
Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

media computing groupCTHCI — Jan Borchers

http://hci.rwth-aachen.de/cthci

Research in Coding
and IDEs

media computing groupCTHCI — Jan Borchers

Status Quo

2

Design

Analyze Implement

media computing groupCTHCI — Jan Borchers

Time in Software Development

3

0-36 -30 -20 -10

100

0

25

50

75

Month until product release

Pe
rc

en
t

of
 W

or
k

T
im

e

Making code more maintainable

Fixing Bugs

Implementing new features

[LaToza2006, Maintaining mental models: a study of developer work habits]

media computing groupCTHCI — Jan Borchers 4

Software is complex and hard to understand.

media computing groupCTHCI — Jan Borchers

Task context

5

• What is relevant information?
• What strategies are applied to find information?

media computing groupCTHCI — Jan Borchers 6

31 Professional Java Developers

5 Maintenance tasks
(3 Bugs, 2 Enhancements)

500 SLOC Java Paint
Application

Models for Developer Strategies
[Ko2006, An Exploratory Study of How Developers Seek, Relate, and

Collect Relevant Information during Software Maintenance Tasks]

media computing groupCTHCI — Jan Borchers

Models for Developer Strategies

7

Search Relate Collect
choose node

no cues
at node

navigate
dependency

navigate
to previously
visited node

node is
relevant

need more
information

[Ko2006, An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks]

media computing groupCTHCI — Jan Borchers 8

Models for Developer Strategies
[Sillito2008, Asking and Answering Questions during a Programming Change Task]

9 experienced
developers (pair
programming)

1 of 5 maintenance
tasks per session

ArgoUML
60k SLOC

16 developers from
industry

Real world change
task

Real world sour code

media computing groupCTHCI — Jan Borchers

Models for Developer Strategies

9

[Sillito2008, Asking and Answering Questions during a Programming Change Task]

Finding focus points Expanding focus points

Understanding a subgraph Questions over groups
of subgraphs

media computing groupCTHCI — Jan Borchers

Tools Used in Eclipse

11

8 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

vide two views of the top 10 commands. Table
2 lists the commands by the number of devel-
opers using the command. Table 3 lists the
commands according to average use by all de-
velopers. Interestingly, developers used content
assist (which suggests possible method names
in the editor given a type) as much as the com-
mon editing commands.

Analyzing the command information in the
interaction histories was difficult. For Eclipse
and the plug-ins that extend it, the intent for
the plug-in developer is to assign a unique
identifier for a command regardless of how
the command is made available in the envi-
ronment. For instance, the same command
provided through a toolbar menu and a con-
text menu in the editor should have the same
identifier. Unfortunately, not all Eclipse plug-

ins use this convention. As a result, we found
many inconsistencies, resulting in different
identifiers representing the same command.
For example, selecting Save from the File
menu in the toolbar generates a different iden-
tifier than when a key binding performs the
Save command. We also found cases that used
the same identifier for commands provided by
different plug-ins.

To account for these duplications and ambi-
guities, we created a mapping of identifiers
that considers the context of how a command
was used. This mapping reduced the number of
unique identifiers from 1,208 to 1,142. How-
ever, our mapping focused on the more com-
monly used commands, so this number might
still include duplicated and ambiguous com-
mands. To facilitate this sort of analysis, we
recommend that plug-in developers specify
consistent IDs for their commands and actions.

Navigation
Most software fixes, changes, and enhance-

ments involve navigating across the code base
to understand the system’s structure and the
context in which code executes. Eclipse pro-
vides seven views to help a developer efficiently
locate code of interest: Package Explorer, Type
Hierarchy, Outline, Search, Call Hierarchy,
Bookmarks, and Declaration. The developers
in our study used the Package Explorer view
the most, on the basis of the number of selec-
tions made in each view (see figure 5); nobody
used the Declaration view, even though it is
present by default in the Java perspective.

Through key bindings, Eclipse also provides
direct, easily accessed support for different
kinds of nonlocal navigation and searches, in-
cluding navigating to the declaration of an ele-
ment selected in the editor, searching for refer-
ences to a selected element, and opening a type.
Table 4 summarizes these nonlocal navigation
and search commands available in the JDT,
their key bindings on the Windows platform,
how many of the developers used the com-
mands, and each command’s rank (a rank of
one indicates the command that the developers
used most; the lowest rank is 1,142—the num-
ber of commands). This data shows that the
command used most often is opening a selected
element’s declaration (a rank of 21); the com-
mand used by the largest number of users is the
search for references in a workspace.

To help developers mark points of interest

Package Explorer
Search
Type Hierarchy
Outline
Call Hierarchy

74%

11%

2%

10%
3%

Figure 5. Use of
navigation views by all
41 developers (nobody
used the Declaration
view).

Table 3
Top 10 commands executed across all 41 developers

Command Identifier Use (%)

Delete org.eclipse.ui.edit.delete 14.3

Save org.eclipse.ui.file.save 11.3

Next word org.eclipse.ui.edit.text.goto.wordNext 7.3

Paste org.eclipse.ui.edit.paste 6.8

Content assist org.eclipse.ui.edit.text.contentAssist.proposals 6.7

Previous word org.eclipse.ui.edit.text.goto.wordPrevious 5.9

Copy org.eclipse.ui.edit.copy 4.6

Select previous word org.eclipse.ui.edit.text.select.wordPrevious 3.4

Step (debug) org.eclipse.debug.ui.debugview.toolbar.stepOver 3.2

[Murphy2006, How Are Java Software Developers Using the Eclipse IDE?]

media computing groupCTHCI — Jan Borchers

Easing Access to Task Context

12

Design

Analyze Implement

[Kersten2006, Using Task Context to Improve Programmer Productivity] media computing groupCTHCI — Jan Borchers

Recommender Tools

14

• Calculate a Degree of Interest for
source code elements based on:

• reading history

• editing history

• history of other team members

• information from version control
systems

[Singer2005, NavTracks: supporting navigation in software maintenance]

C B

[DeLine2005, Easing program comprehension by sharing navigation data]
[Čubranic ́2005, Hipikat: recommending pertinent software development artifacts]

media computing groupCTHCI — Jan Borchers

Changing the Presentation

15

[DeLine2006, Code Thumbnails: Using Spatial Memory to Navigate Source Code]

ble nodes), we reflect this tree in the code thumbnail
with brackets representing the second- and third-level
nodes, which are typically types and their members. The
brackets provide another form of visual landmark.

To navigate using the CT Scrollbar, a developer can
either use the scrollbar at left in the usual way, or she
can click on a location in the thumbnail to jump to the
corresponding place in the code. Whenever the mouse
cursor is inside the thumbnail area, labels appear show-
ing the names of likely navigation targets, specifically
the names of second-level items with no children (e.g.,
enums) and third-level items (fields and methods) as
shown on the right side of Figure 1. In the current de-
sign, these pop-up labels occlude the code shape, which
is an area for improvement.

 The CT Desktop, shown in Figure 2, shows a
thumbnail image of every source file in the project,
arranged on a desktop surface. Each thumbnail has a
label at the top, which shows the file name and serves as
a handle for moving the thumbnail. A developer can
arrange the thumbnails on the desktop as she sees fit.
The code thumbnails are drawn exactly like those in the
CT Scrollbar, except that the currently visible portion is
drawn with a filled rectangle to make it more apparent.
We use the same font size for all thumbnails on the
desktop, which means that each thumbnail’s height is
proportional to its file’s length. The document whose

editor is active is highlighted with a thicker border than
the others. Documents that are currently closed are
shown with a grey background, grey title and no scroll
area. As with the CT Scrollbar, moving the cursor over
a thumbnail pops up target labels, and clicking on a
thumbnail activates the document’s editor and scrolls to
the chosen part of the document. Clicking a thumbnail’s
title area activates the document’s editor without scrol-
ling the document. Double-clicking a grayed thumbnail
opens the document and activates its editor.

When the programmer uses any of the standard
search tools, the search results are highlighted in both
the CT Scrollbar and CT Desktop. This makes it easy to
see all search results at a glance.

Both the CT Scrollbar and Desktop are intended to
allow the developer to form spatial memory of the code.
The CT Scrollbar provides a stable, one-dimensional
space per document, with visual landmarks to help the
user distinguish different parts at a glance (namely, the
code shape, the brackets and the target labels). The CT
Desktop provides a stable, two-dimensional space of all
the documents, again with visual landmarks (namely,
the thumbnail landmarks, plus their placement).

Our UI design choices were driven by our study
goals. Specifically, we were interested in whether de-
velopers could form spatial memory of the code and
how that would affect their navigation choices. We

Figure 1. The Code Thumbnail Scrollbar adds a thumbnail image of the document to the scrollbar, with a rectangle indicating the
current view (left). On mouse-over, it the names of potential navigation targets are revealed (right).

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

media computing groupCTHCI — Jan Borchers

Changing the Presentation

16

[Sublime Text 2, http://www.sublimetext.com/2]

[Bragdon2010, Code bubbles: a working set-based interface for code understanding and maintenance] [Bragdon2010, Code bubbles: a working set-based interface for code understanding and maintenance]

[Bragdon2010, Code bubbles: a working set-based interface for code understanding and maintenance] [Bragdon2010, Code bubbles: a working set-based interface for code understanding and maintenance]

[Bragdon2010, Code bubbles: a working set-based interface for code understanding and maintenance] media computing groupCTHCI — Jan Borchers

Canvas Interfaces in the Wild

22

[DeLine2012, Debugger Canvas: Industrial experience with the code bubbles paradigm]

A. Usability Testing during Development
Fourteen weeks before the first release, we used the

Rapid Iterative Testing and Evaluation method [4] to im-

prove the usability of the implementation. Briefly, we asked

10 participants to use Debugger Canvas to complete three

tasks in one-hour sessions. The goal of each session was to

see where the user struggled with the user experience and to

gather feedback. After each user session, we identified any

remaining critical usability problems and fixed them before

the next session. While this method introduces too much

variability between users to take controlled measures, the

method is an efficient way to improve the tool and reduce

overall participant frustration.

The most important usability problem we fixed in this

process was our design decision to create a new canvas au-

tomatically for each debugging session. Our RITE users

consistently debugged in many, short sessions (often fo-

cused on a single method) and therefore found the resulting

canvases to be “clutter.” We updated the design so that de-

bugging sessions all take place in the same canvas, unless

the user explicitly creates a new one.

B. Download and Usage Data
We measured number of downloads for the tool, as well

as number of users per day and per month. In the adoption

numbers we were mostly looking for trends. We expect a

non-useful tool to have bad word of mouth, leading to

downloads going down sharply after the initial launch,

while conversely, a useful tool should have a long tail after

the initial spike, leading to a significant number of down-

loads beyond the first 2-3 weeks. The download curve is

shown in Figure 5.

Figure 5: Number of unique downloads per week, after the initial release

on 13 June 2011.

Download trends show a strong spike the first week, as

would be expected, then settles into a mostly flat pattern.

Downloads from week 3 and out represent 45% of the total.

Given our initial criteria, this represents a positive result. It

seems like Debugger Canvas may have enough usefulness

that a relatively steady stream of users get pointed our way,

despite no marketing activities from us after the initial

launch, up until week 32 when we announced the second

release.

The Microsoft Customer Experience Improvement Pro-

gram (CEIP) provides the ability for customers to upload

product usage data with complete anonymity. To participate

in this program, users opt in to share their data with Mi-

crosoft, meaning that such data represents a self-selected

sample of all users. (The Visual Studio team estimates that

roughly 15% of their customers participate.) This data is

then collated into counts of users who performed this action

per day and per month.

To receive data, a team must instrument the operations

in its product. For Debugger Canvas, we instrumented the

operation of stepping with the debugger inside a code bub-

ble, as well as our menu commands. Table 1 shows the fre-

quency of Debugger Canvas’s operations, relative to step-

ping inside a code bubble (our most frequent instrumented

operation).

Table 1. Relative use of Debugger Canvas's commands.

Command
Use relative to

stepping
Step into bubble 1.0

Create New Canvas .11

Start Debugging Without Debugger Canvas .07

Show Video Tutorial .03

Start Debugging With Debugger Canvas .03

Save As XPS .01

Send Feedback .01

Send As XPS Attachment .01

Figure 6. Users per day who step into a code bubble at least once, as a

percentage of usage on the first day. (The gap is due to missing data.)

Figure 6 shows the number of users per day (in the CEIP

sample) who step into a code bubble, starting in week 10

after release. (The gap is due to a problem with data collec-

tion in December 2011.) The trend of users per day is most-

ly flat and then picks up after the second release in week 32.

When seen in the context of the trickle of new downloads in

Figure 5, the overall curve in Figure 6 suggests that many

users dropped out after initial use, but a large fraction con-

tinue to use it steadily.

0
1,000
2,000
3,000
4,000
5,000
6,000

1 4 7 10 13 16 19 22 25 28 31 34 37 40
0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

1069

Weeks usagePe
rc

en
t

ad
op

te
rs

 p
er

 d
ay

media computing groupCTHCI — Jan Borchers

Utilizing the Call Graph

23

Design

Analyze Implement

[Ko2009, Finding causes of program output with the Java Whyline]

Results

The speed and success results for task 1 are summarized in
Figure 13. All 10 Whyline participants completed task 1,
compared to only 3 control participants, a statistically
significant difference (χ2 =10.6, p<.05). Whyline
participants also completed task 1 twice as fast (t=4.5,
p<0.05). As seen in Table 1, this was usually achieved using
1 or 2 “why did” questions, almost exclusively about the
creation of the checkbox or the label drawn. The speed and
success for task 2 are shown in Figure 14. Whyline
participants were more successful (χ2=5, p<.05), with 4 of
10 Whyline users succeeding, compared to 0 in the control.
Whyline users asked a median of 4 “why did” questions
(see Table 1), usually starting on the “MyClass” label,
eventually asking about the creation of the list of objects
containing the labels (which was a few dependencies away
from the bug). Because the task was more difficult, both
groups experienced ceiling effects, causing no difference in
speed. There was no relationship between industry
experience and success for either task (though the sample
was probably too small to detect such differences).

It is also informative to consider the information that
participants explored. The tools were instrumented to
capture data about source file views and navigations with
both the keyboard and mouse, allowing us to see what lines
of code participants were viewing and for how long. Table
1, for example, lists statistics about the number of files
participants viewed per minute and overall, by task and
condition. For task 1, Whyline participants viewed
significantly fewer files per minute than the control group
(t=22.6, df=18, p<0.0001), but both groups viewed similar
numbers of files overall. For task 2, Whyline participants
viewed significantly more files per minute than the control
group (t=2.2, df=18,p<.05). This discrepancy is consistent
with the nature of the two tasks: task 1 involved changes to
a single file, so viewing fewer files should relate to success;
task 2 involved dependencies across many files, so viewing
more files should relate to success.

To assess the relevance of the files they viewed, we selected
a single function for each task that was key to solving each
problem and, for each function visited, computed the
distance from the visited function to the key function in the
application’s program dependence graph [2]. (For example,
if a method was a single call or variable reference away
from the key function, the distance of the method would be
1. The key function itself has a distance of 0). Using this
metric, we computed each participant’s median distance
from the key function for each task. For task 1, Whyline
participants were significantly closer to the key function
than the control group (t=4.6,df=18,p<.0002). For task 2,
there was no significant difference in distance (likely due to
the low degree of success).

Another telling difference in participants’ performance were
the UIs used to debug. As seen at the bottom of Table 1,
Whyline participants relied mostly on questions, avoiding
the more common strategy of text searches for relevant
content [9]. The control group, despite using breakpoints,
relied more on text searches (which is to be expected [9])
and were far less successful. No participants had usability
problems with the breakpoint features, likely due to our
extensive 3-month period of user testing prior to the study.

Finally, 8 of the 10 Whyline users offered their opinions on
the Whyline unprompted:

I love it!

This is really great!

I think this will really help.

This is really going to reduce the burden on programmers.

This is great, when can I get this for C?

It's so nice and straight and simple...

My god, this is so cool.

This is very nice.

The enthusiasm of participants was clearly evident and all
asked to be notified of the tool’s availability.

0

2

4

6

8

10

successful

 0

10

20

30

time (min)

whyline

control

Figure 13. For task 1, the number of successful participants
and the time on task.

0

2

4

6

8

10

successful

 0

10

20

30

time (min)

whyline

control

Figure 14. For task 2, the number of successful participants
and the time on task.

task 1 task 2

whyline control whyline control

of unique
source files
viewed per

minute

mean 1.8 13.3 1 0.6

σ2 1.4 0.8 0.5 0.4

range of files viewed 8 – 39 10 – 66 16 – 72 6 – 44

median
distance to key

function

mean 2.2 3.4 3.6 3.3

σ2 0.6 0.5 0.5 0.5

why did questions
(median, range)

2, 1–4 — 4, 1–8 —

why didnʼt questions
(median, range)

0, 0–0 — 0, 0–2 —

median # debugger steps
taken

— 9 — 14.5

median # text searches 0.5 7 1 8

Table 1. Statistics about each condition per task, including
files visited per minute and overall, the median distance to the

solution, and the tools used to debug.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1576

Task 1

Task 2

media computing groupCTHCI — Jan Borchers 25

In practice: Feasible paths most interesting
[LaToza2010, Developers ask reachability questions]

media computing groupCTHCI — Jan Borchers 26

visualization combines methods occurring multiple times in recur-
sive calls or when the call site is located in a loop. An important
focus has been finding the right balance between displaying too
much and not enough information. Only methods containing
statements that matched a search are shown by default. Paths be-
tween these methods are shown with a single dashed edge that can
be expanded to see the complete path. And we have considered
several alternative levels of detail provided in the visual attributes
shown. See Figure 1 for a mockup.

4. CONCLUSIONS AND FUTURE WORK
Recent studies indicate that searching across control flow paths is
a widely used approach for answering many questions. Therefore,
we are currently designing a tool to make this easier. But there are
several challenges to creating such a tool. A static analysis is nec-
essary to eliminate infeasible paths, but must be fast enough to
compute results in response to user searches. The visualization
should help users make sense of the paths without displaying an
overwhelming amount of irrelevant information. We believe that
better tool support for searching across control flow paths will
help make many common coding activities easier, faster, and less
error prone.

5. ACKNOWLEDGMENTS
This research was funded in part by the National Science Founda-
tion, under grant CCF-0811610. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of the Na-
tional Science Foundation.

6. REFERENCES
[1] Anderson, P., and Teitelbaum, T. (2001). Software inspec-

tion using CodeSurfer. In Proc. Workshop on Inspection in

Software Engineering at CAV.

[2] Bennet, C., Myers, D., Storey, M. German, D. M., Oullet, D.,
Solois, M., and Charland, P. (2008). A survey and evaluation
of tool features for understanding reverse-engineered se-
quence diagrams. In Journal of Software Maintenance and

Evoluation, 20 (4), 291-315.

[3] Binkley, D., Gold, N., and Harman, M. (2007). An empirical
study of static program slice size. In TOSEM, 16(2).

[4] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V. (2005).
JRipples: a tool for program comprehension during incre-
mental change. In Proc. of the 13th Int. Workshop on Pro-

gram Comprehension (IWPC).

[5] Hill, E., Pollock, L., and Vijay-Shanker, A.K. (2007). Ex-
ploring the neighborhood with Dora to expedite software
maintenance. In Proc. ASE.

[6] Ko, A. J. DeLine, R., Venolia, G. (2007). Information Needs
in Collocated Software Development Teams. In Proc. ICSE.

[7] Ko, A.J., and Myers, B.A. (2008). Debugging reinvented:
asking and answering why and why not questions about pro-
gram behavior. In Proc. ICSE, 301-310.

[8] Ko., A.J., and Myers, B.A. (2009). Finding causes of pro-
gram output with the Java WhyLine. In Proc. Conference on

Human Factors in Computing Systems (CHI), 187-196.

[9] LaToza, T.D., Garlan, D., Herbsleb, J.D., and Myers, B.A.
(2007). Program comprehension as fact finding. In Proc.
ESEC/FSE.

[10] LaToza, T.D., and Myers, B.A. (2010). Developers ask
reachability questions. To appear in Proc. ICSE.

[11] Sillito, J., Murphy, G.C., and De Volder, K. (2008). Asking
and answering questions during a programming change task.
In Transactions on Software Engineering (TSE), 34(4).

Figure 1. A mockup of our path visualization. Developers in one of our studies wondered why a call to JEditBuffer.getFoldLevel

was necessary even though the return value was ignored. Maybe the method has effects by mutating fields or communicating with

the framework? Some developers looked downstream for this behavior, but the relevant statements were several calls away, and

developers failed to locate them. In the mockup, target statements (calls into the framework) are shown with a blue background

and paths from the search origin (getFoldLevel) are depicted using a variety of visual attributes.

32

Utilizing Call Graph Information
[LaToza2010, Searching Across Paths]

media computing groupCTHCI — Jan Borchers

Static Analysis in the Wild

27

[Clang Static Analyzer, http://clang-analyzer.llvm.org/]

media computing groupCTHCI — Jan Borchers 28

Call Hierarchy

media computing groupCTHCI — Jan Borchers 29

Stacksplorer
[Karrer2011, Stacksplorer: Call Graph Navigation Helps Increasing Code Maintenance Efficiency]

media computing groupCTHCI — Jan Borchers 30

Blaze
[Krämer2012, Blaze: Supporting Two-phased Call Graph Navigation in Source Code]

media computing groupCTHCI — Jan Borchers

Analyzing Navigation Behavior

31

Design

Analyze Implement

media computing groupCTHCI — Jan Borchers

Find Change
Location Task Success

Task Completion Time
Task Success

Task Completion Time
Task Success

Task Completion Time
Task Success

Task Completion TimeSide Effects
of Change

Task Success
Task Completion Time

Task Success
Task Completion Time

Task Success
Task Completion Time

Task Success
Task Completion Time

33 Developers

80.000 Lines of Code

32

Call
Hierarchy Stacksplorer BlazeXcode

[Krämer2013, How Tools in IDEs Shape Developers' Navigation Behavior]

media computing groupCTHCI — Jan Borchers

Task Success

0

1.5

3

4.5

6

Xcode Call Hierarchy Stacksplorer Blaze

p = 0.015

33

#
 o

f s
uc

ce
ss

fu
l p

ar
tic

ip
an

ts

media computing groupCTHCI — Jan Borchers

Task Completion Time

0

475

950

1425

1900

Xcode Call Hierarchy Stacksplorer Blaze

p=0.022

34

to
ta

l t
im

e
re

qu
ir

ed
 in

 s
ec

on
ds

media computing groupCTHCI — Jan Borchers

Navigation BehaviorNavigation Behavior

Why?

Effectiveness Call
Hierarchy

Stacksplorer BlazeXcode

Efficiency Call
Hierarchy

Stacksplorer BlazeXcode

UI Differences

35 media computing groupCTHCI — Jan Borchers 36

[Fouse2011, ChronoViz: A system for supporting navigation of time-coded data]

media computing groupCTHCI — Jan Borchers 37

?

Comparing Navigation Behavior

media computing groupCTHCI — Jan Borchers 38

I1=(p1,1, ..., p640,480) I2=(p1,1, ..., p1024,768)

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

1. Features
2. Transformations

=

media computing groupCTHCI — Jan Borchers

Fre
qu

en
cy

Bu
g R

ep
or

t

Sim
ila

rit
y

W
or

kin
g S

et

W
ith

in-
Fil

e

Dist
an

ce

39

H=(m1, ..., mi)

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Rec
en

cy

Fre
qu

en
cy

Bu
g R

ep
or

t

Sim
ila

rit
y

W
or

kin
g S

et

W
ith

in-
Fil

e

Dist
an

ce
Fo

rw
ard

Call
 D

ep
th

Und
ire

cte
d

Call
 D

ep
th

[Piorkowski2011,
Modeling programmer
navigation: A head-to-
head empirical evaluation
of predictive models]

media computing groupCTHCI — Jan Borchers

A Predictor

H=(m1, ..., mi) Navigation History H = (a, b, a, d)

Mi
All methods known
to developer at time

i
M4 = {a, b, d}

Ai: Mi - {mi}→� Activation value for
each method in Mi

A4(a) = 3
A4(b) = 2

Ri: Mi - {mi}→� Rank-transformed
version of Ai

R4(a) = 1
R4(b) = 2

Result: N top-ranked methods

[Piorkowski2011, Modeling programmer navigation: A head-to-head empirical
evaluation of predictive models]

40

media computing groupCTHCI — Jan Borchers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Recency Frequency Working Set Bug Report Similarity
Within File Distance Fwd Call Depth Undirected Call Depth

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Xcode Stacksplorer

41

Prediction Accuracy

N = N =

media computing groupCTHCI — Jan Borchers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fwd Call Depth Undirected Call Depth

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Xcode Stacksplorer

42

Prediction Accuracy

N = N =

media computing groupCTHCI — Jan Borchers

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

43

Forward Call Depth

Undirected Call Depth

N =

N =

media computing groupCTHCI — Jan Borchers

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 %

20 %

30 %

40 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p=0.002 p=0.001

p=0.003

p=0.001

44

Forward Call Depth

Undirected Call Depth

N =

N =

Xcode Call Hierarchy Stacksplorer Blaze

media computing groupCTHCI — Jan Borchers

Outlook

45

Design

Analyze Implement

[Brandt2010, Example-centric programming: integrating web search into the development environment]

[Oney2012, Codelets: Linking Interactive Documentation and Example Code in the Editor] [Victor2012, Inventing on Principle]

media computing groupCTHCI — Jan Borchers 49

Summary

Finding focus points Expanding focus points

Understanding a subgraph Questions over groups
of subgraphs C B

