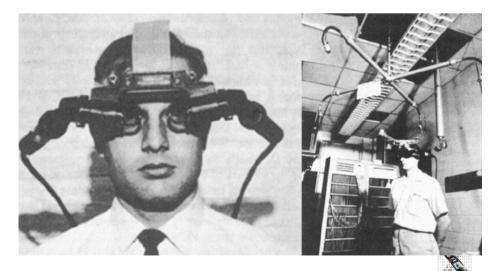
Research in Augmented Reality

Nur Al-huda Hamdan Media Computing Group RWTH Aachen University

http://hci.rwth-aachen.de/cthci


CTHCI — Nur Al-huda Hamdan____

- Bring information to everyday surroundings
- Enhance users' perception, e.g., by zooming-in and showing hidden structures
- Make interaction more natural
- Substitute for missing senses for impaired people

Ivan Sutherland 1986


media computing group

CTHCI — Nur Al-huda Hamdan

Definitions

- Reality–Virtuality continuum (Milgram and Kishino 1994)
- In AV and VE/VR the surrounding environment is virtual, in AR the surrounding environment is real

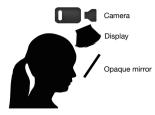
AR Topics

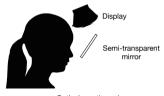
- Characteristics for AR system (Azuma 1997)
 - Combines real and virtual objects in a real environment
 - Registers (aligns) real and virtual objects with each other
 - Runs interactively and in real time

CTHCI — Nur Al-huda Hamdan

Diminished Reality

Herling ISMAR '10




Technologies

- Interaction
- Applications

Displays - HMD

Video see-through

Optical see-through

CTHCI — Nur Al-huda Hamdan

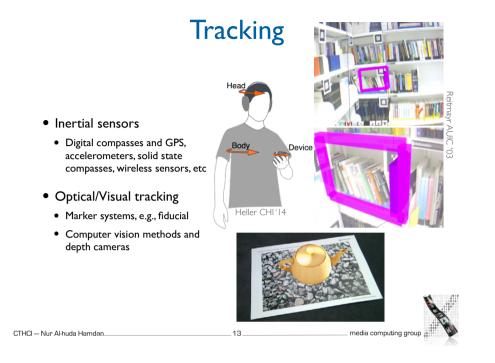
Displays

media computing group

• Handheld displays

• Projection displays

CTHCI — Nur Al-huda Hamdan.


10

	HMD Video see-through	HMD Optical see-through	Handheld	Projectors
Advan.	visual control, sync., less dependent on environment	more natural perception	portable, widespread, powerful, camera, tracking	displays directly onto physical objects' surfaces
Disadvan.	camera and processing, unnatural perception	time lag, jitter of virtual image	small display	(+/-) not user dependent
Carmigniani & Furht CTHCI — Nur Al-huda Ha		& Damiani & Ivkovic, ' I I:''/ 12	Augmented reality technol	ogies, systems and applications" media computing group

SixthSense

CTHCI — Nur Al-huda Hamdan

DIY AR SDKs

- Image recognition & tracking, 3D model rendering, video overlay and location based AR
- Define points of interest, attach information to them, and using corresponding app the information appears on the video flow
- SDKs
- Wikitude, Vuforia, Layar, etc.

Tracking Challenges

- Environment Sensing
- User perspective: Adapt overlay to user's dynamic orientation
- Scene perspective: Project overlay in visible and meaningful way, aligned with the real world
- Low latency
- Calibration
- Both user and scene
- Choice of tracking technology depends on AR System (fixed/mobile, indoor/outdoor)

Interaction

Lee MITA '12

- Gestures
- Tangibles
- Heterogeneous devices
- Other displays
- Multimodal

Mistry ICST '08

CTHCI - Nur Al-huda Hamdan

TUI

Marrier 3DUI'10

AR Systems

- Carmigniani and Furht categorized AR systems into five categories
- Fixed indoor systems, fixed outdoor systems, mobile indoor systems, mobile outdoor systems, and mobile indoor and outdoor systems

Mobile AR

19

https://www.youtube.com/watch?v=VPUT2I5IvT0

17

• Features

CTHCI — Nur Al-huda Hamdan

- Enable user to focus on task rather than UI
- Present private information
- When wearable: keep hands free
- Location access
- Geo-location, object recognition, image processing and dynamic tracking
- Apps (mobile browsers)
- Navigation, public transportation, social media tags, in situ coupons and commercial offers, games, TV guide, in situ wikipedia, tourism
- Obstacles
- GPS accuracy and limited screen


media computing group

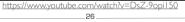
Applications

_20

Geographic Information System (GIS) + AR

- Augmented Maps
 - Represent the environment in a more natural and representative fashion
- Augmented Territories
 - Augment the environment itself to enhance users' interaction
 - Sea navigation
 - Road navigation
 - Augmenting underground constructions
 - Indoor navigation

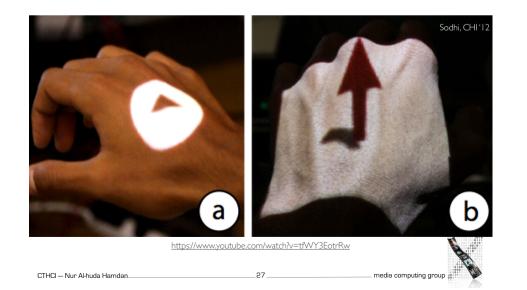
YouMove **Enhancing Movement Training using an Augmented Reality Mirror**


Fraser Anderson^{1,2}, Tovi Grossman¹, Justin Matejka¹, George Fitzmaurice¹

Applications - Training Systems

¹Autodesk Research

²University of Alberta Edmonton, AB, Canada

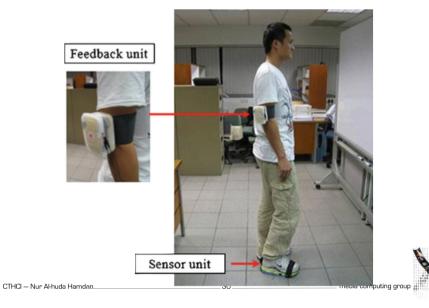

CTHCI - Nur Al-huda Hamdan

media computing group CTHCI — Nur Al-huda Hamdan 25

Applications - Training Systems

Applications - Augmented Feedback

Anderson UIST '13



User Evaluation

3

Applications - Rehabilitation

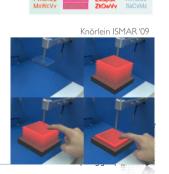
User Evaluation

- A problem in AR research: not many user-based experiments
- Technology is still not perfect
- Depends on human perception, ergonomics, and attention models
- Difficult to conduct in a well-controlled manner that is repeatable and reliable (Onoff prototypes and variability)
- Lack of suitable methods for evaluating AR interfaces
- Who is the user? What problem are we solving? Who can evaluate the system?

32

User Evaluation

- Usability tests
- Learnability, Efficiency, Memorability, Errors, and Satisfaction (Nielsen)
- Early on in the research project, using e.g., think aloud method or heuristic evaluation
- Allow for rapid iterative design
- Cannot be generalized
- User studies to answer research questions
 - For example, user interaction (efficiency or accuracy), behaviour, collaboration, ergonomics, performance, experience, etc
 - Incremental knowledge


User-based Studies in AR

- Based on work conducted by Swan and Gabbard VR '05, most AR user evaluations fit into one of four categories:
- Low-level tasks: understanding human perception and cognition in AR contexts
- User task performance: how AR technology could impact underlying tasks
- Examine user interaction and collaboration
- System usability

Evaluation Methods in AR

- Objective measurements
- Measured numbers, reliable and repeatable, e.g., completion time, accuracy, object position
- Subjective measurements
- Subjective judgment of people, e.g., from questionnaire and rankings

Gabbard and Swan IEEE Trans, '08

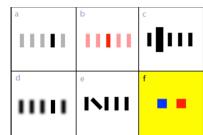
Evaluation Methods in AR

36

- Qualitative analysis
- Data is gathered through observations and interviews
- Non User-Based techniques
 - Such as cognitive walkthroughs or heuristic evaluations with experts
- Informal testing
- Reporting observations gathered during demonstration

Visualisation Challenges

Livingston ISMAR '03

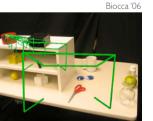

- I. Depth sensing techniques
 - Occlusion paradox

CTHCI — Nur Al-huda Hamdan.

• Context preservation

- 4 1000
- 2. Attention direction techniques
 - Overlays, e.g., using arrows and circles; (+) visibility, (-) increase visual clutter
 - Pixel-based, e.g., by manipulating the brightness, contrast, size, etc of parts of the image; (+) maintain scenes from visual pollution, (-) hard to perform in real time

	Mendez, '10:''On the Usage of Context for Augmented Reality Visualization"	
CTHCI — Nur Al-huda Hamdan_	38 media computing group ;	


Visualisation Challenges

Exercise

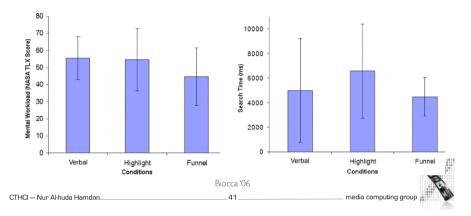
39

- Write a simplified study protocol to evaluate the attention funnel
- Attention funnel vs. visual cues (e.g., circle around object) and auditory cue telling the user what object to find
- IV, DV, hypothesis, study design, study setup (hardware)

media computing group

Attention Funnel User Study

40


- Within-subject, 14 participants
- IV:Attention direction technique (funnel, visual cue, verbal cue)
- DV: Search time, error, and and mental workload (NASA TLX, <u>online</u>)
- HMD video see-through, ultrasonic/inertia hybrid tracking system, and a pressure sensor was attached to the thumb of a glove to capture the reaction time

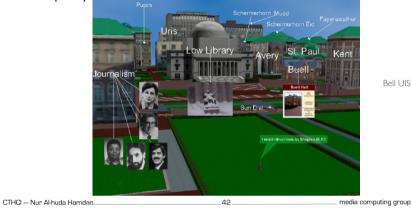
Attention Funnel Results

- Funnel decreased the visual search time by 22%
- Increased consistency of performance by 65%
- Significantly reduced workload

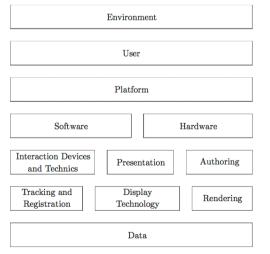
Future research in AR

43

- Understand human perception and attention models
- Study the effect of AR on fatigue and strain
- Social acceptance
- Privacy
- Improved tracking systems and displays
- Innovation: more compact and mobile lenses
- Improve in situ visualisations



Visualisation Challenges


3. View management

- How information should be represented in digital displays to avoid/ decrease visual clutter, distortion, and occlusion
- Related object properties: visibility, position, size, transparency, and priority

Bell UIST '01

AR Blocks

44

CTHCI — Nur Al-huda Hamdan

Summary

Wilson and M. D'Cruz, '06, "Virtual and interactive environments for work of the future"

45

- Five barriers we must overcome
 - Technology
 - Methodologies to analyze and evaluate AR systems
 - Evaluation that manifests the value of AR systems
 - Safety and health issues
 - Usability

CTHCI — Nur Al-huda Hamdan

The Ultimate Display ~ Sutherland

"The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal. With appropriate programming such a display could literally be the Wonderland into which Alice walked."