon (Rank Sums)			
S	ZF	Prob>IZI	

0.0016*

3.15192

175

Paired Tests

- For within-subject designs (violate independence assumption)
 - E.g., paired t-tests, Wilcoxon signed rank test

More statistical power

t Test			
Stylus-Finger			
Assuming equ	al variance	es	
Difference	40.0500	t Ratio	4.030356
Std Err Dif	9.9371	DF	20
Upper CL Dif	60.7784	Prob > Itl	0.0007*
Lower CL Dif	19.3216	Prob > t	0.0003*
Confidence	0.95	Prob < t	0.9997
Wilcoxon (Rank Sums)			
S	ZF	Prob>IZI	
175	3 15192	0.0016*	

Difference: Finger-Stylus

Finger	39.96	t-Ratio	-9
Stylus	80.01	DF	10
Mean Difference	-40.05	Prob > Itl	<.0001*
Std Error	4.45	Prob > t	1.0000
Upper 95%	-30.135	Prob < t	<.0001*
Lower 95%	-49.965		
Ν	11		
Correlation	1		

Wilcoxon Signed Rank

	Finger-
	Stylus
Test Statistic S	-33.000
Prob>ISI	0.0010*
Prob>S	0.9995
Prob <s< td=""><td>0.0005*</td></s<>	0.0005*

Statistical Analysis So Far

Statistical Analysis So Far

Type I and Type II Error

- Each time we do a *t*-test (*p* < .05), we have 5% probability to be false positive
 - Probability of no false positive = 95%
- Three *t*-tests: $0.95^3 = 0.857$
 - Actual probability to be false positive: I-0.857 = 0.143
 - Overtesting increase probability to be false positive

Type II error (false negative) You're not pregnant

ANOVA: Analysis of Variance

Maximal model

- Fit different models and determine how good the models explain the data
 - Maximal model: one parameter per data point
 - Null model: one parameter (e.g., mean) represents all data points
 - Determine just adequate candidate model that fits the data

ANOVA

- Candidate model fits better than null model
 ⇒ The effect is statistically significant
- Candidate model fits as well as null model
 ⇒ The effect is not statistically significant
- Conclusion: The differences among the levels are statistically significant

Statistically significant

E.g., $F_{2,28} = 73.07$, p < .001

Post-hoc Test

- Compare each pair of conditions as a follow-up of ANOVA
 - E.g., *t*-tests
- Need to prevent the false-positive
- E.g., Bonferroni correction: set lower cut-off for p-value to be significant
 - Three conditions: cut-off 0.05 / 3 = .0167
 - Apply this cut-off to all tests

Statistical Analysis So Far

Statistical Analysis So Far

Reporting

Reading Assignment

Required

 (Dragicevic et al., alt.chi 2014) Running an HCI experiment in multiple parallel universes

Recommended

- Cumming, Geoff. "The New Statistics Why and How." Psychological science25.1 (2014): 7-29.
- Practical Statistics for HCI by Jacob O.Wobbrock, U. of Washington Independent study material with examples from HCI Uses SPSS and JMP (trial version: free download) http://depts.washington.edu/aimgroup/proj/ps4hci/

Summary

- Effect size (mean) and their confidence interval describes the data
- Cohen's d (standardized effect size) allows comparison across experiments
- p-value is the probability of that the result occurs assuming no effect of IV.
- Statistical assumptions and experimental design indicate appropriate type of the test
- Overtesting increase probability to be false positive

